A Review of Rechargeable Zinc–Air Batteries: Recent Progress and Future Perspectives
Corresponding Author: Soo‑Jin Park
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 138
Abstract
Zinc–air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.
Highlights:
1 Recent progress in Zn–air batteries is critically reviewed.
2 Current challenges of rechargeable Zn–air batteries are highlighted.
3 Strategies for the advancement of the anode, electrolyte, and oxygen catalyst are discussed.
4 Future research directions are provided to design commercial Zn–air batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.W. Leong, Y. Wang, M. Ni, W. Pan, S. Luo et al., Rechargeable Zn-air batteries: recent trends and future perspectives. Renew. Sustain. Energy Rev. 154, 111771 (2022). https://doi.org/10.1016/j.rser.2021.111771
- J.-H. Lee, G. Yang, C.-H. Kim, R.L. Mahajan, S.-Y. Lee et al., Flexible solid-state hybrid supercapacitors for the Internet of everything (IoE). Energy Environ. Sci. 15, 2233–2258 (2022). https://doi.org/10.1039/D1EE03567C
- B. Diouf, R. Pode, Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375–380 (2015). https://doi.org/10.1016/j.renene.2014.11.058
- G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002
- J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. 11, 2003456 (2021). https://doi.org/10.1002/aenm.202003456
- Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang et al., Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 31, e1803800 (2019). https://doi.org/10.1002/adma.201803800
- Y. Han, C. Zhou, B. Wang, Y. Li, L. Zhang et al., Rational design of advanced oxygen electrocatalysts for high-performance zinc-air batteries. Chem Catal. 2, 3357–3394 (2022). https://doi.org/10.1016/j.checat.2022.10.002
- Y. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 9(1), 1802605 (2019). https://doi.org/10.1002/aenm.201802605
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3, 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- Y. Zhong, X. Xu, P. Liu, R. Ran, S.P. Jiang et al., A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 10, 2002992 (2020). https://doi.org/10.1002/aenm.202002992
- Y. Arafat, M.R. Azhar, Y. Zhong, H.R. Abid, M.O. Tadé et al., Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc–air batteries. Adv. Energy Mater. 11, 2100514 (2021). https://doi.org/10.1002/aenm.202100514
- J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu et al., Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011). https://doi.org/10.1002/aenm.201000010
- Q. Liu, L. Wang, H. Fu, Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc–air batteries. J. Mater. Chem. A 11, 4400–4427 (2023). https://doi.org/10.1039/D2TA09626A
- Y. Zhong, X. Xu, W. Wang, Z. Shao, Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc-air batteries. Batter. Supercaps 2, 272–289 (2019). https://doi.org/10.1002/batt.201800093
- Y. Zhang, J. Wang, M. Alfred, P. Lv, F. Huang et al., Recent advances of micro-nanofiber materials for rechargeable zinc-air batteries. Energy Storage Mater. 51, 181–211 (2022). https://doi.org/10.1016/j.ensm.2022.06.039
- Q. Wang, S. Kaushik, X. Xiao, Q. Xu, Sustainable zinc–air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 52, 6139–6190 (2023). https://doi.org/10.1039/d2cs00684g
- Y. Kumar, M. Mooste, K. Tammeveski, Recent progress of transition metal-based bifunctional electrocatalysts for rechargeable zinc–air battery application. Curr. Opin. Electrochem. 38, 101229 (2023). https://doi.org/10.1016/j.coelec.2023.101229
- L. Wei, E.H. Ang, Y. Yang, Y. Qin, Y. Zhang et al., Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. J. Power. Sources 477, 228696 (2020). https://doi.org/10.1016/j.jpowsour.2020.228696
- P. Zhang, K. Chen, J. Li, M. Wang, M. Li et al., Bifunctional single atom catalysts for rechargeable zinc-air batteries: from dynamic mechanism to rational design. Adv. Mater. 35, e2303243 (2023). https://doi.org/10.1002/adma.202303243
- A. Kundu, T. Kuila, N.C. Murmu, P. Samanta, S. Das, Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn–air batteries: recent trends and future perspectives. Mater. Horiz. 10, 745–787 (2023). https://doi.org/10.1039/D2MH01067D
- S. Das, A. Kundu, T. Kuila, N.C. Murmu, Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn-air batteries. Energy Storage Mater. 61, 102890 (2023). https://doi.org/10.1016/j.ensm.2023.102890
- F. Santos, A. Urbina, J. Abad, R. López, C. Toledo et al., Environmental and economical assessment for a sustainable Zn/air battery. Chemosphere 250, 126273 (2020). https://doi.org/10.1016/j.chemosphere.2020.126273
- Q. Sun, L. Dai, T. Luo, L. Wang, F. Liang et al., Recent advances in solid-state metal–air batteries. Carbon Energy 5, e276 (2023). https://doi.org/10.1002/cey2.276
- N.A. Thieu, W. Li, X. Chen, S. Hu, H. Tian et al., An overview of challenges and strategies for stabilizing zinc anodes in aqueous rechargeable Zn-ion batteries. Batteries 9, 41 (2023). https://doi.org/10.3390/batteries9010041
- Z. Zhao, W. Yu, W. Shang, Y. He, Y. Ma et al., Rigorous assessment of electrochemical rechargeability of alkaline Zn-air batteries. J. Power. Sources 543, 231844 (2022). https://doi.org/10.1016/j.jpowsour.2022.231844
- A.R. Mainar, E. Iruin, L.C. Colmenares, J.A. Blázquez, H.-J. Grande, Systematic cycle life assessment of a secondary zinc–air battery as a function of the alkaline electrolyte composition. Energy Sci. Eng. 6, 174–186 (2018). https://doi.org/10.1002/ese3.191
- Y. Ma, W. Yu, W. Shang, X. Xiao, Z. Zhao et al., Assessment of the feasibility of Zn–air batteries with alkaline electrolytes working at sub-zero temperatures. Energy Fuels 36, 11227–11233 (2022). https://doi.org/10.1021/acs.energyfuels.2c02509
- X. Chen, Z. Zhou, H.E. Karahan, Q. Shao, L. Wei et al., Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 14, e1801929 (2018). https://doi.org/10.1002/smll.201801929
- A.G. Olabi, E.T. Sayed, T. Wilberforce, A. Jamal, A.H. Alami et al., Metal-air batteries—a review. Energies 14, 7373 (2021). https://doi.org/10.3390/en14217373
- Q. Liu, Z. Pan, E. Wang, L. An, G. Sun, Aqueous metal-air batteries: fundamentals and applications. Energy Storage Mater. 27, 478–505 (2020). https://doi.org/10.1016/j.ensm.2019.12.011
- Y. Xu, Y. Zhang, Z. Guo, J. Ren, Y. Wang et al., Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed. 54, 15390–15394 (2015). https://doi.org/10.1002/anie.201508848
- X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu et al., Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc–air battery integrated with flexible display. Adv. Energy Mater. 7, 1700779 (2017). https://doi.org/10.1002/aenm.201700779
- J. Zhang, J. Fu, X. Song, G. Jiang, H. Zarrin et al., Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc–air batteries. Adv. Energy Mater. 6, 1600476 (2016). https://doi.org/10.1002/aenm.201600476
- F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138, 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
- Z. Liu, H. Li, M. Zhu, Y. Huang, Z. Tang et al., Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018). https://doi.org/10.1016/j.nanoen.2017.12.006
- L. Kong, C. Tang, H.-J. Peng, J.-Q. Huang, Q. Zhang, Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1, e1007 (2020). https://doi.org/10.1002/smm2.1007
- S.J. Varma, K. Sambath Kumar, S. Seal, S. Rajaraman, J. Thomas, Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv. Sci. 5, 1800340 (2018). https://doi.org/10.1002/advs.201800340
- J. Park, M. Park, G. Nam, J.-S. Lee, J. Cho, All-solid-state cable-type flexible zinc–air battery. Adv. Mater. 27, 1396–1401 (2015). https://doi.org/10.1002/adma.201404639
- Y. Li, H. Dai, Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
- Y. Zheng, J. He, S. Qiu, D. Yu, Y. Zhu et al., Boosting hydrogen peroxide accumulation by a novel air-breathing gas diffusion electrode in electro-Fenton system. Appl. Catal. B Environ. 316, 121617 (2022). https://doi.org/10.1016/j.apcatb.2022.121617
- A.A. Gewirth, M.S. Thorum, Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg. Chem. 49, 3557–3566 (2010). https://doi.org/10.1021/ic9022486
- M.M. Hossen, K. Artyushkova, P. Atanassov, A. Serov, Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells. J. Power. Sources 375, 214–221 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.036
- L. Peng, L. Shang, T. Zhang, G.I.N. Waterhouse, Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater. 10, 2003018 (2020). https://doi.org/10.1002/aenm.202003018
- Q. Zhang, J. Guan, Applications of atomically dispersed oxygen reduction catalysts in fuel cells and zinc–air batteries. Energy Environ. Mater. 4, 307–335 (2021). https://doi.org/10.1002/eem2.12128
- Y. Long, F. Ye, L. Shi, X. Lin, R. Paul et al., N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries. Carbon 179, 365–376 (2021). https://doi.org/10.1016/j.carbon.2021.04.039
- J. Yang, P. Ganesan, A. Ishihara, N. Nakashima, Carbon nanotube-based non-precious metal electrode catalysts for fuel cells, water splitting and zinc-air batteries. ChemCatChem 11, 5929–5944 (2019). https://doi.org/10.1002/cctc.201901785
- C. Chen, M. Jiang, T. Zhou, L. Raijmakers, E. Vezhlev et al., Interface aspects in all-solid-state Li-based batteries reviewed. Adv. Energy Mater. 11, 2003939 (2021). https://doi.org/10.1002/aenm.202003939
- Y. Zhao, K.R. Adair, X. Sun, Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 11, 2673–2695 (2018). https://doi.org/10.1039/C8EE01373J
- Y. Li, L. Zhang, Y. Han, W. Ji, Z. Liu et al., Interface engineering of bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Mater. Chem. Front. 7, 4281–4303 (2023). https://doi.org/10.1039/d3qm00237c
- X. Liu, G. Zhang, L. Wang, H. Fu, Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery. Small 17, e2006766 (2021). https://doi.org/10.1002/smll.202006766
- S. Wang, S. Chen, L. Ma, J.A. Zapien, Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Mater. Today Energy 20, 100659 (2021). https://doi.org/10.1016/j.mtener.2021.100659
- A. Iqbal, O.M. El-Kadri, N.M. Hamdan, Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J. Energy Storage 62, 106926 (2023). https://doi.org/10.1016/j.est.2023.106926
- J.F. Parker, C.N. Chervin, E.S. Nelson, D.R. Rolison, J.W. Long, Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling. Energy Environ. Sci. 7, 1117–1124 (2014). https://doi.org/10.1039/C3EE43754J
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
- Y.N. Jo, K. Prasanna, S.H. Kang, P.R. Ilango, H.S. Kim et al., The effects of mechanical alloying on the self-discharge and corrosion behavior in Zn-air batteries. J. Ind. Eng. Chem. 53, 247–252 (2017). https://doi.org/10.1016/j.jiec.2017.04.032
- R. Li, Y. Du, Y. Li, Z. He, L. Dai et al., Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 8, 457–476 (2023). https://doi.org/10.1021/acsenergylett.2c01960
- Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
- Y. Chen, Q. Zhao, Y. Wang, W. Liu, P. Qing et al., A dendrite-free Zn@CuxZny composite anode for rechargeable aqueous batteries. Electrochim. Acta 399, 139334 (2021). https://doi.org/10.1016/j.electacta.2021.139334
- E.O. Aremu, D.-J. Park, K.-S. Ryu, The effects of anode additives towards suppressing dendrite growth and hydrogen gas evolution reaction in Zn-air secondary batteries. Ionics 25, 4197–4207 (2019). https://doi.org/10.1007/s11581-019-02973-y
