Boosting Pseudocapacitive Behavior of Supercapattery Electrodes by Incorporating a Schottky Junction for Ultrahigh Energy Density
Corresponding Author: Do‑Heyoung Kim
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 62
Abstract
Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes. In the present study, a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism. The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode–electrolyte interface using atomic layer deposition. The Schottky junction accelerates and decelerates the diffusion of OH‒/K+ ions during the charging and discharging processes, respectively, to improve the pseudocapacitive behavior. The resulting pseudocapacitive negative electrodes exhibits a specific capacity of 2,114 C g−1 at 2 A g−1 matches almost that of the positive electrode’s 2,795 C g−1 at 3 A g−1. As a result, with the equivalent contribution from the positive and negative electrodes, an energy density of 236.1 Wh kg−1 is achieved at a power density of 921.9 W kg−1 with a total active mass of 15 mg cm−2. This strategy demonstrates the possibility of producing supercapacitors that adapt well to the supercapattery zone of a Ragone plot and that are equal to batteries in terms of energy density, thus, offering a route for further advances in electrochemical energy storage and conversion processes.
Highlights:
1 Incorporation of Schottky Junction increases the pseudocapacitive mechanism at higher current rate.
2 The pseudocapacitance behavior of the positive and negative electrodes is balanced to construct a solid-state supercapattery device.
3 An energy density of 236.14 Wh kg−1 is achieved for solid-state supercapattery device.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/C8CS00581H
- Global electric vehicle battery industry. ReportLinker, 5798459 (2022). https://www.reportlinker.com/p05798459/Global-Electric-Vehicle-Battery-Industry.html
- F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46(22), 6816–6854 (2017). https://doi.org/10.1039/C7CS00205J
- J. Hong, H. Kim, J.E. Lee, Y.N. Ko, K.T. Park et al., Nitrogen and sulfur dual-doped porous carbon derived from coffee waste and cysteine for electrochemical energy storage. Korean J. Chem. Eng. 37(7), 1218–1225 (2020). https://doi.org/10.1007/s11814-020-0544-z
- Y.L.T. Ngo, J.S. Chung, S.H. Hur, Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications. Korean J. Chem. Eng. 37(9), 1589–1598 (2020). https://doi.org/10.1007/s11814-020-0531-4
- S.C. Sekhar, G. Nagaraju, B. Ramulu, S.J. Arbaz, D. Narsimulu et al., An eco-friendly hot-water therapy towards ternary layered double hydroxides laminated flexible fabrics for wearable supercapatteries. Nano Energy 76, 105016 (2020). https://doi.org/10.1016/j.nanoen.2020.105016
- Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
- G.Z. Chen, Supercapattery: merit merge of capacitive and nernstian charge storage mechanisms. Curr. Opin. Electrochem. 21, 358–367 (2020). https://doi.org/10.1016/j.coelec.2020.04.002
- G. Nagaraju, S.C. Sekhar, B. Ramulu, S.K. Hussain, D. Narsimulu et al., Ternary MOF-based redox active sites enabled 3D-on-2D nanoarchitectured battery-type electrodes for high-energy-density supercapatteries. Nano-Micro Lett. 13, 17 (2020). https://doi.org/10.1007/s40820-020-00528-9
