Multilayer Strategy for Photoelectrochemical Hydrogen Generation: New Electrode Architecture that Alleviates Multiple Bottlenecks
Corresponding Author: Do‑Heyoung Kim
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 78
Abstract
Years of research have demonstrated that the use of multiple components is essential to the development of a commercial photoelectrode to address specific bottlenecks, such as low charge separation and injection efficiency, low carrier diffusion length and lifetime, and poor durability. A facile strategy for the synthesis of multilayered photoanodes from atomic-layer-deposited ultrathin films has enabled a new type of electrode architecture with a total multilayer thickness of 15–17 nm. We illustrate the advantages of this electrode architecture by using nanolayers to address different bottlenecks, thus producing a multilayer photoelectrode with improved interface kinetics and shorter electron transport path, as determined by interface analyses. The photocurrent density was twice that of the bare structure and reached a maximum of 33.3 ± 2.1 mA cm−2 at 1.23 VRHE. An integrated overall water-splitting cell consisting of an electrocatalytic NiS cathode and Bi2S3/NiS/NiFeO/TiO2 photoanode was used for precious-metal-free seawater splitting at a cell voltage of 1.23 V without degradation. The results and root analyses suggest that the distinctive advantages of the electrode architecture, which are superior to those of bulk bottom-up core–shell and hierarchical architectures, originate from the high density of active sites and nanometer-scale layer thickness, which enhance the suitability for interface-oriented energy conversion processes.
Highlights:
1 A multilayer architecture of layers with different functions alleviates bottlenecks in photoelectrochemical (PEC) hydrogen generation. Precise thickness control within a few nanometers defines each layer’s functionality.
2 A Bi2S3/NiS/NiFeO/TiO2 photoanode had a photocurrent density of 33.3 mA cm−2 at 1.23 VRHE under AM 1.5 G illumination.
3 Noble-metal-free seawater splitting was performed in an integrated PEC-electrocatalytic cell with an NiS electrocathode and Bi2S3/NiS/NiFeO/TiO2 photoanode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13, 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
- X. Wei, Z. Wen, Y. Liu, N. Zhai, A. Wei et al., Hybridized mechanical and solar energy-driven self-powered hydrogen production. Nano-Micro Lett. 12, 88 (2020). https://doi.org/10.1007/s40820-020-00422-4
- T.M. Chaloner, S.J. Gurr, D.P. Bebber, Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021). https://doi.org/10.1038/s41558-021-01104-8
- K.H. Ng, S.Y. Lai, C.K. Cheng, Y.W. Cheng, C.C. Chong, Photocatalytic water splitting for solving energy crisis: myth, fact or busted? Chem. Eng. J. 417, 128847 (2021). https://doi.org/10.1016/j.cej.2021.128847
- Y.H. Chiu, T.H. Lai, M.Y. Kuo, P.Y. Hsieh, Y.J. Hsu, Photoelectrochemical cells for solar hydrogen production: challenges and opportunities. APL Mater. 7(8), 080901 (2019). https://doi.org/10.1063/1.5109785
- J.H. Kim, D. Hansora, P. Sharma, J.W. Jang, J.S. Lee, Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48(7), 1908–1971 (2019). https://doi.org/10.1039/C8CS00699G
- A. Thakur, D. Ghosh, P. Devi, K.H. Kim, P. Kumar, Current progress and challenges in photoelectrode materials for the production of hydrogen. Chem. Eng. J. 397, 125415 (2020). https://doi.org/10.1016/j.cej.2020.125415