- S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim et al., Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J. Power. Sources 227, 177–184 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.046
- Z. Li, H. Wang, Y. Zhong, L. Yuan, Y. Huang et al., Highly reversible and anticorrosive Zn anode enabled by a Ag nanowires layer. ACS Appl. Mater. Interfaces 14, 9097–9105 (2022). https://doi.org/10.1021/acsami.1c22873
- K. Wang, P. Pei, Y. Wang, C. Liao, W. Wang et al., Advanced rechargeable zinc-air battery with parameter optimization. Appl. Energy 225, 848–856 (2018). https://doi.org/10.1016/j.apenergy.2018.05.071
- Z. Zhao, X. Fan, J. Ding, W. Hu, C. Zhong et al., Challenges in zinc electrodes for alkaline zinc–air batteries: obstacles to commercialization. ACS Energy Lett. 4, 2259–2270 (2019). https://doi.org/10.1021/acsenergylett.9b01541
- Y. Zhang, Y. Wu, H. Ding, Y. Yan, Z. Zhou et al., Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy 53, 666–674 (2018). https://doi.org/10.1016/j.nanoen.2018.09.021
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275–284 (2023). https://doi.org/10.1039/d2ee02931f
- T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
- Q. Deng, Z. Luo, R. Yang, J. Li, Toward organic carbonyl-contained small molecules in rechargeable batteries: a review of current modified strategies. ACS Sustain. Chem. Eng. 8, 15445–15465 (2020). https://doi.org/10.1021/acssuschemeng.0c05884
- Z. Zhang, D. Zhou, G. Huang, L. Zhou, B. Huang, Preparation and properties of ZnO/PVA/β-CD/PEG composite electrode for rechargeable zinc anode. J. Electroanal. Chem. 827, 85–92 (2018). https://doi.org/10.1016/j.jelechem.2018.09.019
- Z. Han, C. Zhang, Q. Lin, Y. Zhang, Y. Deng et al., A protective layer for lithium metal anode: why and how. Small Methods 5, e2001035 (2021). https://doi.org/10.1002/smtd.202001035
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu, J. Zhang, Z. Liu, M. Wang, N. Liu, L. Fan, Y. Zhang, N. Zhang, Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/d2ee02931f
- H.E. Lin, C.H. Ho, C.Y. Lee, Discharge performance of zinc coating prepared by pulse electroplating with different frequencies for application in zinc-air battery. Surf. Coat. Technol. 319, 378–385 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.020
- Z. Pan, J. Yang, W. Zang, Z. Kou, C. Wang et al., All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Mater. 23, 375–382 (2019). https://doi.org/10.1016/j.ensm.2019.04.036
- S.-B. Wang, Q. Ran, R.-Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
- G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 (2021). https://doi.org/10.1002/aenm.202003927
- Q. Cao, Y. Gao, J. Pu, X. Zhao, Y. Wang et al., Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14, 641 (2023). https://doi.org/10.1038/s41467-023-36386-3
- H. Zhao, Z. Chi, Q. Zhang, D. Kong, L. Li et al., Dendrite-free Zn anodes enabled by Sn-Cu bimetal/rGO functional protective layer for aqueous Zn-based batteries. Appl. Surf. Sci. 613, 156129 (2023). https://doi.org/10.1016/j.apsusc.2022.156129
- J. Yan, M. Ye, Y. Zhang, Y. Tang, C. Li, Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chem. Eng. J. 432, 134227 (2022). https://doi.org/10.1016/j.cej.2021.134227
- J. Yu, F. Chen, Q. Tang, T.T. Gebremariam, J. Wang et al., Ag-modified Cu foams as three-dimensional anodes for rechargeable zinc–air batteries. ACS Appl. Nano Mater. 2, 2679–2688 (2019). https://doi.org/10.1021/acsanm.9b00156
- Y. Zhang, M. Zhu, G. Wang, F.-H. Du, F. Yu et al., Dendrites-free Zn metal anodes enabled by an artificial protective layer filled with 2D anionic nanosheets. Small Methods 5, e2100650 (2021). https://doi.org/10.1002/smtd.202100650
- P. Liu, X. Ling, C. Zhong, Y. Deng, X. Han et al., Porous zinc anode design for Zn-air chemistry. Front. Chem. 7, 656 (2019). https://doi.org/10.3389/fchem.2019.00656
- D. Yang, J. Li, C. Liu, J. Ge, W. Xing et al., Regulating the MXene–zinc interfacial structure toward a highly revisable metal anode of zinc–air batteries. ACS Appl. Mater. Interfaces 15, 10651–10659 (2023). https://doi.org/10.1021/acsami.2c20701
- M. Cui, B. Yan, F. Mo, X. Wang, Y. Huang et al., In-situ grown porous protective layers with high binding strength for stable Zn anodes. Chem. Eng. J. 434, 134688 (2022). https://doi.org/10.1016/j.cej.2022.134688
- X. Zhong, Y. Shao, B. Chen, C. Li, J. Sheng et al., Rechargeable zinc-air batteries with an ultralarge discharge capacity per cycle and an ultralong cycle life. Adv. Mater. 35, e2301952 (2023). https://doi.org/10.1002/adma.202301952
- D.M. See, R.E. White, Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J. Chem. Eng. Data 42, 1266–1268 (1997). https://doi.org/10.1021/je970140x
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
- A. Naveed, T. Rasheed, B. Raza, J. Chen, J. Yang et al., Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Mater. 44, 206–230 (2022). https://doi.org/10.1016/j.ensm.2021.10.005
- N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49, 4203–4219 (2020). https://doi.org/10.1039/c9cs00349e
- Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11, 2003065 (2021). https://doi.org/10.1002/aenm.202003065
- F. Ilyas, M. Ishaq, M. Jabeen, M. Saeed, A. Ihsan et al., Recent trends in the benign-by-design electrolytes for zinc batteries. J. Mol. Liq. 343, 117606 (2021). https://doi.org/10.1016/j.molliq.2021.117606
- L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32, e1908121 (2020). https://doi.org/10.1002/adma.201908121
- R. Othman, W.J. Basirun, A.H. Yahaya, A.K. Arof, Hydroponics gel as a new electrolyte gelling agent for alkaline zinc–air cells. J. Power. Sources 103, 34–41 (2001). https://doi.org/10.1016/s0378-7753(01)00823-0
- A.A. Mohamad, Zn/gelled 6M KOH/O2 zinc–air battery. J. Power. Sources 159, 752–757 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.110
- C.-C. Yang, S.-J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery. J. Power. Sources 112, 497–503 (2002). https://doi.org/10.1016/s0378-7753(02)00438-x
- X. Zhu, H. Yang, Y. Cao, X. Ai, Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution. Electrochim. Acta 49, 2533–2539 (2004). https://doi.org/10.1016/j.electacta.2004.02.008
- J. Fu, D.U. Lee, F.M. Hassan, L. Yang, Z. Bai et al., Flexible high-energy polymer-electrolyte-based rechargeable zinc–air batteries. Adv. Mater. 27, 5617–5622 (2015). https://doi.org/10.1002/adma.201502853
- X. Fan, J. Liu, Z. Song, X. Han, Y. Deng et al., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. Nano Energy 56, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.057
- X. Zhong, W. Yi, Y. Qu, L. Zhang, H. Bai et al., Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl. Catal. B Environ. 260, 118188 (2020). https://doi.org/10.1016/j.apcatb.2019.118188
- M. Li, F. Luo, Q. Zhang, Z. Yang, Z. Xu, Atomic layer Co3O4-x nanosheets as efficient and stable electrocatalyst for rechargeable zinc-air batteries. J. Catal. 381, 395–401 (2020). https://doi.org/10.1016/j.jcat.2019.11.020
- S. Hosseini, A. Abbasi, L.-O. Uginet, N. Haustraete, S. Praserthdam et al., The influence of dimethyl sulfoxide as electrolyte additive on anodic dissolution of alkaline zinc-air flow battery. Sci. Rep. 9, 14958 (2019). https://doi.org/10.1038/s41598-019-51412-5
- X. Wang, J. Sunarso, Q. Lu, Z. Zhou, J. Dai et al., High-performance platinum-perovskite composite bifunctional oxygen electrocatalyst for rechargeable Zn–air battery. Adv. Energy Mater. 10, 1903271 (2020). https://doi.org/10.1002/aenm.201903271
- S. Hosseini, S.J. Han, A. Arponwichanop, T. Yonezawa, S. Kheawhom, Ethanol as an electrolyte additive for alkaline zinc-air flow batteries. Sci. Rep. 8, 11273 (2018). https://doi.org/10.1038/s41598-018-29630-0
- T. Cui, Y.-P. Wang, T. Ye, J. Wu, Z. Chen et al., Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 61, 2115219 (2022). https://doi.org/10.1002/anie.202115219
- D. Jiang, H. Wang, S. Wu, X. Sun, J. Li, Flexible zinc-air battery with high energy efficiency and freezing tolerance enabled by DMSO-based organohydrogel electrolyte. Small Methods 6, e2101043 (2022). https://doi.org/10.1002/smtd.202101043
- R. Chen, X. Xu, S. Peng, J. Chen, D. Yu et al., A flexible and safe aqueous zinc–air battery with a wide operating temperature range from–20 to 70 °C. ACS Sustain. Chem. Eng. 8, 11501–11511 (2020). https://doi.org/10.1021/acssuschemeng.0c01111
- Y. Zhang, H. Qin, M. Alfred, H. Ke, Y. Cai et al., Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Storage Mater. 42, 88–96 (2021). https://doi.org/10.1016/j.ensm.2021.07.026
- N. Sun, F. Lu, Y. Yu, L. Su, X. Gao et al., Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc–air batteries. ACS Appl. Mater. Interfaces 12, 11778–11788 (2020). https://doi.org/10.1021/acsami.0c00325
- A. Abbasi, Y. Xu, R. Khezri, M. Etesami, C. Lin et al., Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries. Mater. Today Sustain. 18, 100126 (2022). https://doi.org/10.1016/j.mtsust.2022.100126
- G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of high ionic conducting alkaline non-woven membranes by sulfonation. J. Membr. Sci. 284, 120–127 (2006). https://doi.org/10.1016/j.memsci.2006.07.025
- G.M. Wu, S.J. Lin, J.H. You, C.C. Yang, Study of high-anionic conducting sulfonated microporous membranes for zinc-air electrochemical cells. Mater. Chem. Phys. 112, 798–804 (2008). https://doi.org/10.1016/j.matchemphys.2008.06.058
- H. Saputra, R. Othman, A.G.E. Sutjipto, R. Muhida, MCM-41 as a new separator material for electrochemical cell: application in zinc–air system. J. Membr. Sci. 367, 152–157 (2011). https://doi.org/10.1016/j.memsci.2010.10.061
- H.J. Hwang, W.S. Chi, O. Kwon, J.G. Lee, J.H. Kim et al., Selective ion transporting polymerized ionic liquid membrane separator for enhancing cycle stability and durability in secondary zinc–air battery systems. ACS Appl. Mater. Interfaces 8, 26298–26308 (2016). https://doi.org/10.1021/acsami.6b07841
- H.-W. Kim, J.-M. Lim, H.-J. Lee, S.-W. Eom, Y.T. Hong et al., Artificially engineered, bicontinuous anion-conducting /-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes. J. Mater. Chem. A 4, 3711–3720 (2016). https://doi.org/10.1039/C5TA09576J
- F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao et al., Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 3, 79–84 (2011). https://doi.org/10.1038/nchem.931
- F. Bidault, D.J.L. Brett, P.H. Middleton, N.P. Brandon, Review of gas diffusion cathodes for alkaline fuel cells. J. Power. Sources 187, 39–48 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.106
- S.B. Park, Y.-I. Park, Fabrication of gas diffusion layer (GDL) containing microporous layer using flourinated ethylene prophylene (FEP) for proton exchange membrane fuel cell (PEMFC). Int. J. Precis. Eng. Manuf. 13, 1145–1151 (2012). https://doi.org/10.1007/s12541-012-0152-x
- Y.-C. Lu, D.G. Kwabi, K.P.C. Yao, J.R. Harding, J. Zhou et al., The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999–3007 (2011). https://doi.org/10.1039/C1EE01500A
- J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu et al., Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 5, 1700691 (2018). https://doi.org/10.1002/advs.201700691
- Y. Liu, P. He, H. Zhou, Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 (2018). https://doi.org/10.1002/aenm.201701602