- J. Iqbal, S. Bashir, M.O. Ansari, R. Jafer, A. Jilani et al., Chapter seven—ternary nanocomposites for supercapattery, in Advances in Supercapacitor and Supercapattery, pp. 141–173 (2021). https://doi.org/10.1016/B978-0-12-819897-1.00013-6
- A. Numan, Y. Zhan, M. Khalid, M. Hatamvand, Chapter three—introduction to supercapattery, in Advances in Supercapacitor and Supercapattery, pp. 45–61 (2021). https://doi.org/10.1016/B978-0-12-819897-1.00008-2
- L. Yu, G.Z. Chen, Supercapatteries as high-performance electrochemical energy storage devices. Electrochem. Energy Rev. 3(2), 271–285 (2020). https://doi.org/10.1007/s41918-020-00063-6
- Y. Huang, Y. Zeng, M. Yu, P. Liu, Y. Tong et al., Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2(2), 1700230 (2018). https://doi.org/10.1002/smtd.201700230
- Y. Zhang, H. Hu, Z. Wang, B. Luo, W. Xing et al., Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing. Nano Energy 68, 104226 (2020). https://doi.org/10.1016/j.nanoen.2019.104226
- X. Lu, G. Li, Y. Tong, A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 58(11), 1799–1808 (2015). https://doi.org/10.1007/s11431-015-5931-z
- V.D. Nithya, N.S. Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 327, 297–318 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.033
- S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim et al., 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352
- E.H. Rhoderick, Metal-semiconductor contacts. IEE Proc. I 129(1), 1–14 (1982). https://doi.org/10.1049/ip-i-1.1982.0001
- S. Adhikari, S. Selvaraj, D.H. Kim, Progress in powder coating technology using atomic layer deposition. Adv. Mater. Interfaces 5(24), 1801853 (2018). https://doi.org/10.1002/admi.201801853
- A.T. Sivagurunathan, S. Adhikari, D.H. Kim, Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: recent advances and prospects. Nano Energy 83, 105802 (2021). https://doi.org/10.1016/j.nanoen.2021.105802
- S. Seenivasan, S. Adhikari, D.H. Kim, Surface restructuring of hematite photoanodes through ultrathin NiFeOx catalyst: amplified charge collection for solar water splitting and pollutant degradation. Chem. Eng. J. 422, 130137 (2021). https://doi.org/10.1016/j.cej.2021.130137
- S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss, Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Lett. 12, 85 (2020). https://doi.org/10.1007/s40820-020-0413-7
- S. Seenivasan, D.H. Kim, Engineering the surface anatomy of an industrially durable NiCo2S4/NiMo2S4/NiO bifunctional electrode for alkaline seawater electrolysis. J. Mater. Chem. A 10(17), 9547–9564 (2022). https://doi.org/10.1039/D1TA10850F
- T. Kavinkumar, S. Seenivasan, A.T. Sivagurunathan, Y. Kwon, D.H. Kim, Three-dimensional hierarchical core/shell electrodes using highly conformal TiO2 and Co3O4 thin films for high-performance supercapattery devices. ACS Appl. Mater. Interfaces 13(24), 29058–29069 (2021). https://doi.org/10.1021/acsami.1c04572
- S. Selvaraj, H. Moon, J.Y. Yun, D.H. Kim, Iron oxide grown by low-temperature atomic layer deposition. Korean J. Chem. Eng. 33(12), 3516–3522 (2016). https://doi.org/10.1007/s11814-016-0319-8
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- J.A.S. David, S. Sholl, Density Functional Theory: A Practical Introduction. (WILEY, 2009).