- X.X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- S.V.P. Vattikuti, P.A.K. Reddy, N. Bandaru, J. Shim, C. Byon, Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation. Korean J. Chem. Eng. 35, 1019–1025 (2018). https://doi.org/10.1007/s11814-017-0355-z
- S. Selvaraj, H. Moon, D.H. Kim, Synthesis and photo-electrochemical properties of spinel-ferrite-coated hematite for solar water splitting. Appl. Surf. Sci. 429, 42–47 (2018). https://doi.org/10.1016/j.apsusc.2017.06.096
- J.Y. Kim, K.Y. Shin, M.H. Raza, N. Pinna, Y.E. Sung, Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications. Korean J. Chem. Eng. 36, 1157–1163 (2019). https://doi.org/10.1007/s11814-019-0280-4
- M.J. Fang, C.W. Tsao, Y.J. Hsu, Semiconductor nanoheterostructures for photoconversion applications. J. Phys. D Appl. Phys. 53, 143001 (2020). https://doi.org/10.1088/1361-6463/ab5f25
- L. Wang, N.T. Nguyen, P. Schmuki, A facile surface passivation of hematite photoanodes with iron titanate cocatalyst for enhanced water splitting. Chemsuschem 9, 2048–2053 (2016). https://doi.org/10.1002/cssc.201600462
- K.G.U. Wijayantha, S. Saremi-Yarahmadi, L.M. Peter, Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 13(12), 5264–5270 (2011). https://doi.org/10.1039/C0CP02408B
- B. Yao, J. Zhang, X.L. Fan, J.P. He, Y. Li, Surface engineering of nanomaterials for photo-electrochemical water splitting. Small 15(1), 1803746 (2019). https://doi.org/10.1002/smll.201803746
- L. Palmolahti, H. Ali-Löytty, R. Khan, J. Saari, N.V. Tkachenko et al., Modification of surface states of hematite-based photoanodes by submonolayer of TiO2 for enhanced solar water splitting. J. Phys. Chem. C 124(24), 13094–13101 (2020). https://doi.org/10.1021/acs.jpcc.0c00798
- S. Seenivasan, S. Adhikari, D.H. Kim, Surface restructuring of hematite photoanodes through ultrathin NiFeOx catalyst: amplified charge collection for solar water splitting and pollutant degradation. Chem. Eng. J. 422, 130137 (2021). https://doi.org/10.1016/j.cej.2021.130137
- A.T. Sivagurunathan, S. Adhikari, D.H. Kim, Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: recent advances and prospects. Nano Energy 83, 105802 (2021). https://doi.org/10.1016/j.nanoen.2021.105802
- A.J.M. Mackus, J.R. Schneider, C. MacIsaac, J.G. Baker, S.F. Bent, Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: a review. Chem. Mater. 31(4), 1142–1183 (2019). https://doi.org/10.1021/acs.chemmater.8b02878
- D.B. Seo, T.N. Trung, D.O. Kim, D.V. Duc, S. Hong et al., Plasmonic ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett. 12, 172 (2020). https://doi.org/10.1007/s40820-020-00512-3
- C.K. Sumesh, S.C. Peter, Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications. Dalton Trans. 48, 12772–12802 (2019). https://doi.org/10.1039/C9DT01581G
- A. Helal, F.A. Harraz, A.A. Ismail, T.M. Sami, A. Ibrahim, Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light. Appl. Catal. B Environ. 213, 18–27 (2017). https://doi.org/10.1016/j.apcatb.2017.05.009
- S. Adhikari, D.H. Kim, Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin. Chem. Eng. J. 354, 692–705 (2018). https://doi.org/10.1016/j.cej.2018.08.087
- D. Chen, Z. Liu, Z. Guo, W. Yan, M. Ruan, Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chem. Eng. J. 381, 122655 (2020). https://doi.org/10.1016/j.cej.2019.122655
- Q. Jia, C. Yu, W. Liu, G. Zheng, C. Lei et al., High performance n+p-Si/Ti/NiSxOy photocathode for photoelectrochemical hydrogen evolution in alkaline solution. J. Energy Chem. 30, 101–107 (2019). https://doi.org/10.1016/j.jechem.2018.04.004
- L. Lei, D.L. Huang, C.Y. Zhou, S. Chen, X.L. Yan et al., Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 408, 213177 (2020). https://doi.org/10.1016/j.ccr.2019.213177
