Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery
Corresponding Author: Do‑Heyoung Kim
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 1
Abstract
Rechargeable alkaline batteries (RABs) have received remarkable attention in the past decade for their high energy, low cost, safe operation, facile manufacture, and eco-friendly nature. To date, expensive electrode materials and current collectors were predominantly applied for RABs, which have limited their real-world efficacy. In the present work, we propose a scalable process to utilize electronic waste (e-waste) Cu wires as a cost-effective current collector for high-energy wire-type RABs. Initially, the vertically aligned CuO nanowires were prepared over the waste Cu wires via in situ alkaline corrosion. Then, both atomic-layer-deposited NiO and NiCo-hydroxide were applied to the CuO nanowires to form a uniform dendritic-structured NiCo-hydroxide/NiO/CuO/Cu electrode. When the prepared dendritic-structured electrode was applied to the RAB, it showed excellent electrochemical features, namely high-energy-density (82.42 Wh kg−1), excellent specific capacity (219 mAh g−1), and long-term cycling stability (94% capacity retention over 5000 cycles). The presented approach and material meet the requirements of a cost-effective, abundant, and highly efficient electrode for advanced eco-friendly RABs. More importantly, the present method provides an efficient path to recycle e-waste for value-added energy storage applications.
Highlights
1 Electronic waste Cu wires were successfully used as a cost-effective current collector for high-energy wire-type rechargeable alkaline batteries.
2 The scalable approach was applied to reduce, reuse, and recycle electronic waste.
3 A developed wire-type rechargeable alkaline battery exhibited a high-energy-density of 82.42 Wh kg−1 with long-term cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Leng, Z. Wang, J. Wang, H.H. Wu, G. Yan et al., Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48, 3015–3072 (2019). https://doi.org/10.1039/C8CS00904J
- G.G. Yadav, D. Turney, J. Huang, X. Wei, S. Banerjee, Breaking the 2 V barrier in aqueous Zinc chemistry: Creating 2.45 and 2.8 V MnO2–Zn aqueous batteries. ACS Energy Lett. 4, 2144–2146 (2019). https://doi.org/10.1021/acsenergylett.9b01643
- T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201902007
- S. Ghosh, S.M. Jeong, S.R. Polaki, A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide. Korean J. Chem. Eng. 35, 1389–1408 (2018). https://doi.org/10.1007/s11814-018-0089-6
- P. Zhang, D. Wang, Q. Zhu, N. Sun, F. Fu, B. Xu, Plate-to-layer Bi2MoO6/mxene-heterostructured anode for lithium-ion batteries. Nano Micro Lett. 11, 81 (2019). https://doi.org/10.1007/s40820-019-0312-y
- D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015). https://doi.org/10.1039/C4CS00266K
- H. Qin, Z. Yang, L. Chen, X. Chen, L. Wang, A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J. Mater. Chem. A 6, 23757–23765 (2018). https://doi.org/10.1039/C8TA08133F
- W. Li, B. Zhang, R. Lin, S.M. Ho-Kimura, G. He, X. Zhou, J. Hu, I.P. Parkin, A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv. Funct. Mater. 28, 1705937 (2018). https://doi.org/10.1002/adfm.201705937
- Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang et al., A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J. Mater. Chem. A 6, 8549–8557 (2018). https://doi.org/10.1039/C8TA01172A
- K. Wang, X. Zhang, J. Han, X. Zhang, X. Sun, C. Li, W. Liu, Q. Li, Y. Ma, High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 10, 24573–24582 (2018). https://doi.org/10.1021/acsami.8b07756