- H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- W.H. Press, A.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes-the Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)
- F. Wang, X. Wang, Z. Chang, Y. Zhu, L. Fu et al., Electrode materials with tailored facets for electrochemical energy storage. Nanoscale Horizons. 1(4), 272–289 (2016). https://doi.org/10.1039/C5NH00116A
- A. Kiejna, T. Pabisiak, Mixed termination of hematite (α-Fe2O3)(0001) surface. J. Phys. Chem. C 117(46), 24339–24344 (2013). https://doi.org/10.1021/jp406946s
- K. Momma, F. Izumi, Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970
- R. Manikandan, C.J. Raj, G. Nagaraju, M. Pyo, B.C. Kim, Selective design of binder-free hierarchical nickel molybdenum sulfide as a novel battery-type material for hybrid supercapacitors. J. Mater. Chem. A 7(44), 25467–25480 (2019). https://doi.org/10.1039/c9ta08527k
- H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu et al., Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 30(32), 1910596 (2020). https://doi.org/10.1002/adfm.201910596
- H. Wang, N. Mi, S. Sun, W. Zhang, S. Yao, Oxygen vacancies enhancing capacitance of MgCo2O4 for high performance asymmetric supercapacitors. J. Alloys Compd. 869, 159294 (2021). https://doi.org/10.1016/j.jallcom.2021.159294
- S. Seenivasan, H. Moon, D.H. Kim, Multilayer strategy for photoelectrochemical hydrogen generation: new electrode architecture that alleviates multiple bottlenecks. Nano-Micro Lett. 14, 78 (2022). https://doi.org/10.1007/s40820-022-00822-8
- S. Biswas, V. Sharma, D. Mandal, A. Chowdhury, M. Chakravarty et al., Hollow nanostructures of metal oxides as emerging electrode materials for high performance supercapacitors. CrystEngComm 22(9), 1633–1644 (2020). https://doi.org/10.1039/C9CE01547G
- B. Guo, T. Yang, W. Du, Q. Ma, L. Zhang et al., Double-walled N-doped carbon@NiCo2S4 hollow capsules as SeS2 hosts for advanced Li–SeS2 batteries. J. Mater. Chem. A 7(19), 12276–12282 (2019). https://doi.org/10.1039/C9TA02695A
- D. Zhao, M. Dai, H. Liu, K. Chen, X. Zhu et al., Sulfur-induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces 6(21), 1901308 (2019). https://doi.org/10.1002/admi.201901308
- T. Yao, X. Guo, S. Qin, F. Xia, Q. Li et al., Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett. 9, 38 (2017). https://doi.org/10.1007/s40820-017-0141-9
- S. Adhikari, Y. Kwon, D.H. Kim, Three-dimensional core–shell structured NiCo2O4@CoS/Ni-foam electrocatalyst for oxygen evolution reaction and electrocatalytic oxidation of urea. Chem. Eng. J. 402, 126192 (2020). https://doi.org/10.1016/j.cej.2020.126192
- X. Cao, C. Tan, X. Zhang, W. Zhao, H. Zhang, Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 28(29), 6167–6196 (2016). https://doi.org/10.1002/adma.201504833
- Y. Song, Z. Chen, Y. Li, Q. Wang, F. Fang et al., Pseudocapacitance-tuned high-rate and long-term cyclability of NiCo2S4 hexagonal nanosheets prepared by vapor transformation for lithium storage. J. Mater. Chem. A 5(19), 9022–9031 (2017). https://doi.org/10.1039/C7TA01758H
- T. Zhang, L.B. Kong, M.C. Liu, Y.H. Dai, K. Yan et al., Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Mater. Des. 112, 88–96 (2016). https://doi.org/10.1016/j.matdes.2016.09.054
- S. Seenivasan, H. Jung, J.W. Han, D.H. Kim, Surface roughening strategy for highly efficient bifunctional electrocatalyst: combination of atomic layer deposition and anion exchange reaction. Small Methods 6(2), 2101308 (2022). https://doi.org/10.1002/smtd.202101308
- N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F.S. Fernando, K. Jayaramulu et al., True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16(37), 2002806 (2020). https://doi.org/10.1002/smll.202002806
- A. Cymann-Sachajdak, M. Graczyk-Zajac, G. Trykowski, M. Wilamowska-Zawłocka, Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes. Electrochim. Acta 383, 138356 (2021). https://doi.org/10.1016/j.electacta.2021.138356