- J. Tan, W. Yang, Y. Oh, H. Lee, J. Park et al., Fullerene as a photoelectron transfer promoter enabling stable TiO2-protected Sb2Se3 photocathodes for photo-electrochemical water splitting. Adv. Energy. Mater. 9(16), 1900179 (2019). https://doi.org/10.1002/aenm.201900179
- C. Liu, J.Z. Su, J.L. Zhou, L.J. Guo, A multistep ion exchange approach for fabrication of porous BiVO4 nanorod arrays on transparent conductive substrate. ACS Sustain. Chem. Eng. 4(9), 4492–4497 (2016). https://doi.org/10.1021/acssuschemeng.6b00971
- N.R. Chodankar, S. Selvaraj, S.H. Ji, Y. Kwon, D.H. Kim, Interface-engineered nickel cobaltite nanowires through NiO atomic layer deposition and nitrogen plasma for high-energy, long-cycle-life foldable all-solid-state supercapacitors. Small 15(3), 1803716 (2019). https://doi.org/10.1002/smll.201803716
- S. Seenivasan, H. Jung, J.W. Han, D.H. Kim, Surface roughening strategy for highly efficient bifunctional electrocatalyst: combination of atomic layer deposition and anion exchange reaction. Small Methods 6(2), 2101308 (2022). https://doi.org/10.1002/smtd.202101308
- M. Zafar, J.Y. Yun, D.H. Kim, Performance of inverted organic photovoltaic cells with nitrogen doped TiO2 films by atomic layer deposition. Korean J. Chem. Eng. 35, 567–573 (2018). https://doi.org/10.1007/s11814-017-0285-9
- Y. Sun, Z. Deng, X.M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12, 133 (2020). https://doi.org/10.1007/s40820-020-00444-y
- G.D. Nie, X.F. Lu, J.Y. Lei, L. Yang, C. Wang, Facile and controlled synthesis of bismuth sulfide nanorods-reduced graphene oxide composites with enhanced supercapacitor performance. Electrochim. Acta 154, 24–30 (2015). https://doi.org/10.1016/j.electacta.2014.12.090
- J. Zhang, S.Z. Qiao, L.F. Qi, J.G. Yu, Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 15(29), 12088–12094 (2013). https://doi.org/10.1039/c3cp50734c
- R. Dai, Y. Wang, P. Da, H. Wu, M. Xu et al., Indirect growth of mesoporous Bi@C core–shell nanowires for enhanced lithium-ion storage. Nanoscale 6(21), 13236–13241 (2014). https://doi.org/10.1039/C4NR04378B
- S. Adhikari, S. Selvaraj, D.H. Kim, Progress in powder coating technology using atomic layer deposition. Adv. Mater. Interfaces 5(24), 1800581 (2018). https://doi.org/10.1002/admi.201801853
- Y.M. Zhong, J.L. Yuan, J.Q. Wen, X. Li, Y.H. Xu et al., Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution. Dalton Trans. 44(41), 18260–18269 (2015). https://doi.org/10.1039/c5dt02693h
- M. Mollavali, C. Falamaki, S. Rohani, High performance NiS-nanops sensitized TiO2 nanotube arrays for water reduction. Int. J. Hydrogen Energy 41(14), 5887–5901 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.100
- Y.Y. Ma, X. Jiang, R.K. Sun, J.L. Yang, X.L. Jiang et al., Z-scheme Bi2O2 33/Bi2S3 heterojunction nanostructures for photocatalytic overall water splitting. Chem. Eng. J. 382, 123020 (2020). https://doi.org/10.1016/j.cej.2019.123020
- J.M. Li, C.W. Tsao, M.J. Fang, C.C. Chen, C.W. Liu et al., TiO2-Au-Cu2O photocathodes: Au-mediated z-scheme charge transfer for efficient solar-driven photoelectrochemical reduction. ACS Appl. Nano Mater. 1(12), 6843–6853 (2018). https://doi.org/10.1021/acsanm.8b01678
- H. Li, M. Zhu, S. Wang, W. Chen, Q. Liu et al., Synergy effect of specific electrons and surface plasmonic resonance enhanced visible-light photoelectrochemical sensing for sensitive analysis of the CaMV 35S promoter. J. Mater. Chem. B 5(45), 8999–9005 (2017). https://doi.org/10.1039/C7TB02265D