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous Zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 5, 9960–9969 (2017). https://doi.org/10.1039/C7TA01805C
- G. Nagaraju, S.C. Sekhar, J.S. Yu, Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: an effective approach to electronic-waste management. Adv. Energy Mater. 8, 1702201 (2018). https://doi.org/10.1002/aenm.201702201
- G. He, X. Han, R. Zou, T. Zhao, Z. Weng et al., A targeted functional design for highly efficient and stable cathodes for rechargeable Li-ion batteries. Adv. Funct. Mater. 27, 1604903 (2017). https://doi.org/10.1002/adfm.201604903
- G. He, M. Qiao, W. Li, Y. Lu, T. Zhao et al., S, N–Co-Doped graphene-nickel cobalt sulfide aerogel: improved energy storage and electrocatalytic performance. Adv. Sci. 4, 1600214 (2017). https://doi.org/10.1002/advs.201600214
- D.Y. Chung, Y.J. Son, J.M. Yoo, J.S. Kang, C.Y. Ahn, S. Park, Y.E. Sung, Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications. ACS Appl. Mater. Interfaces 9, 41303–41313 (2017). https://doi.org/10.1021/acsami.7b13799
- A. Gutierrez, L. Miró, A. Gil, J. Rodríguez-Aseguinolaza, C. Barreneche et al., Industrial waste materials and by-products as thermal energy storage (TES) materials: a review. AIP Conf. Proc. 1734, 050019 (2016). https://doi.org/10.1063/1.4949117
- R. Cayumil, R. Khanna, R. Rajarao, P.S. Mukherjee, V. Sahajwalla, Concentration of precious metals during their recovery from electronic waste. Waste Manag. 57, 121–130 (2016). https://doi.org/10.1016/j.wasman.2015.12.004
- R.R. Rajagopal, L.S. Aravinda, R. Rajarao, B.R. Bhat, V. Sahajwalla, Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application. Electrochim. Acta 211, 488–498 (2016). https://doi.org/10.1016/j.electacta.2016.06.077
- A. Shokri, F. Pahlevani, K. Levick, I. Cole, V. Sahajwalla, Synthesis of copper–tin nanoparticles from old computer printed circuit boards. J. Clean. Prod. 142, 2586–2592 (2017). https://doi.org/10.1016/j.jclepro.2016.11.017
- R. Rajarao, V. Sahajwalla, R. Cayumil, M. Park, R. Khanna, Novel approach for processing hazardous electronic waste. Procedia Environ. Sci. 21, 33–41 (2014). https://doi.org/10.1016/j.proenv.2014.09.005
- J. Cui, E. Forssberg, Mechanical recycling of waste electric and electronic equipment: a review. J. Hazard. Mater. 99, 243–263 (2003). https://doi.org/10.1016/S0304-3894(03)00061-X
- D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/C7CS00505A
- N.R. Chodankar, S. Selvaraj, S.H. Ji, Y. Kwon, D.H. Kim, Interface-engineered nickel cobaltite nanowires through nio atomic layer deposition and nitrogen plasma for high-energy, long-cycle-life foldable all-solid-state supercapacitors. Small 15, 1803716 (2019). https://doi.org/10.1002/smll.201803716
- Q. Hu, J.Y. Liao, X.D. He, S. Wang, L.N. Xiao, X. Ding, C.H. Chen, In situ catalytic formation of graphene-like graphitic layer decoration on Na3V2–xGax(PO4)3 for ultrafast and high energy sodium storage. J. Mater. Chem. A 7, 4660–4667 (2019). https://doi.org/10.1039/C8TA11890F
- S. Choi, D.H. Seo, M.R. Kaiser, C. Zhang, T. Van Der Laan et al., WO3 nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. J. Mater. Chem. A 7, 4596–4603 (2019). https://doi.org/10.1039/C8TA11646F
- Z. Yu, J. Thomas, Energy storing electrical cables: integrating energy storage and electrical conduction. Adv. Mater. 26, 4279–4285 (2014). https://doi.org/10.1002/adma.201400440
- S.H. Ji, W.S. Jang, J.W. Son, D.H. Kim, Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma. Korean J. Chem. Eng. 35, 2474–2479 (2018). https://doi.org/10.1007/s11814-018-0179-5