- Z.H. Huang, T.Y. Liu, Y. Song, Y. Li, X.X. Liu, Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 9(35), 13119–13127 (2017). https://doi.org/10.1039/C7NR04234E
- Y. Chen, C. Zhou, G. Liu, C. Kang, L. Ma et al., Hydroxide ion dependent α-MnO2 enhanced via oxygen vacancies as the negative electrode for high-performance supercapacitors. J. Mater. Chem. A 9(5), 2872–2887 (2021). https://doi.org/10.1039/D0TA10489B
- W. Yan, J.Y. Kim, W. Xing, K.C. Donavan, T. Ayvazian et al., Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem. Mater. 24(12), 2382–2390 (2012). https://doi.org/10.1021/cm3011474
- X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42(5), 1934–1946 (2013). https://doi.org/10.1039/C2CS35387C
- B.S. Soram, J.Y. Dai, I.S. Thangjam, N.H. Kim, J.H. Lee, One-step electrodeposited MoS2@Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. J. Mater. Chem. A 8(45), 24040–24052 (2020). https://doi.org/10.1039/D0TA07764J
- W. Choi, H.C. Shin, J.M. Kim, J.Y. Choi, W.S. Yoon (2020) Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol. 11(1):1–13. https://doi.org/10.33961/jecst.2019.00528
- T.Q. Nguyen, C. Breitkopf, Determination of diffusion coefficients using impedance spectroscopy data. J. Electrochem. Soc. 165(14), E826–E831 (2018). https://doi.org/10.1149/2.1151814jes
- S. Chen, D. Jin, Y. Zhao, H. Zhao, X. Zhou et al., In-situ construction of vacancies and schottky junctions in nickel-iron selenide within N-graphene porous matrix for enhanced sodium/potassium storage. J. Alloys Compd. 911, 165091 (2022). https://doi.org/10.1016/j.jallcom.2022.165091
- G. Zuo, Y. Wang, W.L. Teo, A. Xie, Y. Guo et al., Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene schottky junction nanohybrid. Chem. Eng. J. 403, 126328 (2021). https://doi.org/10.1016/j.cej.2020.126328
- T. Kavinkumar, S. Seenivasan, H.H. Lee, H. Jung, J.W. Han et al., Interface-modulated uniform outer nanolayer: a category of electrodes of nanolayer-encapsulated core-shell configuration for supercapacitors. Nano Energy 81, 105667 (2021). https://doi.org/10.1016/j.nanoen.2020.105667
- K.K. Ng, Schottky-barrier diode. Complete Guide to Semiconductor Devices, 2nd edn, pp. 31–41 (2009). https://doi.org/10.1002/9781118014769.ch3
- C. Yim, N. McEvoy, H.Y. Kim, E. Rezvani, G.S. Duesberg, Investigation of the interfaces in schottky diodes using equivalent circuit models. ACS Appl. Mater. Interfaces 5(15), 6951–6958 (2013). https://doi.org/10.1021/am400963x
- S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J. Energy Storage 27, 101072 (2020). https://doi.org/10.1016/j.est.2019.101072
- L. Lyu, K. Seong, J.M. Kim, W. Zhang, X. Jin et al., CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 11, 88 (2019). https://doi.org/10.1007/s40820-019-0316-7
References
A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/C8CS00581H
Global electric vehicle battery industry. ReportLinker, 5798459 (2022). https://www.reportlinker.com/p05798459/Global-Electric-Vehicle-Battery-Industry.html
F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46(22), 6816–6854 (2017). https://doi.org/10.1039/C7CS00205J
J. Hong, H. Kim, J.E. Lee, Y.N. Ko, K.T. Park et al., Nitrogen and sulfur dual-doped porous carbon derived from coffee waste and cysteine for electrochemical energy storage. Korean J. Chem. Eng. 37(7), 1218–1225 (2020). https://doi.org/10.1007/s11814-020-0544-z
Y.L.T. Ngo, J.S. Chung, S.H. Hur, Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications. Korean J. Chem. Eng. 37(9), 1589–1598 (2020). https://doi.org/10.1007/s11814-020-0531-4
S.C. Sekhar, G. Nagaraju, B. Ramulu, S.J. Arbaz, D. Narsimulu et al., An eco-friendly hot-water therapy towards ternary layered double hydroxides laminated flexible fabrics for wearable supercapatteries. Nano Energy 76, 105016 (2020). https://doi.org/10.1016/j.nanoen.2020.105016