- Y.H. Chiu, T.H. Lai, C.Y. Chen, P.Y. Hsieh, K. Ozasa et al., Fully depleted Ti–Nb–Ta–Zr–O nanotubes: interfacial charge dynamics and solar hydrogen production. ACS Appl. Mater. Interfaces 10(27), 22997–23008 (2018). https://doi.org/10.1021/acsami.8b00727
- Y.S. Chang, P.Y. Hsieh, T.F.M. Chang, C.Y. Chen, M. Sone et al., Incorporating graphene quantum dots to enhance the photoactivity of CdSe-sensitized TiO2 nanorods for solar hydrogen production. J. Mater. Chem. A 8(28), 13971–13979 (2020). https://doi.org/10.1039/D0TA02359K
- C. Du, X. Yang, M.T. Mayer, H. Hoyt, J. Xie et al., Hematite-based water splitting with low turn-on voltages. Angew. Chem. Int. Ed. 52(48), 12692–12695 (2013). https://doi.org/10.1002/anie.201306263
- X. Yang, C. Du, R. Liu, J. Xie, D. Wang, Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: a case study of the hematite/MnOx combination. J. Catal. 304, 86–91 (2013). https://doi.org/10.1016/j.jcat.2013.04.014
- J. Tan, W. Yang, H. Lee, J. Park, K. Kim et al., Surface restoration of polycrystalline Sb2Se3 thin films by conjugated molecules enabling high-performance photocathodes for photoelectrochemical water splitting. Appl. Catal. B Environ. 286, 119890 (2021). https://doi.org/10.1016/j.apcatb.2021.119890
- P.Y. Tang, L.J. Han, F.S. Hegner, P. Paciok, M. Biset-Peiro et al., Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification. Adv. Energy. Mater. 9(34), 1901836 (2019). https://doi.org/10.1002/aenm.201901836
- T.H. Wang, C.C. Chiang, Y.L. Wu, C. Lin, Y.J. Cheng et al., Characteristics of elemental carbon overlayers over hematite electrodes prepared by electrodeposition with organic acid additives. Appl. Catal. B Environ. 207, 1–8 (2017). https://doi.org/10.1016/j.apcatb.2017.02.003
- X. Cao, Y. Wang, J. Lin, Y. Ding, Ultrathin CoOx nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes. J. Mater. Chem. A 7(11), 6294–6303 (2019). https://doi.org/10.1039/C8TA12330F
- J. Zhang, R. García-Rodríguez, P. Cameron, S. Eslava, Role of cobalt–iron (oxy)hydroxide (CoFeOx) as oxygen evolution catalyst on hematite photoanodes. Energy Environ. Sci. 11(10), 2972–2984 (2018). https://doi.org/10.1039/C8EE01346B
- D.J. Fermín, E.A. Ponomarev, L.M. Peter, A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. J. Electroanal. Chem. 473, 192–203 (1999). https://doi.org/10.1016/S0022-0728(99)00109-6
- J.F. Zhang, S. Eslava, Understanding charge transfer, defects and surface states at hematite photoanodes. Sustain. Energy Fuels 3(6), 1351–1364 (2019). https://doi.org/10.1039/c9se00145j
- J.W. Yang, I.J. Park, S.A. Lee, M.G. Lee, T.H. Lee et al., Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Appl. Catal. B Environ. 293, 120217 (2021). https://doi.org/10.1016/j.apcatb.2021.120217
- S. Seenivasan, H. Moon, D.H. Kim, Investigation of bulk carrier diffusion dynamics using β-Mn2V2−xMoxO7 photoanodes in solar water splitting. Appl. Sur. Sci. 540, 148376 (2021). https://doi.org/10.1016/j.apsusc.2020.148376
- W.C. Hu, Y.A. Chen, P.Y. Hsieh, C.W. Tsao, Y.H. Chiu et al., Reduced graphene oxides-wrapped ZnO with notable photocatalytic property. J. Taiwan Inst. Chem. Eng. 112, 337–344 (2020). https://doi.org/10.1016/j.jtice.2020.05.016
- T.H. Lai, K.I. Katsumata, Y.J. Hsu, In situ charge carrier dynamics of semiconductor nanostructures for advanced photoelectrochemical and photocatalytic applications. Nanophotonics 10(2), 777–795 (2021). https://doi.org/10.1515/nanoph-2020-0472
- E. Sari, S. Nizamoglu, J.H. Choi, S.J. Lee, K.H. Baik et al., Opposite carrier dynamics and optical absorption characteristics under external electric field in nonpolar vs. polar InGaN/GaN based quantum heterostructures. Opt. Exp. 19(6), 5442–5450 (2011)
- Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of Co2 to methanol by a p–n heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12, 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
- H. Gerischer, The impact of semiconductors on the concpts of electrochemistry. Electrochim. Acta 35, 1677–1699 (1990). https://doi.org/10.1016/0013-4686(90)87067-C
- A.J. Nozik, R. Memming, Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100(31), 13061–13078 (1996). https://doi.org/10.1021/jp953720e
- P. Salvador, Semiconductors’ photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J. Phys. Chem. B 105(26), 6128–6141 (2001). https://doi.org/10.1021/jp0033869
- Y. Sano, Y. Hao, F. Kuwahara, Development of an electrolysis based system to continuously recover magnesium from seawater. Heliyon 4(11), e00923 (2018). https://doi.org/10.1016/j.heliyon.2018.e00923
- H. Jiang, L. Yan, S. Zhang, Y. Zhao, X. Yang et al., Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 13, 215 (2021). https://doi.org/10.1007/s40820-021-00737-w
References
J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13, 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
X. Wei, Z. Wen, Y. Liu, N. Zhai, A. Wei et al., Hybridized mechanical and solar energy-driven self-powered hydrogen production. Nano-Micro Lett. 12, 88 (2020). https://doi.org/10.1007/s40820-020-00422-4
T.M. Chaloner, S.J. Gurr, D.P. Bebber, Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021). https://doi.org/10.1038/s41558-021-01104-8
K.H. Ng, S.Y. Lai, C.K. Cheng, Y.W. Cheng, C.C. Chong, Photocatalytic water splitting for solving energy crisis: myth, fact or busted? Chem. Eng. J. 417, 128847 (2021). https://doi.org/10.1016/j.cej.2021.128847
Y.H. Chiu, T.H. Lai, M.Y. Kuo, P.Y. Hsieh, Y.J. Hsu, Photoelectrochemical cells for solar hydrogen production: challenges and opportunities. APL Mater. 7(8), 080901 (2019). https://doi.org/10.1063/1.5109785
J.H. Kim, D. Hansora, P. Sharma, J.W. Jang, J.S. Lee, Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48(7), 1908–1971 (2019). https://doi.org/10.1039/C8CS00699G
A. Thakur, D. Ghosh, P. Devi, K.H. Kim, P. Kumar, Current progress and challenges in photoelectrode materials for the production of hydrogen. Chem. Eng. J. 397, 125415 (2020). https://doi.org/10.1016/j.cej.2020.125415
X.X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
S.V.P. Vattikuti, P.A.K. Reddy, N. Bandaru, J. Shim, C. Byon, Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation. Korean J. Chem. Eng. 35, 1019–1025 (2018). https://doi.org/10.1007/s11814-017-0355-z
S. Selvaraj, H. Moon, D.H. Kim, Synthesis and photo-electrochemical properties of spinel-ferrite-coated hematite for solar water splitting. Appl. Surf. Sci. 429, 42–47 (2018). https://doi.org/10.1016/j.apsusc.2017.06.096
J.Y. Kim, K.Y. Shin, M.H. Raza, N. Pinna, Y.E. Sung, Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications. Korean J. Chem. Eng. 36, 1157–1163 (2019). https://doi.org/10.1007/s11814-019-0280-4
M.J. Fang, C.W. Tsao, Y.J. Hsu, Semiconductor nanoheterostructures for photoconversion applications. J. Phys. D Appl. Phys. 53, 143001 (2020). https://doi.org/10.1088/1361-6463/ab5f25
L. Wang, N.T. Nguyen, P. Schmuki, A facile surface passivation of hematite photoanodes with iron titanate cocatalyst for enhanced water splitting. Chemsuschem 9, 2048–2053 (2016). https://doi.org/10.1002/cssc.201600462