- M. Zafar, J.Y. Yun, D.H. Kim, Highly stable inverted organic photovoltaic cells with a V2O5 hole transport layer. Korean J. Chem. Eng. 34, 1504–1508 (2017). https://doi.org/10.1007/s11814-017-0043-z
- C. Guan, J. Wang, Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage. Adv. Sci. 3, 1500405 (2016). https://doi.org/10.1002/advs.201500405
- T. Wang, S. Zhang, X. Yan, M. Lyu, L. Wang, J. Bell, H. Wang, 2-Methylimidazole-derived Ni − Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl. Mater. Interfaces 9, 15510–15524 (2017). https://doi.org/10.1021/acsami.7b02987
- H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel–Cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014). https://doi.org/10.1002/adfm.201301747
- S. Ghosh, W.D. Yong, E.M. Jin, S.R. Polaki, S.M. Jeong, H. Jun, Mesoporous carbon nanofiber engineered for improved supercapacitor performance. Korean J. Chem. Eng. 36, 312–320 (2019). https://doi.org/10.1007/s11814-018-0199-1
- N.R. Chodankar, D.P. Dubal, S.H. Ji, D.H. Kim, Superfast electrodeposition of newly developed RuCo2O4 nanobelts over low-cost stainless steel mesh for high-performance aqueous supercapacitor. Adv. Mater. Interfaces 5, 1800283 (2018). https://doi.org/10.1002/admi.201800283
- D. Yan, W. Wang, X. Luo, C. Chen, Y. Zeng, Z. Zhu, NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem. Eng. J. 334, 864–872 (2018). https://doi.org/10.1016/j.cej.2017.10.128
- D.P. Dubal, N.R. Chodankar, R. Holze, D.-H. Kim, P. Gomez-Romero, Ultrathin Mesoporous RuCo2O4 nanoflakes: an advanced electrode for high-performance asymmetric supercapacitors. ChemSusChem 10, 1771–1782 (2017). https://doi.org/10.1002/cssc.201700001
- P. Huang, D. Pech, R. Lin, J.K. McDonough, M. Brunet et al., On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 36, 53–56 (2013). https://doi.org/10.1016/j.elecom.2013.09.003
- Y. Wang, J. Zeng, J. Li, X. Cui, A.M. Al-Enizi, L. Zhang, G. Zheng, One-dimensional nanostructures for flexible supercapacitors. J. Mater. Chem. A 3, 16382–16392 (2015). https://doi.org/10.1039/C5TA03467A
- Y. Xia, P. Yang, Y. sun, Y. Wu, B. Mayers et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003). https://doi.org/10.1002/adma.200390087
- R. Warren, F. Sammoura, F. Tounsi, M. Sanghadasa, L. Lin, Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J. Mater. Chem. A 3, 15568–15575 (2015). https://doi.org/10.1039/C5TA03742E
- C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012). https://doi.org/10.1002/adfm.201200994
- L. Liu, H. Zhao, Y. Wang, Y. Fang, J. Xie, Y. Lei, Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layers. Adv. Funct. Mater. 28, 1705107 (2018). https://doi.org/10.1002/adfm.201705107
- X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook, C. Guan, J. Wang, Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28(20), 11800036 (2018). https://doi.org/10.1002/adfm.201800036
- Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043
- Z. Dai, C. Peng, J.H. Chae, K.C. Ng, G.Z. Chen, Cell voltage versus electrode potential range in aqueous supercapacitors. Sci. Rep. 5, 9854 (2015). https://doi.org/10.1038/srep09854
- Y. Wang, J. Yi, Y. Xia, Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2, 830–840 (2012). https://doi.org/10.1002/aenm.201200065
- W. Tang, L. Liu, Y. Zhu, H. Sun, Y. Wu, K. Zhu, An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy Environ. Sci. 5, 6909–6913 (2012). https://doi.org/10.1039/c2ee21294c
- Z. Zhu, R. Zhang, J. Lin, K. Zhang, N. Li, C. Zhao, G. Chen, C. Zhao, Ni, Zn-codoped MgCo2O4 electrodes for aqueous asymmetric supercapacitor and rechargeable Zn battery. J. Power Sour. 437, 226941 (2019). https://doi.org/10.1016/j.jpowsour.2019.226941