- Y. Liu, J. Li, W. Li, Y. Li, Q. Chen et al., Spinel LiMn2O4 nanops dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery. Int. J. Hydrog. Energy 40, 9225–9234 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.153
- H. Ma, B. Wang, A bifunctional electrocatalyst α-MnO2-LaNiO3/carbon nanotube composite for rechargeable zinc–air batteries. RSC Adv. 4, 46084–46092 (2014). https://doi.org/10.1039/C4RA07401G
- R. Zhao, L. Huan, P. Gu, R. Guo, M. Chen et al., Yb, Er-doped CeO2 nanotubes as an assistant layer for photoconversion-enhanced dye-sensitized solar cells. J. Power. Sources 331, 527–534 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.039
- G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5
- X. Li, H. Zhang, Y. Wang, H. Wang, J. Wang et al., Tailoring the spin state of active sites in amorphous transition metal sulfides to promote oxygen electrocatalysis. Sci. China Mater. 65, 3479–3489 (2022). https://doi.org/10.1007/s40843-022-2048-2
- Y. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries. Chem. Eng. J. 397, 125516 (2020). https://doi.org/10.1016/j.cej.2020.125516
- X. Cai, L. Lai, J. Lin, Z. Shen, Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Mater. Horiz. 4, 945–976 (2017). https://doi.org/10.1039/C7MH00358G
- Z. Cui, G. Fu, Y. Li, J.B. Goodenough, Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal–air batteries. Angew. Chem. Int. Ed. 56, 9901–9905 (2017). https://doi.org/10.1002/anie.201705778
- A. Zhao, J. Masa, W. Xia, A. Maljusch, M.-G. Willinger et al., Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J. Am. Chem. Soc. 136, 7551–7554 (2014). https://doi.org/10.1021/ja502532y
- H. Li, Q. Li, P. Wen, T.B. Williams, S. Adhikari et al., Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 30, 1705796 (2018). https://doi.org/10.1002/adma.201705796
- L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12, 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
- H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala et al., Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem. Int. Ed. 129, 15173–15177 (2017). https://doi.org/10.1002/ange.201708765
- X.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo et al., Graphene hybrids: identifying the key role of pyridinic-N–co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 30, 1870164 (2018). https://doi.org/10.1002/adma.201870164
- J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 1, e1500564 (2015). https://doi.org/10.1126/sciadv.1500564
- Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28, 3000–3006 (2016). https://doi.org/10.1002/adma.201506112
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). https://doi.org/10.1038/nmat3087
- Y. Jiang, Y.P. Deng, J. Fu, D.U. Lee, R. Liang, Z.P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn–air batteries. Adv. Energy Mater. 8(15), 1702900 (2018). https://doi.org/10.1002/aenm.201702900
- P. Chen, T. Zhou, S. Wang, N. Zhang, Y. Tong et al., Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem. Int. Ed. 57, 15471–15475 (2018). https://doi.org/10.1002/anie.201809220
- J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun et al., MnxOy/NC and CoxOy/NC nanops embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem. Int. Ed. 53, 8508–8512 (2014). https://doi.org/10.1002/anie.201402710
- L. Xu, C. Wang, D. Deng, Y. Tian, X. He et al., Cobalt oxide nanops/nitrogen-doped graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries. ACS Sustain. Chem. Eng. 8, 343–350 (2020). https://doi.org/10.1021/acssuschemeng.9b05492
- G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan et al., Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001}facets derived from TiN. J. Am. Chem. Soc. 131, 12868–12869 (2009). https://doi.org/10.1021/ja903463q
- X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris et al., Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009). https://doi.org/10.1021/nl900772q
- L. Xu, Z. Wang, J. Wang, Z. Xiao, X. Huang et al., N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology 28, 165402 (2017). https://doi.org/10.1088/1361-6528/aa6381
- X. Wang, Z. Liao, Y. Fu, C. Neumann, A. Turchanin et al., Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Mater. 26, 157–164 (2020). https://doi.org/10.1016/j.ensm.2019.12.043
- Z. Li, S. Ji, C. Wang, H. Liu, L. Leng et al., Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 35, e2300905 (2023). https://doi.org/10.1002/adma.202300905
- Y. Liu, J. Wei, Y. Tian, S. Yan, The structure–property relationship of manganese oxides: highly efficient removal of methyl orange from aqueous solution. J. Mater. Chem. A 3, 19000–19010 (2015). https://doi.org/10.1039/c5ta05507e
- J. Gu, X. Fan, X. Liu, S. Li, Z. Wang et al., Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chem. Eng. J. 324, 35–43 (2017). https://doi.org/10.1016/j.cej.2017.05.014
- Y. Gorlin, T.F. Jaramillo, A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010). https://doi.org/10.1021/ja104587v
- H. Kim, K. Min, S.E. Shim, D. Lim, S.-H. Baeck, Ni-doped Mn2O3 microspheres as highly efficient electrocatalyst for oxygen reduction reaction and Zn-air battery. Int. J. Hydrog. Energy 47, 2378–2388 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.164
- T. Li, Y. Hu, K. Liu, J. Yin, Y. Li et al., Hollow yolk-shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-Air battery. Chem. Eng. J. 427, 131992 (2022). https://doi.org/10.1016/j.cej.2021.131992
- A.K. Worku, D.W. Ayele, N.G. Habtu, M.A. Teshager, Z.G. Workineh, Recent progress in MnO2-based oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Sustain. 13, 100072 (2021). https://doi.org/10.1016/j.mtsust.2021.100072
- X.-M. Liu, X. Cui, K. Dastafkan, H.-F. Wang, C. Tang et al., Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. J. Energy Chem. 53, 290–302 (2021). https://doi.org/10.1016/j.jechem.2020.04.012
- B. Chen, H. Miao, M. Yin, R. Hu, L. Xia et al., Mn-based spinels evolved from layered manganese dioxides at mild temperature for the robust flexible quasi-solid-state zinc-air batteries. Chem. Eng. J. 417, 129179 (2021). https://doi.org/10.1016/j.cej.2021.129179
- W. Liu, D. Rao, J. Bao, L. Xu, Y. Lei et al., Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries. J. Energy Chem. 57, 428–435 (2021). https://doi.org/10.1016/j.jechem.2020.08.066
- C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn et al., Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29, 1606800 (2017). https://doi.org/10.1002/adma.201606800
- Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 28, 3777–3784 (2016). https://doi.org/10.1002/adma.201506197
- H. Cheng, M.-L. Li, C.-Y. Su, N. Li, Z.-Q. Liu, Cu-Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: a high-efficiency bifunctional oxygen electrode for Zn–air batteries. Adv. Funct. Mater. 27, 1701833 (2017). https://doi.org/10.1002/adfm.201701833
- T. Ouyang, Y.-Q. Ye, C.-Y. Wu, K. Xiao, Z.-Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanops as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 58, 4923–4928 (2019). https://doi.org/10.1002/anie.201814262
- Y. Go, K. Min, H. An, K. Kim, S. Eun Shim et al., Oxygen-vacancy-rich CoFe/CoFe2O4 embedded in N-doped hollow carbon spheres as a highly efficient bifunctional electrocatalyst for Zn–air batteries. Chem. Eng. J. 448, 137665 (2022). https://doi.org/10.1016/j.cej.2022.137665
- J.-I. Jung, S. Park, M.-G. Kim, J. Cho, Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts. Adv. Energy Mater. 5, 1501560 (2015). https://doi.org/10.1002/aenm.201501560
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- A. Grimaud, K.J. May, C.E. Carlton, Y.-L. Lee, M. Risch et al., Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013). https://doi.org/10.1038/ncomms3439
- Z. Li, L. Lv, J. Wang, X. Ao, Y. Ruan, D. Zha, G. Hong, Q. Wu, Y. Lan, C. Wang, Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199–209 (2018). https://doi.org/10.1016/j.nanoen.2018.02.051
- D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015). https://doi.org/10.1021/acs.chemrev.5b00073
- S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15, 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
- Y. Bu, O. Gwon, G. Nam, H. Jang, S. Kim et al., A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 11, 11594–11601 (2017). https://doi.org/10.1021/acsnano.7b06595
- Q. Zheng, Y. Zhang, C. Su, L. Zhao, Y. Guo, Nonnoble metal oxides for high-performance Zn-air batteries: design strategies and future challenges. Asia Pac. J. Chem. Eng. 17, e2776 (2022). https://doi.org/10.1002/apj.2776
- Y. Zhu, W. Zhou, Z.-G. Chen, Y. Chen, C. Su et al., SrNb0.1Co0.7Fe0.2O3–δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem. 127, 3969–3973 (2015). https://doi.org/10.1002/ange.201408998
- Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu et al., Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28, 1691–1697 (2016). https://doi.org/10.1021/acs.chemmater.5b04457
- Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher et al., Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv. Energy Mater. 7, 1700544 (2017). https://doi.org/10.1002/aenm.201700544
- C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45, 517–531 (2016). https://doi.org/10.1039/C5CS00670H
- M. Zhou, H.-L. Wang, S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45, 1273–1307 (2016). https://doi.org/10.1039/c5cs00414d
- Z. Xia, L. An, P. Chen, D. Xia, Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors. Adv. Energy Mater. 6, 1600458 (2016). https://doi.org/10.1002/aenm.201600458
- Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
- H. Li, W. Wan, X. Liu, H. Liu, S. Shen et al., Poplar-catkin-derived N, P Co-doped carbon microtubes as efficient oxygen electrocatalysts for Zn-air batteries. ChemElectroChem 5, 1113–1119 (2018). https://doi.org/10.1002/celc.201701224
- R. Wang, Z. Chen, N. Hu, C. Xu, Z. Shen et al., Nanocarbon-based electrocatalysts for rechargeable aqueous Li/Zn-air batteries. ChemElectroChem 5, 1745–1763 (2018). https://doi.org/10.1002/celc.201800141
- H.-W. Liang, Z.-Y. Wu, L.-F. Chen, C. Li, S.-H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11, 366–376 (2015). https://doi.org/10.1016/j.nanoen.2014.11.008
- H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, e1501122 (2016). https://doi.org/10.1126/sciadv.1501122
- Z. Ma, K. Wang, Y. Qiu, X. Liu, C. Cao et al., Nitrogen and sulfur Co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy 143, 43–55 (2018). https://doi.org/10.1016/j.energy.2017.10.110
- S.-J. Ha, J. Hwang, M.-J. Kwak, J.-C. Yoon, J.-H. Jang, Graphene-encapsulated bifunctional catalysts with high activity and durability for Zn-air battery. Small 19, e2300551 (2023). https://doi.org/10.1002/smll.202300551
- C.H. Choi, S.H. Park, S.I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6, 7084–7091 (2012). https://doi.org/10.1021/nn3021234
- J. Zhang, L. Dai, Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 128, 13490–13494 (2016). https://doi.org/10.1002/ange.201607405
- S. Yang, L. Peng, P. Huang, X. Wang, Y. Sun et al., Nitrogen, phosphorus, and sulfur Co-doped hollow carbon shell as superior metal-free catalyst for selective oxidation of aromatic alkanes. Angew. Chem. Int. Ed. 128, 4084–4088 (2016). https://doi.org/10.1002/ange.201600455
- L. Wang, Y. Wang, M. Wu, Z. Wei, C. Cui et al., Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries. Small 14, e1800737 (2018). https://doi.org/10.1002/smll.201800737