K.G.U. Wijayantha, S. Saremi-Yarahmadi, L.M. Peter, Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 13(12), 5264–5270 (2011). https://doi.org/10.1039/C0CP02408B
B. Yao, J. Zhang, X.L. Fan, J.P. He, Y. Li, Surface engineering of nanomaterials for photo-electrochemical water splitting. Small 15(1), 1803746 (2019). https://doi.org/10.1002/smll.201803746
L. Palmolahti, H. Ali-Löytty, R. Khan, J. Saari, N.V. Tkachenko et al., Modification of surface states of hematite-based photoanodes by submonolayer of TiO2 for enhanced solar water splitting. J. Phys. Chem. C 124(24), 13094–13101 (2020). https://doi.org/10.1021/acs.jpcc.0c00798
S. Seenivasan, S. Adhikari, D.H. Kim, Surface restructuring of hematite photoanodes through ultrathin NiFeOx catalyst: amplified charge collection for solar water splitting and pollutant degradation. Chem. Eng. J. 422, 130137 (2021). https://doi.org/10.1016/j.cej.2021.130137
A.T. Sivagurunathan, S. Adhikari, D.H. Kim, Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: recent advances and prospects. Nano Energy 83, 105802 (2021). https://doi.org/10.1016/j.nanoen.2021.105802
A.J.M. Mackus, J.R. Schneider, C. MacIsaac, J.G. Baker, S.F. Bent, Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: a review. Chem. Mater. 31(4), 1142–1183 (2019). https://doi.org/10.1021/acs.chemmater.8b02878
D.B. Seo, T.N. Trung, D.O. Kim, D.V. Duc, S. Hong et al., Plasmonic ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett. 12, 172 (2020). https://doi.org/10.1007/s40820-020-00512-3
C.K. Sumesh, S.C. Peter, Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications. Dalton Trans. 48, 12772–12802 (2019). https://doi.org/10.1039/C9DT01581G
A. Helal, F.A. Harraz, A.A. Ismail, T.M. Sami, A. Ibrahim, Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light. Appl. Catal. B Environ. 213, 18–27 (2017). https://doi.org/10.1016/j.apcatb.2017.05.009
S. Adhikari, D.H. Kim, Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin. Chem. Eng. J. 354, 692–705 (2018). https://doi.org/10.1016/j.cej.2018.08.087
D. Chen, Z. Liu, Z. Guo, W. Yan, M. Ruan, Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chem. Eng. J. 381, 122655 (2020). https://doi.org/10.1016/j.cej.2019.122655
Q. Jia, C. Yu, W. Liu, G. Zheng, C. Lei et al., High performance n+p-Si/Ti/NiSxOy photocathode for photoelectrochemical hydrogen evolution in alkaline solution. J. Energy Chem. 30, 101–107 (2019). https://doi.org/10.1016/j.jechem.2018.04.004
L. Lei, D.L. Huang, C.Y. Zhou, S. Chen, X.L. Yan et al., Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 408, 213177 (2020). https://doi.org/10.1016/j.ccr.2019.213177
J. Tan, W. Yang, Y. Oh, H. Lee, J. Park et al., Fullerene as a photoelectron transfer promoter enabling stable TiO2-protected Sb2Se3 photocathodes for photo-electrochemical water splitting. Adv. Energy. Mater. 9(16), 1900179 (2019). https://doi.org/10.1002/aenm.201900179
C. Liu, J.Z. Su, J.L. Zhou, L.J. Guo, A multistep ion exchange approach for fabrication of porous BiVO4 nanorod arrays on transparent conductive substrate. ACS Sustain. Chem. Eng. 4(9), 4492–4497 (2016). https://doi.org/10.1021/acssuschemeng.6b00971
N.R. Chodankar, S. Selvaraj, S.H. Ji, Y. Kwon, D.H. Kim, Interface-engineered nickel cobaltite nanowires through NiO atomic layer deposition and nitrogen plasma for high-energy, long-cycle-life foldable all-solid-state supercapacitors. Small 15(3), 1803716 (2019). https://doi.org/10.1002/smll.201803716
S. Seenivasan, H. Jung, J.W. Han, D.H. Kim, Surface roughening strategy for highly efficient bifunctional electrocatalyst: combination of atomic layer deposition and anion exchange reaction. Small Methods 6(2), 2101308 (2022). https://doi.org/10.1002/smtd.202101308