- X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu, Y. Cao, X. Ai, H. Yang, Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188–193 (2015). https://doi.org/10.1002/cnma.201500021
- X. Wu, Y. Cao, X. Ai, J. Qian, H. Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013). https://doi.org/10.1016/j.elecom.2013.03.013
- X.Y. Wu, M.Y. Sun, Y.F. Shen, J.F. Qian, Y.L. Cao, X.P. Ai, H.X. Yang, Energetic aqueous rechargeable Sodium-Ion battery based on Na2CuFe(CN)6–NaTi2(PO4)3 intercalation chemistry. ChemSusChem 7, 407–411 (2014). https://doi.org/10.1002/cssc.201301036
- K. Lu, B. Song, Y. Zhang, H. Ma, J. Zhang, Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high performance rechargeable zinc ion batteries. J. Mater. Chem. A 5, 23628–23633 (2017). https://doi.org/10.1039/C7TA07834J
- K. Lu, B. Song, J. Zhang, H. Ma, A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. J. Power Source 321, 257–263 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.003
References
J. Leng, Z. Wang, J. Wang, H.H. Wu, G. Yan et al., Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48, 3015–3072 (2019). https://doi.org/10.1039/C8CS00904J
G.G. Yadav, D. Turney, J. Huang, X. Wei, S. Banerjee, Breaking the 2 V barrier in aqueous Zinc chemistry: Creating 2.45 and 2.8 V MnO2–Zn aqueous batteries. ACS Energy Lett. 4, 2144–2146 (2019). https://doi.org/10.1021/acsenergylett.9b01643
T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201902007
S. Ghosh, S.M. Jeong, S.R. Polaki, A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide. Korean J. Chem. Eng. 35, 1389–1408 (2018). https://doi.org/10.1007/s11814-018-0089-6
P. Zhang, D. Wang, Q. Zhu, N. Sun, F. Fu, B. Xu, Plate-to-layer Bi2MoO6/mxene-heterostructured anode for lithium-ion batteries. Nano Micro Lett. 11, 81 (2019). https://doi.org/10.1007/s40820-019-0312-y
D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015). https://doi.org/10.1039/C4CS00266K
H. Qin, Z. Yang, L. Chen, X. Chen, L. Wang, A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J. Mater. Chem. A 6, 23757–23765 (2018). https://doi.org/10.1039/C8TA08133F
W. Li, B. Zhang, R. Lin, S.M. Ho-Kimura, G. He, X. Zhou, J. Hu, I.P. Parkin, A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv. Funct. Mater. 28, 1705937 (2018). https://doi.org/10.1002/adfm.201705937
Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang et al., A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J. Mater. Chem. A 6, 8549–8557 (2018). https://doi.org/10.1039/C8TA01172A
K. Wang, X. Zhang, J. Han, X. Zhang, X. Sun, C. Li, W. Liu, Q. Li, Y. Ma, High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 10, 24573–24582 (2018). https://doi.org/10.1021/acsami.8b07756
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous Zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 5, 9960–9969 (2017). https://doi.org/10.1039/C7TA01805C
G. Nagaraju, S.C. Sekhar, J.S. Yu, Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: an effective approach to electronic-waste management. Adv. Energy Mater. 8, 1702201 (2018). https://doi.org/10.1002/aenm.201702201
G. He, X. Han, R. Zou, T. Zhao, Z. Weng et al., A targeted functional design for highly efficient and stable cathodes for rechargeable Li-ion batteries. Adv. Funct. Mater. 27, 1604903 (2017). https://doi.org/10.1002/adfm.201604903
G. He, M. Qiao, W. Li, Y. Lu, T. Zhao et al., S, N–Co-Doped graphene-nickel cobalt sulfide aerogel: improved energy storage and electrocatalytic performance. Adv. Sci. 4, 1600214 (2017). https://doi.org/10.1002/advs.201600214