- F. Razmjooei, K.P. Singh, M.Y. Song, J.-S. Yu, Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78, 257–267 (2014). https://doi.org/10.1016/j.carbon.2014.07.002
- X. Zheng, J. Wu, X. Cao, J. Abbott, C. Jin et al., N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B Environ. 241, 442–451 (2019). https://doi.org/10.1016/j.apcatb.2018.09.054
- S. Yang, G. Chen, A.G. Ricciardulli, P. Zhang, Z. Zhang et al., Topochemical synthesis of two-dimensional transition-metal phosphides using phosphorene templates. Angew. Chem. Int. Ed. 59, 465–470 (2020). https://doi.org/10.1002/anie.201911428
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad998 (2017). https://doi.org/10.1126/science.aad4998
- J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri et al., Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215–230 (2016). https://doi.org/10.1002/adma.201502696
- Y. Hu, Y. Zhang, C. Li, L. Wang, Y. Du et al., Guided assembly of microporous/mesoporous manganese phosphates by bifunctional organophosphonic acid etching and templating. Adv. Mater. 31, e1901124 (2019). https://doi.org/10.1002/adma.201901124
- S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra et al., Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6, 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479
- D.W. Lee, J.-H. Jang, I. Jang, Y.S. Kang, S. Jang et al., Bio-derived Co2P nanops supported on nitrogen-doped carbon as promising oxygen reduction reaction electrocatalyst for anion exchange membrane fuel cells. Small 15, 1902090 (2019). https://doi.org/10.1002/smll.201902090
- Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1, 100001 (2019). https://doi.org/10.1016/j.enchem.2019.100001
- B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008). https://doi.org/10.1021/ja7106146
- H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal–organic-framework-derived Co2P nanop/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32, 2003649 (2020). https://doi.org/10.1002/adma.202003649
- Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang et al., High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanops for zinc–air battery and self-powered overall water splitting. Adv. Energy Mater. 10, 1903854 (2020). https://doi.org/10.1002/aenm.201903854
- C. Xia, L. Huang, D. Yan, A.I. Douka, W. Guo et al., Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc–air batteries. Adv. Funct. Mater. 31, 2105021 (2021). https://doi.org/10.1002/adfm.202105021
- Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived CoP nanop-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
- J. Song, C. Zhu, B.Z. Xu, S. Fu, M.H. Engelhard et al., Water splitting: bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom orption energy for efficient overall water splitting. Adv. Energy Mater. 7, 1770011 (2017). https://doi.org/10.1002/aenm.201770011
- W. Zheng, M. Liu, L.Y.S. Lee, Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10, 81–92 (2020). https://doi.org/10.1021/acscatal.9b03790
- T. Qiu, Z. Liang, W. Guo, H. Tabassum, S. Gao et al., Metal–organic framework-based materials for energy conversion and storage. ACS Energy Lett. 5, 520–532 (2020). https://doi.org/10.1021/acsenergylett.9b02625
- T. Zhou, H. Shan, H. Yu, C.-A. Zhong, J. Ge et al., Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 32, e2003251 (2020). https://doi.org/10.1002/adma.202003251
- X.F. Lu, S.L. Zhang, E. Shangguan, P. Zhang, S. Gao et al., Nitrogen-doped cobalt pyrite yolk–shell hollow spheres for long-life rechargeable Zn–air batteries. Adv. Sci. 7, 2001178 (2020). https://doi.org/10.1002/advs.202001178
- P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn-air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
- J. Wang, X. Zheng, Y. Cao, L. Li, C. Zhong et al., Developing indium-based ternary spinel selenides for efficient solid flexible Zn-air batteries and water splitting. ACS Appl. Mater. Interfaces 12, 8115–8123 (2020). https://doi.org/10.1021/acsami.9b18304
- Y. Gu, G. Yan, Y. Lian, P. Qi, Q. Mu et al., MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries. Energy Storage Mater. 23, 252–260 (2019). https://doi.org/10.1016/j.ensm.2019.05.006
- G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, Multi-component nanoporous alloy/(oxy) hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Appl. Catal. B Environ. 268, 118431 (2020). https://doi.org/10.1016/j.apcatb.2019.118431
- J. Ran, J.-F. Wu, Y. Hu, M. Shakouri, B. Xia et al., Atomic-level coupled spinel@perovskite dual-phase oxides toward enhanced performance in Zn–air batteries. J. Mater. Chem. A 10, 1506–1513 (2022). https://doi.org/10.1039/D1TA09457B
- H. Miao, X. Wu, B. Chen, Q. Wang, F. Wang et al., A-site deficient/excessive effects of LaMnO3 perovskite as bifunctional oxygen catalyst for zinc-air batteries. Electrochim. Acta 333, 135566 (2020). https://doi.org/10.1016/j.electacta.2019.135566
- J. Bian, R. Su, Y. Yao, J. Wang, J. Zhou et al., Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 2, 923–931 (2019). https://doi.org/10.1021/acsaem.8b02183
- X. Wu, H. Miao, M. Yin, R. Hu, F. Wang et al., Biomimetic construction of bifunctional perovskite oxygen catalyst for zinc-air batteries. Electrochim. Acta 399, 139407 (2021). https://doi.org/10.1016/j.electacta.2021.139407
- M. García-Rodríguez, J.X. Flores-Lasluisa, D. Cazorla-Amorós, E. Morallón, Metal oxide Perovskite-Carbon composites as electrocatalysts for zinc-air batteries: optimization of ball-milling mixing parameters. J. Colloid Interface Sci. 630, 269–280 (2023). https://doi.org/10.1016/j.jcis.2022.10.086
- L. Xu, S. Wu, X. He, H. Wang, D. Deng et al., Interface engineering of anti-perovskite Ni3FeN/VN heterostructure for high-performance rechargeable zinc–air batteries. Chem. Eng. J. 437, 135291 (2022). https://doi.org/10.1016/j.cej.2022.135291
- J. Wang, H. Wu, D. Gao, S. Miao, G. Wang et al., High-density iron nanops encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 13, 387–396 (2015). https://doi.org/10.1016/j.nanoen.2015.02.025
- X. Xiao, X. Hu, Y. Liang, G. Zhang, X. Wang et al., Anchoring NiCo2O4 nanowhiskers in biomass-derived porous carbon as superior oxygen electrocatalyst for rechargeable Zn-air battery. J. Power. Sources 476, 228684 (2020). https://doi.org/10.1016/j.jpowsour.2020.228684
- X. Shu, S. Chen, S. Chen, W. Pan, J. Zhang, Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting. Carbon 157, 234–243 (2020). https://doi.org/10.1016/j.carbon.2019.10.023
- J.-T. Ren, Y.-S. Wang, L. Chen, L.-J. Gao, W.-W. Tian et al., Binary FeNi phosphides dispersed on N, P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chem. Eng. J. 389, 124408 (2020). https://doi.org/10.1016/j.cej.2020.124408
- Z. Wu, H. Wu, T. Niu, S. Wang, G. Fu et al., Sulfurated metal–organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn–air battery. ACS Sustain. Chem. Eng. 8, 9226–9234 (2020). https://doi.org/10.1021/acssuschemeng.0c03570
- Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn–air batteries. Adv. Funct. Mater. 30, 1906081 (2020). https://doi.org/10.1002/adfm.201906081
- C. Lai, X. Liu, Y. Wang, C. Cao, Y. Yin et al., Bimetallic organic framework-derived rich pyridinic N-doped carbon nanotubes as oxygen catalysts for rechargeable Zn-air batteries. J. Power. Sources 472, 228470 (2020). https://doi.org/10.1016/j.jpowsour.2020.228470
- G. Chen, Y. Xu, L. Huang, A.I. Douka, B.Y. Xia, Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries. J. Energy Chem. 55, 183–189 (2021). https://doi.org/10.1016/j.jechem.2020.07.012
- V. Jose, H. Hu, E. Edison, W. Manalastas Jr., H. Ren et al., Modulation of single atomic co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods 5, e2000751 (2021). https://doi.org/10.1002/smtd.202000751
- T. Qin, J. Zhao, R. Shi, C. Ge, Q. Li, Ionic liquid derived active atomic iron sites anchored on hollow carbon nanospheres for bifunctional oxygen electrocatalysis. Chem. Eng. J. 399, 125656 (2020). https://doi.org/10.1016/j.cej.2020.125656
- K. Ding, J. Hu, J. Luo, W. Jin, L. Zhao et al., Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn–air batteries. Nano Energy 91, 106675 (2022). https://doi.org/10.1016/j.nanoen.2021.106675
- S. Ren, X. Duan, F. Ge, Z. Chen, Q. Yang et al., Novel MOF-derived hollow CoFe alloy coupled with N-doped Ketjen Black as boosted bifunctional oxygen catalysts for Zn–air batteries. Chem. Eng. J. 427, 131614 (2022). https://doi.org/10.1016/j.cej.2021.131614
- K.N. Dinh, Z. Pei, Z. Yuan, V.C. Hoang, L. Wei et al., The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn–air batteries. J. Mater. Chem. A 8, 7297–7308 (2020). https://doi.org/10.1039/C9TA13651G
- Y. Wang, M. Wu, J. Li, H. Huang, J. Qiao, In situ growth of CoP nanops anchored on (N, P) Co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn–air battery. J. Mater. Chem. A 8, 19043–19049 (2020). https://doi.org/10.1039/d0ta06435a
- J. Yang, L. Chang, H. Guo, J. Sun, J. Xu et al., Electronic structure modulation of bifunctional oxygen catalysts for rechargeable Zn–air batteries. J. Mater. Chem. A 8, 1229–1237 (2020). https://doi.org/10.1039/C9TA11654K
- S.S. Shinde, C.-H. Lee, A. Sami, D.-H. Kim, S.-U. Lee et al., Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. ACS Nano 11, 347–357 (2017). https://doi.org/10.1021/acsnano.6b05914
- S. Cui, L. Sun, F. Kong, L. Huo, H. Zhao, Carbon-coated MnCo2O4 nanowire as bifunctional oxygen catalysts for rechargeable Zn-air batteries. J. Power. Sources 430, 25–31 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.029
- L. Wei, H.E. Karahan, S. Zhai, H. Liu, X. Chen et al., Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater. 29, 1701410 (2017). https://doi.org/10.1002/adma.201701410
- X. Chen, J. Pu, X. Hu, Y. Yao, Y. Dou et al., Janus hollow nanofiber with bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Small 18, e2200578 (2022). https://doi.org/10.1002/smll.202200578
- L.-B. Huang, L. Zhao, Y. Zhang, H. Luo, X. Zhang et al., Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. Chem. Eng. J. 418, 129409 (2021). https://doi.org/10.1016/j.cej.2021.129409
- X. Wang, Y. Li, T. Jin, J. Meng, L. Jiao et al., Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Nano Lett. 17, 7989–7994 (2017). https://doi.org/10.1021/acs.nanolett.7b04502
- J. Zhu, M. Xiao, G. Li, S. Li, J. Zhang et al., A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 10, 1903003 (2020). https://doi.org/10.1002/aenm.201903003
- Y.-L. Zhang, Y.-K. Dai, B. Liu, X.-F. Gong, L. Zhao et al., Vacuum vapor migration strategy for atom–nanop composite catalysts boosting bifunctional oxygen catalysis and rechargeable Zn–air batteries. J. Mater. Chem. A 10, 3112–3121 (2022). https://doi.org/10.1039/D1TA10559K
- K. He, J. Zai, X. Liu, Y. Zhu, A. Iqbal et al., One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Appl. Catal. B Environ. 265, 118594 (2020). https://doi.org/10.1016/j.apcatb.2020.118594
- Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan et al., Self-catalyzed growth of Co, N-codoped CNTs on carbon-ened CoSx surface: a noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn–air batteries. Adv. Funct. Mater. 29, 1904481 (2019). https://doi.org/10.1002/adfm.201904481
- X. Duan, S. Ren, N. Pan, M. Zhang, H. Zheng, MOF-derived Fe, Co@N–C bifunctional oxygen electrocatalysts for Zn–air batteries. J. Mater. Chem. A 8, 9355–9363 (2020). https://doi.org/10.1039/D0TA02825H