M. Zafar, J.Y. Yun, D.H. Kim, Performance of inverted organic photovoltaic cells with nitrogen doped TiO2 films by atomic layer deposition. Korean J. Chem. Eng. 35, 567–573 (2018). https://doi.org/10.1007/s11814-017-0285-9
Y. Sun, Z. Deng, X.M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12, 133 (2020). https://doi.org/10.1007/s40820-020-00444-y
G.D. Nie, X.F. Lu, J.Y. Lei, L. Yang, C. Wang, Facile and controlled synthesis of bismuth sulfide nanorods-reduced graphene oxide composites with enhanced supercapacitor performance. Electrochim. Acta 154, 24–30 (2015). https://doi.org/10.1016/j.electacta.2014.12.090
J. Zhang, S.Z. Qiao, L.F. Qi, J.G. Yu, Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 15(29), 12088–12094 (2013). https://doi.org/10.1039/c3cp50734c
R. Dai, Y. Wang, P. Da, H. Wu, M. Xu et al., Indirect growth of mesoporous Bi@C core–shell nanowires for enhanced lithium-ion storage. Nanoscale 6(21), 13236–13241 (2014). https://doi.org/10.1039/C4NR04378B
S. Adhikari, S. Selvaraj, D.H. Kim, Progress in powder coating technology using atomic layer deposition. Adv. Mater. Interfaces 5(24), 1800581 (2018). https://doi.org/10.1002/admi.201801853
Y.M. Zhong, J.L. Yuan, J.Q. Wen, X. Li, Y.H. Xu et al., Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution. Dalton Trans. 44(41), 18260–18269 (2015). https://doi.org/10.1039/c5dt02693h
M. Mollavali, C. Falamaki, S. Rohani, High performance NiS-nanops sensitized TiO2 nanotube arrays for water reduction. Int. J. Hydrogen Energy 41(14), 5887–5901 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.100
Y.Y. Ma, X. Jiang, R.K. Sun, J.L. Yang, X.L. Jiang et al., Z-scheme Bi2O2 33/Bi2S3 heterojunction nanostructures for photocatalytic overall water splitting. Chem. Eng. J. 382, 123020 (2020). https://doi.org/10.1016/j.cej.2019.123020
J.M. Li, C.W. Tsao, M.J. Fang, C.C. Chen, C.W. Liu et al., TiO2-Au-Cu2O photocathodes: Au-mediated z-scheme charge transfer for efficient solar-driven photoelectrochemical reduction. ACS Appl. Nano Mater. 1(12), 6843–6853 (2018). https://doi.org/10.1021/acsanm.8b01678
H. Li, M. Zhu, S. Wang, W. Chen, Q. Liu et al., Synergy effect of specific electrons and surface plasmonic resonance enhanced visible-light photoelectrochemical sensing for sensitive analysis of the CaMV 35S promoter. J. Mater. Chem. B 5(45), 8999–9005 (2017). https://doi.org/10.1039/C7TB02265D
Y.H. Chiu, T.H. Lai, C.Y. Chen, P.Y. Hsieh, K. Ozasa et al., Fully depleted Ti–Nb–Ta–Zr–O nanotubes: interfacial charge dynamics and solar hydrogen production. ACS Appl. Mater. Interfaces 10(27), 22997–23008 (2018). https://doi.org/10.1021/acsami.8b00727
Y.S. Chang, P.Y. Hsieh, T.F.M. Chang, C.Y. Chen, M. Sone et al., Incorporating graphene quantum dots to enhance the photoactivity of CdSe-sensitized TiO2 nanorods for solar hydrogen production. J. Mater. Chem. A 8(28), 13971–13979 (2020). https://doi.org/10.1039/D0TA02359K
C. Du, X. Yang, M.T. Mayer, H. Hoyt, J. Xie et al., Hematite-based water splitting with low turn-on voltages. Angew. Chem. Int. Ed. 52(48), 12692–12695 (2013). https://doi.org/10.1002/anie.201306263
X. Yang, C. Du, R. Liu, J. Xie, D. Wang, Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: a case study of the hematite/MnOx combination. J. Catal. 304, 86–91 (2013). https://doi.org/10.1016/j.jcat.2013.04.014
J. Tan, W. Yang, H. Lee, J. Park, K. Kim et al., Surface restoration of polycrystalline Sb2Se3 thin films by conjugated molecules enabling high-performance photocathodes for photoelectrochemical water splitting. Appl. Catal. B Environ. 286, 119890 (2021). https://doi.org/10.1016/j.apcatb.2021.119890