D.Y. Chung, Y.J. Son, J.M. Yoo, J.S. Kang, C.Y. Ahn, S. Park, Y.E. Sung, Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications. ACS Appl. Mater. Interfaces 9, 41303–41313 (2017). https://doi.org/10.1021/acsami.7b13799
A. Gutierrez, L. Miró, A. Gil, J. Rodríguez-Aseguinolaza, C. Barreneche et al., Industrial waste materials and by-products as thermal energy storage (TES) materials: a review. AIP Conf. Proc. 1734, 050019 (2016). https://doi.org/10.1063/1.4949117
R. Cayumil, R. Khanna, R. Rajarao, P.S. Mukherjee, V. Sahajwalla, Concentration of precious metals during their recovery from electronic waste. Waste Manag. 57, 121–130 (2016). https://doi.org/10.1016/j.wasman.2015.12.004
R.R. Rajagopal, L.S. Aravinda, R. Rajarao, B.R. Bhat, V. Sahajwalla, Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application. Electrochim. Acta 211, 488–498 (2016). https://doi.org/10.1016/j.electacta.2016.06.077
A. Shokri, F. Pahlevani, K. Levick, I. Cole, V. Sahajwalla, Synthesis of copper–tin nanoparticles from old computer printed circuit boards. J. Clean. Prod. 142, 2586–2592 (2017). https://doi.org/10.1016/j.jclepro.2016.11.017
R. Rajarao, V. Sahajwalla, R. Cayumil, M. Park, R. Khanna, Novel approach for processing hazardous electronic waste. Procedia Environ. Sci. 21, 33–41 (2014). https://doi.org/10.1016/j.proenv.2014.09.005
J. Cui, E. Forssberg, Mechanical recycling of waste electric and electronic equipment: a review. J. Hazard. Mater. 99, 243–263 (2003). https://doi.org/10.1016/S0304-3894(03)00061-X
D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/C7CS00505A
N.R. Chodankar, S. Selvaraj, S.H. Ji, Y. Kwon, D.H. Kim, Interface-engineered nickel cobaltite nanowires through nio atomic layer deposition and nitrogen plasma for high-energy, long-cycle-life foldable all-solid-state supercapacitors. Small 15, 1803716 (2019). https://doi.org/10.1002/smll.201803716
Q. Hu, J.Y. Liao, X.D. He, S. Wang, L.N. Xiao, X. Ding, C.H. Chen, In situ catalytic formation of graphene-like graphitic layer decoration on Na3V2–xGax(PO4)3 for ultrafast and high energy sodium storage. J. Mater. Chem. A 7, 4660–4667 (2019). https://doi.org/10.1039/C8TA11890F
S. Choi, D.H. Seo, M.R. Kaiser, C. Zhang, T. Van Der Laan et al., WO3 nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. J. Mater. Chem. A 7, 4596–4603 (2019). https://doi.org/10.1039/C8TA11646F
Z. Yu, J. Thomas, Energy storing electrical cables: integrating energy storage and electrical conduction. Adv. Mater. 26, 4279–4285 (2014). https://doi.org/10.1002/adma.201400440
S.H. Ji, W.S. Jang, J.W. Son, D.H. Kim, Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma. Korean J. Chem. Eng. 35, 2474–2479 (2018). https://doi.org/10.1007/s11814-018-0179-5
M. Zafar, J.Y. Yun, D.H. Kim, Highly stable inverted organic photovoltaic cells with a V2O5 hole transport layer. Korean J. Chem. Eng. 34, 1504–1508 (2017). https://doi.org/10.1007/s11814-017-0043-z
C. Guan, J. Wang, Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage. Adv. Sci. 3, 1500405 (2016). https://doi.org/10.1002/advs.201500405
T. Wang, S. Zhang, X. Yan, M. Lyu, L. Wang, J. Bell, H. Wang, 2-Methylimidazole-derived Ni − Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl. Mater. Interfaces 9, 15510–15524 (2017). https://doi.org/10.1021/acsami.7b02987
H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel–Cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014). https://doi.org/10.1002/adfm.201301747
S. Ghosh, W.D. Yong, E.M. Jin, S.R. Polaki, S.M. Jeong, H. Jun, Mesoporous carbon nanofiber engineered for improved supercapacitor performance. Korean J. Chem. Eng. 36, 312–320 (2019). https://doi.org/10.1007/s11814-018-0199-1