- G.P. Kharabe, N. Manna, A. Nadeema, S.K. Singh, S. Mehta et al., A pseudo-boehmite AlOOH supported NGr composite-based air electrode for mechanically rechargeable Zn-air battery applications. J. Mater. Chem. A 10, 10014–10025 (2022). https://doi.org/10.1039/d2ta00546h
- R. Khezri, S. Rezaei Motlagh, M. Etesami, A.A. Mohamad, F. Mahlendorf et al., Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem. Eng. J. 449, 137796 (2022). https://doi.org/10.1016/j.cej.2022.137796
- H. Nishide, K. Oyaizu, Toward flexible batteries. Science 319, 737–738 (2008). https://doi.org/10.1126/science.1151831
- S.-Y. Lee, K.-H. Choi, W.-S. Choi, Y.H. Kwon, H.-R. Jung et al., Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ. Sci. 6, 2414–2423 (2013). https://doi.org/10.1039/C3EE24260A
- X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26, 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
- M. Hilder, B. Winther-Jensen, N.B. Clark, Paper-based, printed zinc–air battery. J. Power. Sources 194, 1135–1141 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.054
- G. Murali, J. Rawal, J.K.R. Modigunta, Y.H. Park, J.-H. Lee et al., A review on MXenes: new-generation 2D materials for supercapacitors. Sustain. Energy Fuels 5, 5672–5693 (2021). https://doi.org/10.1039/D1SE00918D
- Y.-J. Heo, J.-H. Lee, S.-H. Kim, S.-J. Mun, S.-Y. Lee et al., Paper-derived millimeter-thick yarn supercapacitors enabling high volumetric energy density. ACS Appl. Mater. Interfaces 14, 42671–42682 (2022). https://doi.org/10.1021/acsami.2c10746
- Y.H. Kwon, S.-W. Woo, H.-R. Jung, H.K. Yu, K. Kim et al., Cable-type flexible lithium ion battery based on hollow multi-Helix electrodes. Adv. Mater. 24, 5192–5197 (2012). https://doi.org/10.1002/adma.201202196
- G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014). https://doi.org/10.1039/C3EE43182G
- M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon et al., Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12, 4810–4816 (2012). https://doi.org/10.1021/nl302254v
- H. Lin, W. Weng, J. Ren, L. Qiu, Z. Zhang et al., Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 26, 1217–1222 (2014). https://doi.org/10.1002/adma.201304319
- H. Sun, H. Li, X. You, Z. Yang, J. Deng et al., Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 2, 345–349 (2014). https://doi.org/10.1039/C3TA13818F
- H. Sun, X. You, J. Deng, X. Chen, Z. Yang et al., A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage. Angew. Chem. Int. Ed. 126, 6782–6786 (2014). https://doi.org/10.1002/ange.201403168
- H. Sun, X. You, Z. Yang, J. Deng, H. Peng, Winding ultrathin, transparent, and electrically conductive carbon nanotube sheets into high-performance fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 1, 12422 (2013). https://doi.org/10.1039/c3ta12663c
- Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu et al., Zinc–air batteries: atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc–air batteries. Adv. Mater. 30, 1870027 (2018). https://doi.org/10.1002/adma.201870027
- T. Liu, J. Mou, Z. Wu, C. Lv, J. Huang et al., A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc–air batteries. Adv. Funct. Mater. 30, 2003407 (2020). https://doi.org/10.1002/adfm.202003407
- J. Kuang, Y. Shen, Y. Zhang, J. Yao, J. Du et al., Synergistic bimetallic CoCu-codecorated carbon nanosheet arrays as integrated bifunctional cathodes for high-performance rechargeable/flexible zinc-air batteries. Small 19, e2207413 (2023). https://doi.org/10.1002/smll.202207413
- Y. Zhang, D. Wu, F. Huang, Y. Cai, Y. Li et al., “water-in-salt” nonalkaline gel polymer electrolytes enable flexible zinc-air batteries with ultra-long operating time. Adv. Funct. Mater. 32, 2203204 (2022). https://doi.org/10.1002/adfm.202203204
- D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6, 1474–1484 (2023). https://doi.org/10.1038/s41893-023-01172-y
References
K.W. Leong, Y. Wang, M. Ni, W. Pan, S. Luo et al., Rechargeable Zn-air batteries: recent trends and future perspectives. Renew. Sustain. Energy Rev. 154, 111771 (2022). https://doi.org/10.1016/j.rser.2021.111771
J.-H. Lee, G. Yang, C.-H. Kim, R.L. Mahajan, S.-Y. Lee et al., Flexible solid-state hybrid supercapacitors for the Internet of everything (IoE). Energy Environ. Sci. 15, 2233–2258 (2022). https://doi.org/10.1039/D1EE03567C
B. Diouf, R. Pode, Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375–380 (2015). https://doi.org/10.1016/j.renene.2014.11.058
G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002
J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. 11, 2003456 (2021). https://doi.org/10.1002/aenm.202003456
Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang et al., Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 31, e1803800 (2019). https://doi.org/10.1002/adma.201803800
Y. Han, C. Zhou, B. Wang, Y. Li, L. Zhang et al., Rational design of advanced oxygen electrocatalysts for high-performance zinc-air batteries. Chem Catal. 2, 3357–3394 (2022). https://doi.org/10.1016/j.checat.2022.10.002
Y. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 9(1), 1802605 (2019). https://doi.org/10.1002/aenm.201802605
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3, 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
Y. Zhong, X. Xu, P. Liu, R. Ran, S.P. Jiang et al., A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 10, 2002992 (2020). https://doi.org/10.1002/aenm.202002992
Y. Arafat, M.R. Azhar, Y. Zhong, H.R. Abid, M.O. Tadé et al., Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc–air batteries. Adv. Energy Mater. 11, 2100514 (2021). https://doi.org/10.1002/aenm.202100514
J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu et al., Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011). https://doi.org/10.1002/aenm.201000010
Q. Liu, L. Wang, H. Fu, Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc–air batteries. J. Mater. Chem. A 11, 4400–4427 (2023). https://doi.org/10.1039/D2TA09626A
Y. Zhong, X. Xu, W. Wang, Z. Shao, Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc-air batteries. Batter. Supercaps 2, 272–289 (2019). https://doi.org/10.1002/batt.201800093
Y. Zhang, J. Wang, M. Alfred, P. Lv, F. Huang et al., Recent advances of micro-nanofiber materials for rechargeable zinc-air batteries. Energy Storage Mater. 51, 181–211 (2022). https://doi.org/10.1016/j.ensm.2022.06.039
Q. Wang, S. Kaushik, X. Xiao, Q. Xu, Sustainable zinc–air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 52, 6139–6190 (2023). https://doi.org/10.1039/d2cs00684g
Y. Kumar, M. Mooste, K. Tammeveski, Recent progress of transition metal-based bifunctional electrocatalysts for rechargeable zinc–air battery application. Curr. Opin. Electrochem. 38, 101229 (2023). https://doi.org/10.1016/j.coelec.2023.101229
L. Wei, E.H. Ang, Y. Yang, Y. Qin, Y. Zhang et al., Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. J. Power. Sources 477, 228696 (2020). https://doi.org/10.1016/j.jpowsour.2020.228696
P. Zhang, K. Chen, J. Li, M. Wang, M. Li et al., Bifunctional single atom catalysts for rechargeable zinc-air batteries: from dynamic mechanism to rational design. Adv. Mater. 35, e2303243 (2023). https://doi.org/10.1002/adma.202303243
A. Kundu, T. Kuila, N.C. Murmu, P. Samanta, S. Das, Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn–air batteries: recent trends and future perspectives. Mater. Horiz. 10, 745–787 (2023). https://doi.org/10.1039/D2MH01067D
S. Das, A. Kundu, T. Kuila, N.C. Murmu, Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn-air batteries. Energy Storage Mater. 61, 102890 (2023). https://doi.org/10.1016/j.ensm.2023.102890
F. Santos, A. Urbina, J. Abad, R. López, C. Toledo et al., Environmental and economical assessment for a sustainable Zn/air battery. Chemosphere 250, 126273 (2020). https://doi.org/10.1016/j.chemosphere.2020.126273
Q. Sun, L. Dai, T. Luo, L. Wang, F. Liang et al., Recent advances in solid-state metal–air batteries. Carbon Energy 5, e276 (2023). https://doi.org/10.1002/cey2.276
N.A. Thieu, W. Li, X. Chen, S. Hu, H. Tian et al., An overview of challenges and strategies for stabilizing zinc anodes in aqueous rechargeable Zn-ion batteries. Batteries 9, 41 (2023). https://doi.org/10.3390/batteries9010041
Z. Zhao, W. Yu, W. Shang, Y. He, Y. Ma et al., Rigorous assessment of electrochemical rechargeability of alkaline Zn-air batteries. J. Power. Sources 543, 231844 (2022). https://doi.org/10.1016/j.jpowsour.2022.231844
A.R. Mainar, E. Iruin, L.C. Colmenares, J.A. Blázquez, H.-J. Grande, Systematic cycle life assessment of a secondary zinc–air battery as a function of the alkaline electrolyte composition. Energy Sci. Eng. 6, 174–186 (2018). https://doi.org/10.1002/ese3.191
Y. Ma, W. Yu, W. Shang, X. Xiao, Z. Zhao et al., Assessment of the feasibility of Zn–air batteries with alkaline electrolytes working at sub-zero temperatures. Energy Fuels 36, 11227–11233 (2022). https://doi.org/10.1021/acs.energyfuels.2c02509
X. Chen, Z. Zhou, H.E. Karahan, Q. Shao, L. Wei et al., Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 14, e1801929 (2018). https://doi.org/10.1002/smll.201801929
A.G. Olabi, E.T. Sayed, T. Wilberforce, A. Jamal, A.H. Alami et al., Metal-air batteries—a review. Energies 14, 7373 (2021). https://doi.org/10.3390/en14217373
Q. Liu, Z. Pan, E. Wang, L. An, G. Sun, Aqueous metal-air batteries: fundamentals and applications. Energy Storage Mater. 27, 478–505 (2020). https://doi.org/10.1016/j.ensm.2019.12.011
Y. Xu, Y. Zhang, Z. Guo, J. Ren, Y. Wang et al., Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed. 54, 15390–15394 (2015). https://doi.org/10.1002/anie.201508848
X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu et al., Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc–air battery integrated with flexible display. Adv. Energy Mater. 7, 1700779 (2017). https://doi.org/10.1002/aenm.201700779
J. Zhang, J. Fu, X. Song, G. Jiang, H. Zarrin et al., Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc–air batteries. Adv. Energy Mater. 6, 1600476 (2016). https://doi.org/10.1002/aenm.201600476
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138, 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
Z. Liu, H. Li, M. Zhu, Y. Huang, Z. Tang et al., Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018). https://doi.org/10.1016/j.nanoen.2017.12.006
L. Kong, C. Tang, H.-J. Peng, J.-Q. Huang, Q. Zhang, Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1, e1007 (2020). https://doi.org/10.1002/smm2.1007
S.J. Varma, K. Sambath Kumar, S. Seal, S. Rajaraman, J. Thomas, Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv. Sci. 5, 1800340 (2018). https://doi.org/10.1002/advs.201800340
J. Park, M. Park, G. Nam, J.-S. Lee, J. Cho, All-solid-state cable-type flexible zinc–air battery. Adv. Mater. 27, 1396–1401 (2015). https://doi.org/10.1002/adma.201404639
Y. Li, H. Dai, Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
Y. Zheng, J. He, S. Qiu, D. Yu, Y. Zhu et al., Boosting hydrogen peroxide accumulation by a novel air-breathing gas diffusion electrode in electro-Fenton system. Appl. Catal. B Environ. 316, 121617 (2022). https://doi.org/10.1016/j.apcatb.2022.121617
A.A. Gewirth, M.S. Thorum, Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg. Chem. 49, 3557–3566 (2010). https://doi.org/10.1021/ic9022486