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
G.Z. Chen, Supercapattery: merit merge of capacitive and nernstian charge storage mechanisms. Curr. Opin. Electrochem. 21, 358–367 (2020). https://doi.org/10.1016/j.coelec.2020.04.002
G. Nagaraju, S.C. Sekhar, B. Ramulu, S.K. Hussain, D. Narsimulu et al., Ternary MOF-based redox active sites enabled 3D-on-2D nanoarchitectured battery-type electrodes for high-energy-density supercapatteries. Nano-Micro Lett. 13, 17 (2020). https://doi.org/10.1007/s40820-020-00528-9
J. Iqbal, S. Bashir, M.O. Ansari, R. Jafer, A. Jilani et al., Chapter seven—ternary nanocomposites for supercapattery, in Advances in Supercapacitor and Supercapattery, pp. 141–173 (2021). https://doi.org/10.1016/B978-0-12-819897-1.00013-6
A. Numan, Y. Zhan, M. Khalid, M. Hatamvand, Chapter three—introduction to supercapattery, in Advances in Supercapacitor and Supercapattery, pp. 45–61 (2021). https://doi.org/10.1016/B978-0-12-819897-1.00008-2
L. Yu, G.Z. Chen, Supercapatteries as high-performance electrochemical energy storage devices. Electrochem. Energy Rev. 3(2), 271–285 (2020). https://doi.org/10.1007/s41918-020-00063-6
Y. Huang, Y. Zeng, M. Yu, P. Liu, Y. Tong et al., Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2(2), 1700230 (2018). https://doi.org/10.1002/smtd.201700230
Y. Zhang, H. Hu, Z. Wang, B. Luo, W. Xing et al., Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing. Nano Energy 68, 104226 (2020). https://doi.org/10.1016/j.nanoen.2019.104226
X. Lu, G. Li, Y. Tong, A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 58(11), 1799–1808 (2015). https://doi.org/10.1007/s11431-015-5931-z
V.D. Nithya, N.S. Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 327, 297–318 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.033
S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim et al., 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352
E.H. Rhoderick, Metal-semiconductor contacts. IEE Proc. I 129(1), 1–14 (1982). https://doi.org/10.1049/ip-i-1.1982.0001
S. Adhikari, S. Selvaraj, D.H. Kim, Progress in powder coating technology using atomic layer deposition. Adv. Mater. Interfaces 5(24), 1801853 (2018). https://doi.org/10.1002/admi.201801853
A.T. Sivagurunathan, S. Adhikari, D.H. Kim, Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: recent advances and prospects. Nano Energy 83, 105802 (2021). https://doi.org/10.1016/j.nanoen.2021.105802
S. Seenivasan, S. Adhikari, D.H. Kim, Surface restructuring of hematite photoanodes through ultrathin NiFeOx catalyst: amplified charge collection for solar water splitting and pollutant degradation. Chem. Eng. J. 422, 130137 (2021). https://doi.org/10.1016/j.cej.2021.130137
S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss, Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Lett. 12, 85 (2020). https://doi.org/10.1007/s40820-020-0413-7
S. Seenivasan, D.H. Kim, Engineering the surface anatomy of an industrially durable NiCo2S4/NiMo2S4/NiO bifunctional electrode for alkaline seawater electrolysis. J. Mater. Chem. A 10(17), 9547–9564 (2022). https://doi.org/10.1039/D1TA10850F
T. Kavinkumar, S. Seenivasan, A.T. Sivagurunathan, Y. Kwon, D.H. Kim, Three-dimensional hierarchical core/shell electrodes using highly conformal TiO2 and Co3O4 thin films for high-performance supercapattery devices. ACS Appl. Mater. Interfaces 13(24), 29058–29069 (2021). https://doi.org/10.1021/acsami.1c04572
S. Selvaraj, H. Moon, J.Y. Yun, D.H. Kim, Iron oxide grown by low-temperature atomic layer deposition. Korean J. Chem. Eng. 33(12), 3516–3522 (2016). https://doi.org/10.1007/s11814-016-0319-8
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
J.A.S. David, S. Sholl, Density Functional Theory: A Practical Introduction. (WILEY, 2009).