N.R. Chodankar, D.P. Dubal, S.H. Ji, D.H. Kim, Superfast electrodeposition of newly developed RuCo2O4 nanobelts over low-cost stainless steel mesh for high-performance aqueous supercapacitor. Adv. Mater. Interfaces 5, 1800283 (2018). https://doi.org/10.1002/admi.201800283
D. Yan, W. Wang, X. Luo, C. Chen, Y. Zeng, Z. Zhu, NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem. Eng. J. 334, 864–872 (2018). https://doi.org/10.1016/j.cej.2017.10.128
D.P. Dubal, N.R. Chodankar, R. Holze, D.-H. Kim, P. Gomez-Romero, Ultrathin Mesoporous RuCo2O4 nanoflakes: an advanced electrode for high-performance asymmetric supercapacitors. ChemSusChem 10, 1771–1782 (2017). https://doi.org/10.1002/cssc.201700001
P. Huang, D. Pech, R. Lin, J.K. McDonough, M. Brunet et al., On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 36, 53–56 (2013). https://doi.org/10.1016/j.elecom.2013.09.003
Y. Wang, J. Zeng, J. Li, X. Cui, A.M. Al-Enizi, L. Zhang, G. Zheng, One-dimensional nanostructures for flexible supercapacitors. J. Mater. Chem. A 3, 16382–16392 (2015). https://doi.org/10.1039/C5TA03467A
Y. Xia, P. Yang, Y. sun, Y. Wu, B. Mayers et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003). https://doi.org/10.1002/adma.200390087
R. Warren, F. Sammoura, F. Tounsi, M. Sanghadasa, L. Lin, Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J. Mater. Chem. A 3, 15568–15575 (2015). https://doi.org/10.1039/C5TA03742E
C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012). https://doi.org/10.1002/adfm.201200994
L. Liu, H. Zhao, Y. Wang, Y. Fang, J. Xie, Y. Lei, Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layers. Adv. Funct. Mater. 28, 1705107 (2018). https://doi.org/10.1002/adfm.201705107
X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook, C. Guan, J. Wang, Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28(20), 11800036 (2018). https://doi.org/10.1002/adfm.201800036
Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043
Z. Dai, C. Peng, J.H. Chae, K.C. Ng, G.Z. Chen, Cell voltage versus electrode potential range in aqueous supercapacitors. Sci. Rep. 5, 9854 (2015). https://doi.org/10.1038/srep09854
Y. Wang, J. Yi, Y. Xia, Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2, 830–840 (2012). https://doi.org/10.1002/aenm.201200065
W. Tang, L. Liu, Y. Zhu, H. Sun, Y. Wu, K. Zhu, An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy Environ. Sci. 5, 6909–6913 (2012). https://doi.org/10.1039/c2ee21294c
Z. Zhu, R. Zhang, J. Lin, K. Zhang, N. Li, C. Zhao, G. Chen, C. Zhao, Ni, Zn-codoped MgCo2O4 electrodes for aqueous asymmetric supercapacitor and rechargeable Zn battery. J. Power Sour. 437, 226941 (2019). https://doi.org/10.1016/j.jpowsour.2019.226941
X. Wu, M. Sun, S. Guo, J. Qian, Y. Liu, Y. Cao, X. Ai, H. Yang, Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188–193 (2015). https://doi.org/10.1002/cnma.201500021
X. Wu, Y. Cao, X. Ai, J. Qian, H. Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013). https://doi.org/10.1016/j.elecom.2013.03.013
X.Y. Wu, M.Y. Sun, Y.F. Shen, J.F. Qian, Y.L. Cao, X.P. Ai, H.X. Yang, Energetic aqueous rechargeable Sodium-Ion battery based on Na2CuFe(CN)6–NaTi2(PO4)3 intercalation chemistry. ChemSusChem 7, 407–411 (2014). https://doi.org/10.1002/cssc.201301036
K. Lu, B. Song, Y. Zhang, H. Ma, J. Zhang, Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high performance rechargeable zinc ion batteries. J. Mater. Chem. A 5, 23628–23633 (2017). https://doi.org/10.1039/C7TA07834J
K. Lu, B. Song, J. Zhang, H. Ma, A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. J. Power Source 321, 257–263 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.003