M.M. Hossen, K. Artyushkova, P. Atanassov, A. Serov, Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells. J. Power. Sources 375, 214–221 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.036
L. Peng, L. Shang, T. Zhang, G.I.N. Waterhouse, Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater. 10, 2003018 (2020). https://doi.org/10.1002/aenm.202003018
Q. Zhang, J. Guan, Applications of atomically dispersed oxygen reduction catalysts in fuel cells and zinc–air batteries. Energy Environ. Mater. 4, 307–335 (2021). https://doi.org/10.1002/eem2.12128
Y. Long, F. Ye, L. Shi, X. Lin, R. Paul et al., N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries. Carbon 179, 365–376 (2021). https://doi.org/10.1016/j.carbon.2021.04.039
J. Yang, P. Ganesan, A. Ishihara, N. Nakashima, Carbon nanotube-based non-precious metal electrode catalysts for fuel cells, water splitting and zinc-air batteries. ChemCatChem 11, 5929–5944 (2019). https://doi.org/10.1002/cctc.201901785
C. Chen, M. Jiang, T. Zhou, L. Raijmakers, E. Vezhlev et al., Interface aspects in all-solid-state Li-based batteries reviewed. Adv. Energy Mater. 11, 2003939 (2021). https://doi.org/10.1002/aenm.202003939
Y. Zhao, K.R. Adair, X. Sun, Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 11, 2673–2695 (2018). https://doi.org/10.1039/C8EE01373J
Y. Li, L. Zhang, Y. Han, W. Ji, Z. Liu et al., Interface engineering of bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Mater. Chem. Front. 7, 4281–4303 (2023). https://doi.org/10.1039/d3qm00237c
X. Liu, G. Zhang, L. Wang, H. Fu, Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery. Small 17, e2006766 (2021). https://doi.org/10.1002/smll.202006766
S. Wang, S. Chen, L. Ma, J.A. Zapien, Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Mater. Today Energy 20, 100659 (2021). https://doi.org/10.1016/j.mtener.2021.100659
A. Iqbal, O.M. El-Kadri, N.M. Hamdan, Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J. Energy Storage 62, 106926 (2023). https://doi.org/10.1016/j.est.2023.106926
J.F. Parker, C.N. Chervin, E.S. Nelson, D.R. Rolison, J.W. Long, Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling. Energy Environ. Sci. 7, 1117–1124 (2014). https://doi.org/10.1039/C3EE43754J
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
Y.N. Jo, K. Prasanna, S.H. Kang, P.R. Ilango, H.S. Kim et al., The effects of mechanical alloying on the self-discharge and corrosion behavior in Zn-air batteries. J. Ind. Eng. Chem. 53, 247–252 (2017). https://doi.org/10.1016/j.jiec.2017.04.032
R. Li, Y. Du, Y. Li, Z. He, L. Dai et al., Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 8, 457–476 (2023). https://doi.org/10.1021/acsenergylett.2c01960
Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
Y. Chen, Q. Zhao, Y. Wang, W. Liu, P. Qing et al., A dendrite-free Zn@CuxZny composite anode for rechargeable aqueous batteries. Electrochim. Acta 399, 139334 (2021). https://doi.org/10.1016/j.electacta.2021.139334
E.O. Aremu, D.-J. Park, K.-S. Ryu, The effects of anode additives towards suppressing dendrite growth and hydrogen gas evolution reaction in Zn-air secondary batteries. Ionics 25, 4197–4207 (2019). https://doi.org/10.1007/s11581-019-02973-y
S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim et al., Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J. Power. Sources 227, 177–184 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.046
Z. Li, H. Wang, Y. Zhong, L. Yuan, Y. Huang et al., Highly reversible and anticorrosive Zn anode enabled by a Ag nanowires layer. ACS Appl. Mater. Interfaces 14, 9097–9105 (2022). https://doi.org/10.1021/acsami.1c22873
K. Wang, P. Pei, Y. Wang, C. Liao, W. Wang et al., Advanced rechargeable zinc-air battery with parameter optimization. Appl. Energy 225, 848–856 (2018). https://doi.org/10.1016/j.apenergy.2018.05.071
Z. Zhao, X. Fan, J. Ding, W. Hu, C. Zhong et al., Challenges in zinc electrodes for alkaline zinc–air batteries: obstacles to commercialization. ACS Energy Lett. 4, 2259–2270 (2019). https://doi.org/10.1021/acsenergylett.9b01541
Y. Zhang, Y. Wu, H. Ding, Y. Yan, Z. Zhou et al., Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy 53, 666–674 (2018). https://doi.org/10.1016/j.nanoen.2018.09.021
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275–284 (2023). https://doi.org/10.1039/d2ee02931f
T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
Q. Deng, Z. Luo, R. Yang, J. Li, Toward organic carbonyl-contained small molecules in rechargeable batteries: a review of current modified strategies. ACS Sustain. Chem. Eng. 8, 15445–15465 (2020). https://doi.org/10.1021/acssuschemeng.0c05884
Z. Zhang, D. Zhou, G. Huang, L. Zhou, B. Huang, Preparation and properties of ZnO/PVA/β-CD/PEG composite electrode for rechargeable zinc anode. J. Electroanal. Chem. 827, 85–92 (2018). https://doi.org/10.1016/j.jelechem.2018.09.019
Z. Han, C. Zhang, Q. Lin, Y. Zhang, Y. Deng et al., A protective layer for lithium metal anode: why and how. Small Methods 5, e2001035 (2021). https://doi.org/10.1002/smtd.202001035
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu, J. Zhang, Z. Liu, M. Wang, N. Liu, L. Fan, Y. Zhang, N. Zhang, Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/d2ee02931f
H.E. Lin, C.H. Ho, C.Y. Lee, Discharge performance of zinc coating prepared by pulse electroplating with different frequencies for application in zinc-air battery. Surf. Coat. Technol. 319, 378–385 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.020
Z. Pan, J. Yang, W. Zang, Z. Kou, C. Wang et al., All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Mater. 23, 375–382 (2019). https://doi.org/10.1016/j.ensm.2019.04.036
S.-B. Wang, Q. Ran, R.-Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 (2021). https://doi.org/10.1002/aenm.202003927
Q. Cao, Y. Gao, J. Pu, X. Zhao, Y. Wang et al., Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14, 641 (2023). https://doi.org/10.1038/s41467-023-36386-3
H. Zhao, Z. Chi, Q. Zhang, D. Kong, L. Li et al., Dendrite-free Zn anodes enabled by Sn-Cu bimetal/rGO functional protective layer for aqueous Zn-based batteries. Appl. Surf. Sci. 613, 156129 (2023). https://doi.org/10.1016/j.apsusc.2022.156129
J. Yan, M. Ye, Y. Zhang, Y. Tang, C. Li, Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chem. Eng. J. 432, 134227 (2022). https://doi.org/10.1016/j.cej.2021.134227
J. Yu, F. Chen, Q. Tang, T.T. Gebremariam, J. Wang et al., Ag-modified Cu foams as three-dimensional anodes for rechargeable zinc–air batteries. ACS Appl. Nano Mater. 2, 2679–2688 (2019). https://doi.org/10.1021/acsanm.9b00156
Y. Zhang, M. Zhu, G. Wang, F.-H. Du, F. Yu et al., Dendrites-free Zn metal anodes enabled by an artificial protective layer filled with 2D anionic nanosheets. Small Methods 5, e2100650 (2021). https://doi.org/10.1002/smtd.202100650
P. Liu, X. Ling, C. Zhong, Y. Deng, X. Han et al., Porous zinc anode design for Zn-air chemistry. Front. Chem. 7, 656 (2019). https://doi.org/10.3389/fchem.2019.00656
D. Yang, J. Li, C. Liu, J. Ge, W. Xing et al., Regulating the MXene–zinc interfacial structure toward a highly revisable metal anode of zinc–air batteries. ACS Appl. Mater. Interfaces 15, 10651–10659 (2023). https://doi.org/10.1021/acsami.2c20701
M. Cui, B. Yan, F. Mo, X. Wang, Y. Huang et al., In-situ grown porous protective layers with high binding strength for stable Zn anodes. Chem. Eng. J. 434, 134688 (2022). https://doi.org/10.1016/j.cej.2022.134688
X. Zhong, Y. Shao, B. Chen, C. Li, J. Sheng et al., Rechargeable zinc-air batteries with an ultralarge discharge capacity per cycle and an ultralong cycle life. Adv. Mater. 35, e2301952 (2023). https://doi.org/10.1002/adma.202301952
D.M. See, R.E. White, Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J. Chem. Eng. Data 42, 1266–1268 (1997). https://doi.org/10.1021/je970140x
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
A. Naveed, T. Rasheed, B. Raza, J. Chen, J. Yang et al., Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Mater. 44, 206–230 (2022). https://doi.org/10.1016/j.ensm.2021.10.005
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49, 4203–4219 (2020). https://doi.org/10.1039/c9cs00349e
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11, 2003065 (2021). https://doi.org/10.1002/aenm.202003065
F. Ilyas, M. Ishaq, M. Jabeen, M. Saeed, A. Ihsan et al., Recent trends in the benign-by-design electrolytes for zinc batteries. J. Mol. Liq. 343, 117606 (2021). https://doi.org/10.1016/j.molliq.2021.117606
L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32, e1908121 (2020). https://doi.org/10.1002/adma.201908121
R. Othman, W.J. Basirun, A.H. Yahaya, A.K. Arof, Hydroponics gel as a new electrolyte gelling agent for alkaline zinc–air cells. J. Power. Sources 103, 34–41 (2001). https://doi.org/10.1016/s0378-7753(01)00823-0
A.A. Mohamad, Zn/gelled 6M KOH/O2 zinc–air battery. J. Power. Sources 159, 752–757 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.110
C.-C. Yang, S.-J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery. J. Power. Sources 112, 497–503 (2002). https://doi.org/10.1016/s0378-7753(02)00438-x
X. Zhu, H. Yang, Y. Cao, X. Ai, Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution. Electrochim. Acta 49, 2533–2539 (2004). https://doi.org/10.1016/j.electacta.2004.02.008
J. Fu, D.U. Lee, F.M. Hassan, L. Yang, Z. Bai et al., Flexible high-energy polymer-electrolyte-based rechargeable zinc–air batteries. Adv. Mater. 27, 5617–5622 (2015). https://doi.org/10.1002/adma.201502853
X. Fan, J. Liu, Z. Song, X. Han, Y. Deng et al., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. Nano Energy 56, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.057
X. Zhong, W. Yi, Y. Qu, L. Zhang, H. Bai et al., Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl. Catal. B Environ. 260, 118188 (2020). https://doi.org/10.1016/j.apcatb.2019.118188
M. Li, F. Luo, Q. Zhang, Z. Yang, Z. Xu, Atomic layer Co3O4-x nanosheets as efficient and stable electrocatalyst for rechargeable zinc-air batteries. J. Catal. 381, 395–401 (2020). https://doi.org/10.1016/j.jcat.2019.11.020
S. Hosseini, A. Abbasi, L.-O. Uginet, N. Haustraete, S. Praserthdam et al., The influence of dimethyl sulfoxide as electrolyte additive on anodic dissolution of alkaline zinc-air flow battery. Sci. Rep. 9, 14958 (2019). https://doi.org/10.1038/s41598-019-51412-5
X. Wang, J. Sunarso, Q. Lu, Z. Zhou, J. Dai et al., High-performance platinum-perovskite composite bifunctional oxygen electrocatalyst for rechargeable Zn–air battery. Adv. Energy Mater. 10, 1903271 (2020). https://doi.org/10.1002/aenm.201903271
S. Hosseini, S.J. Han, A. Arponwichanop, T. Yonezawa, S. Kheawhom, Ethanol as an electrolyte additive for alkaline zinc-air flow batteries. Sci. Rep. 8, 11273 (2018). https://doi.org/10.1038/s41598-018-29630-0
T. Cui, Y.-P. Wang, T. Ye, J. Wu, Z. Chen et al., Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 61, 2115219 (2022). https://doi.org/10.1002/anie.202115219
D. Jiang, H. Wang, S. Wu, X. Sun, J. Li, Flexible zinc-air battery with high energy efficiency and freezing tolerance enabled by DMSO-based organohydrogel electrolyte. Small Methods 6, e2101043 (2022). https://doi.org/10.1002/smtd.202101043
R. Chen, X. Xu, S. Peng, J. Chen, D. Yu et al., A flexible and safe aqueous zinc–air battery with a wide operating temperature range from–20 to 70 °C. ACS Sustain. Chem. Eng. 8, 11501–11511 (2020). https://doi.org/10.1021/acssuschemeng.0c01111