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
W.H. Press, A.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes-the Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)
F. Wang, X. Wang, Z. Chang, Y. Zhu, L. Fu et al., Electrode materials with tailored facets for electrochemical energy storage. Nanoscale Horizons. 1(4), 272–289 (2016). https://doi.org/10.1039/C5NH00116A
A. Kiejna, T. Pabisiak, Mixed termination of hematite (α-Fe2O3)(0001) surface. J. Phys. Chem. C 117(46), 24339–24344 (2013). https://doi.org/10.1021/jp406946s
K. Momma, F. Izumi, Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970
R. Manikandan, C.J. Raj, G. Nagaraju, M. Pyo, B.C. Kim, Selective design of binder-free hierarchical nickel molybdenum sulfide as a novel battery-type material for hybrid supercapacitors. J. Mater. Chem. A 7(44), 25467–25480 (2019). https://doi.org/10.1039/c9ta08527k
H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu et al., Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 30(32), 1910596 (2020). https://doi.org/10.1002/adfm.201910596
H. Wang, N. Mi, S. Sun, W. Zhang, S. Yao, Oxygen vacancies enhancing capacitance of MgCo2O4 for high performance asymmetric supercapacitors. J. Alloys Compd. 869, 159294 (2021). https://doi.org/10.1016/j.jallcom.2021.159294
S. Seenivasan, H. Moon, D.H. Kim, Multilayer strategy for photoelectrochemical hydrogen generation: new electrode architecture that alleviates multiple bottlenecks. Nano-Micro Lett. 14, 78 (2022). https://doi.org/10.1007/s40820-022-00822-8
S. Biswas, V. Sharma, D. Mandal, A. Chowdhury, M. Chakravarty et al., Hollow nanostructures of metal oxides as emerging electrode materials for high performance supercapacitors. CrystEngComm 22(9), 1633–1644 (2020). https://doi.org/10.1039/C9CE01547G
B. Guo, T. Yang, W. Du, Q. Ma, L. Zhang et al., Double-walled N-doped carbon@NiCo2S4 hollow capsules as SeS2 hosts for advanced Li–SeS2 batteries. J. Mater. Chem. A 7(19), 12276–12282 (2019). https://doi.org/10.1039/C9TA02695A
D. Zhao, M. Dai, H. Liu, K. Chen, X. Zhu et al., Sulfur-induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces 6(21), 1901308 (2019). https://doi.org/10.1002/admi.201901308
T. Yao, X. Guo, S. Qin, F. Xia, Q. Li et al., Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett. 9, 38 (2017). https://doi.org/10.1007/s40820-017-0141-9
S. Adhikari, Y. Kwon, D.H. Kim, Three-dimensional core–shell structured NiCo2O4@CoS/Ni-foam electrocatalyst for oxygen evolution reaction and electrocatalytic oxidation of urea. Chem. Eng. J. 402, 126192 (2020). https://doi.org/10.1016/j.cej.2020.126192
X. Cao, C. Tan, X. Zhang, W. Zhao, H. Zhang, Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 28(29), 6167–6196 (2016). https://doi.org/10.1002/adma.201504833
Y. Song, Z. Chen, Y. Li, Q. Wang, F. Fang et al., Pseudocapacitance-tuned high-rate and long-term cyclability of NiCo2S4 hexagonal nanosheets prepared by vapor transformation for lithium storage. J. Mater. Chem. A 5(19), 9022–9031 (2017). https://doi.org/10.1039/C7TA01758H
T. Zhang, L.B. Kong, M.C. Liu, Y.H. Dai, K. Yan et al., Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Mater. Des. 112, 88–96 (2016). https://doi.org/10.1016/j.matdes.2016.09.054