P.Y. Tang, L.J. Han, F.S. Hegner, P. Paciok, M. Biset-Peiro et al., Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification. Adv. Energy. Mater. 9(34), 1901836 (2019). https://doi.org/10.1002/aenm.201901836
T.H. Wang, C.C. Chiang, Y.L. Wu, C. Lin, Y.J. Cheng et al., Characteristics of elemental carbon overlayers over hematite electrodes prepared by electrodeposition with organic acid additives. Appl. Catal. B Environ. 207, 1–8 (2017). https://doi.org/10.1016/j.apcatb.2017.02.003
X. Cao, Y. Wang, J. Lin, Y. Ding, Ultrathin CoOx nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes. J. Mater. Chem. A 7(11), 6294–6303 (2019). https://doi.org/10.1039/C8TA12330F
J. Zhang, R. García-Rodríguez, P. Cameron, S. Eslava, Role of cobalt–iron (oxy)hydroxide (CoFeOx) as oxygen evolution catalyst on hematite photoanodes. Energy Environ. Sci. 11(10), 2972–2984 (2018). https://doi.org/10.1039/C8EE01346B
D.J. Fermín, E.A. Ponomarev, L.M. Peter, A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. J. Electroanal. Chem. 473, 192–203 (1999). https://doi.org/10.1016/S0022-0728(99)00109-6
J.F. Zhang, S. Eslava, Understanding charge transfer, defects and surface states at hematite photoanodes. Sustain. Energy Fuels 3(6), 1351–1364 (2019). https://doi.org/10.1039/c9se00145j
J.W. Yang, I.J. Park, S.A. Lee, M.G. Lee, T.H. Lee et al., Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Appl. Catal. B Environ. 293, 120217 (2021). https://doi.org/10.1016/j.apcatb.2021.120217
S. Seenivasan, H. Moon, D.H. Kim, Investigation of bulk carrier diffusion dynamics using β-Mn2V2−xMoxO7 photoanodes in solar water splitting. Appl. Sur. Sci. 540, 148376 (2021). https://doi.org/10.1016/j.apsusc.2020.148376
W.C. Hu, Y.A. Chen, P.Y. Hsieh, C.W. Tsao, Y.H. Chiu et al., Reduced graphene oxides-wrapped ZnO with notable photocatalytic property. J. Taiwan Inst. Chem. Eng. 112, 337–344 (2020). https://doi.org/10.1016/j.jtice.2020.05.016
T.H. Lai, K.I. Katsumata, Y.J. Hsu, In situ charge carrier dynamics of semiconductor nanostructures for advanced photoelectrochemical and photocatalytic applications. Nanophotonics 10(2), 777–795 (2021). https://doi.org/10.1515/nanoph-2020-0472
E. Sari, S. Nizamoglu, J.H. Choi, S.J. Lee, K.H. Baik et al., Opposite carrier dynamics and optical absorption characteristics under external electric field in nonpolar vs. polar InGaN/GaN based quantum heterostructures. Opt. Exp. 19(6), 5442–5450 (2011)
Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of Co2 to methanol by a p–n heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12, 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
H. Gerischer, The impact of semiconductors on the concpts of electrochemistry. Electrochim. Acta 35, 1677–1699 (1990). https://doi.org/10.1016/0013-4686(90)87067-C
A.J. Nozik, R. Memming, Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100(31), 13061–13078 (1996). https://doi.org/10.1021/jp953720e
P. Salvador, Semiconductors’ photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J. Phys. Chem. B 105(26), 6128–6141 (2001). https://doi.org/10.1021/jp0033869
Y. Sano, Y. Hao, F. Kuwahara, Development of an electrolysis based system to continuously recover magnesium from seawater. Heliyon 4(11), e00923 (2018). https://doi.org/10.1016/j.heliyon.2018.e00923
H. Jiang, L. Yan, S. Zhang, Y. Zhao, X. Yang et al., Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 13, 215 (2021). https://doi.org/10.1007/s40820-021-00737-w