Y. Zhang, H. Qin, M. Alfred, H. Ke, Y. Cai et al., Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Storage Mater. 42, 88–96 (2021). https://doi.org/10.1016/j.ensm.2021.07.026
N. Sun, F. Lu, Y. Yu, L. Su, X. Gao et al., Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc–air batteries. ACS Appl. Mater. Interfaces 12, 11778–11788 (2020). https://doi.org/10.1021/acsami.0c00325
A. Abbasi, Y. Xu, R. Khezri, M. Etesami, C. Lin et al., Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries. Mater. Today Sustain. 18, 100126 (2022). https://doi.org/10.1016/j.mtsust.2022.100126
G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of high ionic conducting alkaline non-woven membranes by sulfonation. J. Membr. Sci. 284, 120–127 (2006). https://doi.org/10.1016/j.memsci.2006.07.025
G.M. Wu, S.J. Lin, J.H. You, C.C. Yang, Study of high-anionic conducting sulfonated microporous membranes for zinc-air electrochemical cells. Mater. Chem. Phys. 112, 798–804 (2008). https://doi.org/10.1016/j.matchemphys.2008.06.058
H. Saputra, R. Othman, A.G.E. Sutjipto, R. Muhida, MCM-41 as a new separator material for electrochemical cell: application in zinc–air system. J. Membr. Sci. 367, 152–157 (2011). https://doi.org/10.1016/j.memsci.2010.10.061
H.J. Hwang, W.S. Chi, O. Kwon, J.G. Lee, J.H. Kim et al., Selective ion transporting polymerized ionic liquid membrane separator for enhancing cycle stability and durability in secondary zinc–air battery systems. ACS Appl. Mater. Interfaces 8, 26298–26308 (2016). https://doi.org/10.1021/acsami.6b07841
H.-W. Kim, J.-M. Lim, H.-J. Lee, S.-W. Eom, Y.T. Hong et al., Artificially engineered, bicontinuous anion-conducting /-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes. J. Mater. Chem. A 4, 3711–3720 (2016). https://doi.org/10.1039/C5TA09576J
F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao et al., Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 3, 79–84 (2011). https://doi.org/10.1038/nchem.931
F. Bidault, D.J.L. Brett, P.H. Middleton, N.P. Brandon, Review of gas diffusion cathodes for alkaline fuel cells. J. Power. Sources 187, 39–48 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.106
S.B. Park, Y.-I. Park, Fabrication of gas diffusion layer (GDL) containing microporous layer using flourinated ethylene prophylene (FEP) for proton exchange membrane fuel cell (PEMFC). Int. J. Precis. Eng. Manuf. 13, 1145–1151 (2012). https://doi.org/10.1007/s12541-012-0152-x
Y.-C. Lu, D.G. Kwabi, K.P.C. Yao, J.R. Harding, J. Zhou et al., The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999–3007 (2011). https://doi.org/10.1039/C1EE01500A
J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu et al., Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 5, 1700691 (2018). https://doi.org/10.1002/advs.201700691
Y. Liu, P. He, H. Zhou, Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 (2018). https://doi.org/10.1002/aenm.201701602
Y. Liu, J. Li, W. Li, Y. Li, Q. Chen et al., Spinel LiMn2O4 nanops dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery. Int. J. Hydrog. Energy 40, 9225–9234 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.153
H. Ma, B. Wang, A bifunctional electrocatalyst α-MnO2-LaNiO3/carbon nanotube composite for rechargeable zinc–air batteries. RSC Adv. 4, 46084–46092 (2014). https://doi.org/10.1039/C4RA07401G
R. Zhao, L. Huan, P. Gu, R. Guo, M. Chen et al., Yb, Er-doped CeO2 nanotubes as an assistant layer for photoconversion-enhanced dye-sensitized solar cells. J. Power. Sources 331, 527–534 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.039
G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5
X. Li, H. Zhang, Y. Wang, H. Wang, J. Wang et al., Tailoring the spin state of active sites in amorphous transition metal sulfides to promote oxygen electrocatalysis. Sci. China Mater. 65, 3479–3489 (2022). https://doi.org/10.1007/s40843-022-2048-2
Y. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries. Chem. Eng. J. 397, 125516 (2020). https://doi.org/10.1016/j.cej.2020.125516
X. Cai, L. Lai, J. Lin, Z. Shen, Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Mater. Horiz. 4, 945–976 (2017). https://doi.org/10.1039/C7MH00358G
Z. Cui, G. Fu, Y. Li, J.B. Goodenough, Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal–air batteries. Angew. Chem. Int. Ed. 56, 9901–9905 (2017). https://doi.org/10.1002/anie.201705778
A. Zhao, J. Masa, W. Xia, A. Maljusch, M.-G. Willinger et al., Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J. Am. Chem. Soc. 136, 7551–7554 (2014). https://doi.org/10.1021/ja502532y
H. Li, Q. Li, P. Wen, T.B. Williams, S. Adhikari et al., Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 30, 1705796 (2018). https://doi.org/10.1002/adma.201705796
L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12, 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala et al., Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem. Int. Ed. 129, 15173–15177 (2017). https://doi.org/10.1002/ange.201708765
X.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo et al., Graphene hybrids: identifying the key role of pyridinic-N–co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 30, 1870164 (2018). https://doi.org/10.1002/adma.201870164
J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 1, e1500564 (2015). https://doi.org/10.1126/sciadv.1500564
Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28, 3000–3006 (2016). https://doi.org/10.1002/adma.201506112
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). https://doi.org/10.1038/nmat3087
Y. Jiang, Y.P. Deng, J. Fu, D.U. Lee, R. Liang, Z.P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn–air batteries. Adv. Energy Mater. 8(15), 1702900 (2018). https://doi.org/10.1002/aenm.201702900
P. Chen, T. Zhou, S. Wang, N. Zhang, Y. Tong et al., Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem. Int. Ed. 57, 15471–15475 (2018). https://doi.org/10.1002/anie.201809220
J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun et al., MnxOy/NC and CoxOy/NC nanops embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem. Int. Ed. 53, 8508–8512 (2014). https://doi.org/10.1002/anie.201402710
L. Xu, C. Wang, D. Deng, Y. Tian, X. He et al., Cobalt oxide nanops/nitrogen-doped graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries. ACS Sustain. Chem. Eng. 8, 343–350 (2020). https://doi.org/10.1021/acssuschemeng.9b05492
G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan et al., Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001}facets derived from TiN. J. Am. Chem. Soc. 131, 12868–12869 (2009). https://doi.org/10.1021/ja903463q
X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris et al., Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009). https://doi.org/10.1021/nl900772q
L. Xu, Z. Wang, J. Wang, Z. Xiao, X. Huang et al., N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology 28, 165402 (2017). https://doi.org/10.1088/1361-6528/aa6381
X. Wang, Z. Liao, Y. Fu, C. Neumann, A. Turchanin et al., Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Mater. 26, 157–164 (2020). https://doi.org/10.1016/j.ensm.2019.12.043
Z. Li, S. Ji, C. Wang, H. Liu, L. Leng et al., Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 35, e2300905 (2023). https://doi.org/10.1002/adma.202300905
Y. Liu, J. Wei, Y. Tian, S. Yan, The structure–property relationship of manganese oxides: highly efficient removal of methyl orange from aqueous solution. J. Mater. Chem. A 3, 19000–19010 (2015). https://doi.org/10.1039/c5ta05507e
J. Gu, X. Fan, X. Liu, S. Li, Z. Wang et al., Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chem. Eng. J. 324, 35–43 (2017). https://doi.org/10.1016/j.cej.2017.05.014
Y. Gorlin, T.F. Jaramillo, A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010). https://doi.org/10.1021/ja104587v
H. Kim, K. Min, S.E. Shim, D. Lim, S.-H. Baeck, Ni-doped Mn2O3 microspheres as highly efficient electrocatalyst for oxygen reduction reaction and Zn-air battery. Int. J. Hydrog. Energy 47, 2378–2388 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.164
T. Li, Y. Hu, K. Liu, J. Yin, Y. Li et al., Hollow yolk-shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-Air battery. Chem. Eng. J. 427, 131992 (2022). https://doi.org/10.1016/j.cej.2021.131992
A.K. Worku, D.W. Ayele, N.G. Habtu, M.A. Teshager, Z.G. Workineh, Recent progress in MnO2-based oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Sustain. 13, 100072 (2021). https://doi.org/10.1016/j.mtsust.2021.100072
X.-M. Liu, X. Cui, K. Dastafkan, H.-F. Wang, C. Tang et al., Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. J. Energy Chem. 53, 290–302 (2021). https://doi.org/10.1016/j.jechem.2020.04.012
B. Chen, H. Miao, M. Yin, R. Hu, L. Xia et al., Mn-based spinels evolved from layered manganese dioxides at mild temperature for the robust flexible quasi-solid-state zinc-air batteries. Chem. Eng. J. 417, 129179 (2021). https://doi.org/10.1016/j.cej.2021.129179
W. Liu, D. Rao, J. Bao, L. Xu, Y. Lei et al., Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries. J. Energy Chem. 57, 428–435 (2021). https://doi.org/10.1016/j.jechem.2020.08.066
C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn et al., Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29, 1606800 (2017). https://doi.org/10.1002/adma.201606800
Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 28, 3777–3784 (2016). https://doi.org/10.1002/adma.201506197
H. Cheng, M.-L. Li, C.-Y. Su, N. Li, Z.-Q. Liu, Cu-Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: a high-efficiency bifunctional oxygen electrode for Zn–air batteries. Adv. Funct. Mater. 27, 1701833 (2017). https://doi.org/10.1002/adfm.201701833
T. Ouyang, Y.-Q. Ye, C.-Y. Wu, K. Xiao, Z.-Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanops as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 58, 4923–4928 (2019). https://doi.org/10.1002/anie.201814262
Y. Go, K. Min, H. An, K. Kim, S. Eun Shim et al., Oxygen-vacancy-rich CoFe/CoFe2O4 embedded in N-doped hollow carbon spheres as a highly efficient bifunctional electrocatalyst for Zn–air batteries. Chem. Eng. J. 448, 137665 (2022). https://doi.org/10.1016/j.cej.2022.137665
J.-I. Jung, S. Park, M.-G. Kim, J. Cho, Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts. Adv. Energy Mater. 5, 1501560 (2015). https://doi.org/10.1002/aenm.201501560
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858
A. Grimaud, K.J. May, C.E. Carlton, Y.-L. Lee, M. Risch et al., Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013). https://doi.org/10.1038/ncomms3439
Z. Li, L. Lv, J. Wang, X. Ao, Y. Ruan, D. Zha, G. Hong, Q. Wu, Y. Lan, C. Wang, Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199–209 (2018). https://doi.org/10.1016/j.nanoen.2018.02.051
D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015). https://doi.org/10.1021/acs.chemrev.5b00073
S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15, 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
Y. Bu, O. Gwon, G. Nam, H. Jang, S. Kim et al., A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 11, 11594–11601 (2017). https://doi.org/10.1021/acsnano.7b06595
Q. Zheng, Y. Zhang, C. Su, L. Zhao, Y. Guo, Nonnoble metal oxides for high-performance Zn-air batteries: design strategies and future challenges. Asia Pac. J. Chem. Eng. 17, e2776 (2022). https://doi.org/10.1002/apj.2776