S. Seenivasan, H. Jung, J.W. Han, D.H. Kim, Surface roughening strategy for highly efficient bifunctional electrocatalyst: combination of atomic layer deposition and anion exchange reaction. Small Methods 6(2), 2101308 (2022). https://doi.org/10.1002/smtd.202101308
N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F.S. Fernando, K. Jayaramulu et al., True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16(37), 2002806 (2020). https://doi.org/10.1002/smll.202002806
A. Cymann-Sachajdak, M. Graczyk-Zajac, G. Trykowski, M. Wilamowska-Zawłocka, Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes. Electrochim. Acta 383, 138356 (2021). https://doi.org/10.1016/j.electacta.2021.138356
Z.H. Huang, T.Y. Liu, Y. Song, Y. Li, X.X. Liu, Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 9(35), 13119–13127 (2017). https://doi.org/10.1039/C7NR04234E
Y. Chen, C. Zhou, G. Liu, C. Kang, L. Ma et al., Hydroxide ion dependent α-MnO2 enhanced via oxygen vacancies as the negative electrode for high-performance supercapacitors. J. Mater. Chem. A 9(5), 2872–2887 (2021). https://doi.org/10.1039/D0TA10489B
W. Yan, J.Y. Kim, W. Xing, K.C. Donavan, T. Ayvazian et al., Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem. Mater. 24(12), 2382–2390 (2012). https://doi.org/10.1021/cm3011474
X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42(5), 1934–1946 (2013). https://doi.org/10.1039/C2CS35387C
B.S. Soram, J.Y. Dai, I.S. Thangjam, N.H. Kim, J.H. Lee, One-step electrodeposited MoS2@Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. J. Mater. Chem. A 8(45), 24040–24052 (2020). https://doi.org/10.1039/D0TA07764J
W. Choi, H.C. Shin, J.M. Kim, J.Y. Choi, W.S. Yoon (2020) Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol. 11(1):1–13. https://doi.org/10.33961/jecst.2019.00528
T.Q. Nguyen, C. Breitkopf, Determination of diffusion coefficients using impedance spectroscopy data. J. Electrochem. Soc. 165(14), E826–E831 (2018). https://doi.org/10.1149/2.1151814jes
S. Chen, D. Jin, Y. Zhao, H. Zhao, X. Zhou et al., In-situ construction of vacancies and schottky junctions in nickel-iron selenide within N-graphene porous matrix for enhanced sodium/potassium storage. J. Alloys Compd. 911, 165091 (2022). https://doi.org/10.1016/j.jallcom.2022.165091
G. Zuo, Y. Wang, W.L. Teo, A. Xie, Y. Guo et al., Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene schottky junction nanohybrid. Chem. Eng. J. 403, 126328 (2021). https://doi.org/10.1016/j.cej.2020.126328
T. Kavinkumar, S. Seenivasan, H.H. Lee, H. Jung, J.W. Han et al., Interface-modulated uniform outer nanolayer: a category of electrodes of nanolayer-encapsulated core-shell configuration for supercapacitors. Nano Energy 81, 105667 (2021). https://doi.org/10.1016/j.nanoen.2020.105667
K.K. Ng, Schottky-barrier diode. Complete Guide to Semiconductor Devices, 2nd edn, pp. 31–41 (2009). https://doi.org/10.1002/9781118014769.ch3
C. Yim, N. McEvoy, H.Y. Kim, E. Rezvani, G.S. Duesberg, Investigation of the interfaces in schottky diodes using equivalent circuit models. ACS Appl. Mater. Interfaces 5(15), 6951–6958 (2013). https://doi.org/10.1021/am400963x
S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J. Energy Storage 27, 101072 (2020). https://doi.org/10.1016/j.est.2019.101072
L. Lyu, K. Seong, J.M. Kim, W. Zhang, X. Jin et al., CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 11, 88 (2019). https://doi.org/10.1007/s40820-019-0316-7