Y. Zhu, W. Zhou, Z.-G. Chen, Y. Chen, C. Su et al., SrNb0.1Co0.7Fe0.2O3–δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem. 127, 3969–3973 (2015). https://doi.org/10.1002/ange.201408998
Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu et al., Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28, 1691–1697 (2016). https://doi.org/10.1021/acs.chemmater.5b04457
Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher et al., Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv. Energy Mater. 7, 1700544 (2017). https://doi.org/10.1002/aenm.201700544
C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45, 517–531 (2016). https://doi.org/10.1039/C5CS00670H
M. Zhou, H.-L. Wang, S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45, 1273–1307 (2016). https://doi.org/10.1039/c5cs00414d
Z. Xia, L. An, P. Chen, D. Xia, Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors. Adv. Energy Mater. 6, 1600458 (2016). https://doi.org/10.1002/aenm.201600458
Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
H. Li, W. Wan, X. Liu, H. Liu, S. Shen et al., Poplar-catkin-derived N, P Co-doped carbon microtubes as efficient oxygen electrocatalysts for Zn-air batteries. ChemElectroChem 5, 1113–1119 (2018). https://doi.org/10.1002/celc.201701224
R. Wang, Z. Chen, N. Hu, C. Xu, Z. Shen et al., Nanocarbon-based electrocatalysts for rechargeable aqueous Li/Zn-air batteries. ChemElectroChem 5, 1745–1763 (2018). https://doi.org/10.1002/celc.201800141
H.-W. Liang, Z.-Y. Wu, L.-F. Chen, C. Li, S.-H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11, 366–376 (2015). https://doi.org/10.1016/j.nanoen.2014.11.008
H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, e1501122 (2016). https://doi.org/10.1126/sciadv.1501122
Z. Ma, K. Wang, Y. Qiu, X. Liu, C. Cao et al., Nitrogen and sulfur Co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy 143, 43–55 (2018). https://doi.org/10.1016/j.energy.2017.10.110
S.-J. Ha, J. Hwang, M.-J. Kwak, J.-C. Yoon, J.-H. Jang, Graphene-encapsulated bifunctional catalysts with high activity and durability for Zn-air battery. Small 19, e2300551 (2023). https://doi.org/10.1002/smll.202300551
C.H. Choi, S.H. Park, S.I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6, 7084–7091 (2012). https://doi.org/10.1021/nn3021234
J. Zhang, L. Dai, Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 128, 13490–13494 (2016). https://doi.org/10.1002/ange.201607405
S. Yang, L. Peng, P. Huang, X. Wang, Y. Sun et al., Nitrogen, phosphorus, and sulfur Co-doped hollow carbon shell as superior metal-free catalyst for selective oxidation of aromatic alkanes. Angew. Chem. Int. Ed. 128, 4084–4088 (2016). https://doi.org/10.1002/ange.201600455
L. Wang, Y. Wang, M. Wu, Z. Wei, C. Cui et al., Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries. Small 14, e1800737 (2018). https://doi.org/10.1002/smll.201800737
F. Razmjooei, K.P. Singh, M.Y. Song, J.-S. Yu, Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78, 257–267 (2014). https://doi.org/10.1016/j.carbon.2014.07.002
X. Zheng, J. Wu, X. Cao, J. Abbott, C. Jin et al., N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B Environ. 241, 442–451 (2019). https://doi.org/10.1016/j.apcatb.2018.09.054
S. Yang, G. Chen, A.G. Ricciardulli, P. Zhang, Z. Zhang et al., Topochemical synthesis of two-dimensional transition-metal phosphides using phosphorene templates. Angew. Chem. Int. Ed. 59, 465–470 (2020). https://doi.org/10.1002/anie.201911428
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad998 (2017). https://doi.org/10.1126/science.aad4998
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri et al., Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215–230 (2016). https://doi.org/10.1002/adma.201502696
Y. Hu, Y. Zhang, C. Li, L. Wang, Y. Du et al., Guided assembly of microporous/mesoporous manganese phosphates by bifunctional organophosphonic acid etching and templating. Adv. Mater. 31, e1901124 (2019). https://doi.org/10.1002/adma.201901124
S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra et al., Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6, 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479
D.W. Lee, J.-H. Jang, I. Jang, Y.S. Kang, S. Jang et al., Bio-derived Co2P nanops supported on nitrogen-doped carbon as promising oxygen reduction reaction electrocatalyst for anion exchange membrane fuel cells. Small 15, 1902090 (2019). https://doi.org/10.1002/smll.201902090
Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1, 100001 (2019). https://doi.org/10.1016/j.enchem.2019.100001
B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008). https://doi.org/10.1021/ja7106146
H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal–organic-framework-derived Co2P nanop/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32, 2003649 (2020). https://doi.org/10.1002/adma.202003649
Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang et al., High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanops for zinc–air battery and self-powered overall water splitting. Adv. Energy Mater. 10, 1903854 (2020). https://doi.org/10.1002/aenm.201903854
C. Xia, L. Huang, D. Yan, A.I. Douka, W. Guo et al., Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc–air batteries. Adv. Funct. Mater. 31, 2105021 (2021). https://doi.org/10.1002/adfm.202105021
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived CoP nanop-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
J. Song, C. Zhu, B.Z. Xu, S. Fu, M.H. Engelhard et al., Water splitting: bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom orption energy for efficient overall water splitting. Adv. Energy Mater. 7, 1770011 (2017). https://doi.org/10.1002/aenm.201770011
W. Zheng, M. Liu, L.Y.S. Lee, Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10, 81–92 (2020). https://doi.org/10.1021/acscatal.9b03790
T. Qiu, Z. Liang, W. Guo, H. Tabassum, S. Gao et al., Metal–organic framework-based materials for energy conversion and storage. ACS Energy Lett. 5, 520–532 (2020). https://doi.org/10.1021/acsenergylett.9b02625
T. Zhou, H. Shan, H. Yu, C.-A. Zhong, J. Ge et al., Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 32, e2003251 (2020). https://doi.org/10.1002/adma.202003251
X.F. Lu, S.L. Zhang, E. Shangguan, P. Zhang, S. Gao et al., Nitrogen-doped cobalt pyrite yolk–shell hollow spheres for long-life rechargeable Zn–air batteries. Adv. Sci. 7, 2001178 (2020). https://doi.org/10.1002/advs.202001178
P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn-air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
J. Wang, X. Zheng, Y. Cao, L. Li, C. Zhong et al., Developing indium-based ternary spinel selenides for efficient solid flexible Zn-air batteries and water splitting. ACS Appl. Mater. Interfaces 12, 8115–8123 (2020). https://doi.org/10.1021/acsami.9b18304
Y. Gu, G. Yan, Y. Lian, P. Qi, Q. Mu et al., MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries. Energy Storage Mater. 23, 252–260 (2019). https://doi.org/10.1016/j.ensm.2019.05.006
G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, Multi-component nanoporous alloy/(oxy) hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Appl. Catal. B Environ. 268, 118431 (2020). https://doi.org/10.1016/j.apcatb.2019.118431
J. Ran, J.-F. Wu, Y. Hu, M. Shakouri, B. Xia et al., Atomic-level coupled spinel@perovskite dual-phase oxides toward enhanced performance in Zn–air batteries. J. Mater. Chem. A 10, 1506–1513 (2022). https://doi.org/10.1039/D1TA09457B
H. Miao, X. Wu, B. Chen, Q. Wang, F. Wang et al., A-site deficient/excessive effects of LaMnO3 perovskite as bifunctional oxygen catalyst for zinc-air batteries. Electrochim. Acta 333, 135566 (2020). https://doi.org/10.1016/j.electacta.2019.135566
J. Bian, R. Su, Y. Yao, J. Wang, J. Zhou et al., Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 2, 923–931 (2019). https://doi.org/10.1021/acsaem.8b02183
X. Wu, H. Miao, M. Yin, R. Hu, F. Wang et al., Biomimetic construction of bifunctional perovskite oxygen catalyst for zinc-air batteries. Electrochim. Acta 399, 139407 (2021). https://doi.org/10.1016/j.electacta.2021.139407
M. García-Rodríguez, J.X. Flores-Lasluisa, D. Cazorla-Amorós, E. Morallón, Metal oxide Perovskite-Carbon composites as electrocatalysts for zinc-air batteries: optimization of ball-milling mixing parameters. J. Colloid Interface Sci. 630, 269–280 (2023). https://doi.org/10.1016/j.jcis.2022.10.086
L. Xu, S. Wu, X. He, H. Wang, D. Deng et al., Interface engineering of anti-perovskite Ni3FeN/VN heterostructure for high-performance rechargeable zinc–air batteries. Chem. Eng. J. 437, 135291 (2022). https://doi.org/10.1016/j.cej.2022.135291
J. Wang, H. Wu, D. Gao, S. Miao, G. Wang et al., High-density iron nanops encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 13, 387–396 (2015). https://doi.org/10.1016/j.nanoen.2015.02.025
X. Xiao, X. Hu, Y. Liang, G. Zhang, X. Wang et al., Anchoring NiCo2O4 nanowhiskers in biomass-derived porous carbon as superior oxygen electrocatalyst for rechargeable Zn-air battery. J. Power. Sources 476, 228684 (2020). https://doi.org/10.1016/j.jpowsour.2020.228684
X. Shu, S. Chen, S. Chen, W. Pan, J. Zhang, Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting. Carbon 157, 234–243 (2020). https://doi.org/10.1016/j.carbon.2019.10.023
J.-T. Ren, Y.-S. Wang, L. Chen, L.-J. Gao, W.-W. Tian et al., Binary FeNi phosphides dispersed on N, P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chem. Eng. J. 389, 124408 (2020). https://doi.org/10.1016/j.cej.2020.124408
Z. Wu, H. Wu, T. Niu, S. Wang, G. Fu et al., Sulfurated metal–organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn–air battery. ACS Sustain. Chem. Eng. 8, 9226–9234 (2020). https://doi.org/10.1021/acssuschemeng.0c03570
Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn–air batteries. Adv. Funct. Mater. 30, 1906081 (2020). https://doi.org/10.1002/adfm.201906081
C. Lai, X. Liu, Y. Wang, C. Cao, Y. Yin et al., Bimetallic organic framework-derived rich pyridinic N-doped carbon nanotubes as oxygen catalysts for rechargeable Zn-air batteries. J. Power. Sources 472, 228470 (2020). https://doi.org/10.1016/j.jpowsour.2020.228470
G. Chen, Y. Xu, L. Huang, A.I. Douka, B.Y. Xia, Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries. J. Energy Chem. 55, 183–189 (2021). https://doi.org/10.1016/j.jechem.2020.07.012
V. Jose, H. Hu, E. Edison, W. Manalastas Jr., H. Ren et al., Modulation of single atomic co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods 5, e2000751 (2021). https://doi.org/10.1002/smtd.202000751
T. Qin, J. Zhao, R. Shi, C. Ge, Q. Li, Ionic liquid derived active atomic iron sites anchored on hollow carbon nanospheres for bifunctional oxygen electrocatalysis. Chem. Eng. J. 399, 125656 (2020). https://doi.org/10.1016/j.cej.2020.125656
K. Ding, J. Hu, J. Luo, W. Jin, L. Zhao et al., Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn–air batteries. Nano Energy 91, 106675 (2022). https://doi.org/10.1016/j.nanoen.2021.106675
S. Ren, X. Duan, F. Ge, Z. Chen, Q. Yang et al., Novel MOF-derived hollow CoFe alloy coupled with N-doped Ketjen Black as boosted bifunctional oxygen catalysts for Zn–air batteries. Chem. Eng. J. 427, 131614 (2022). https://doi.org/10.1016/j.cej.2021.131614
K.N. Dinh, Z. Pei, Z. Yuan, V.C. Hoang, L. Wei et al., The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn–air batteries. J. Mater. Chem. A 8, 7297–7308 (2020). https://doi.org/10.1039/C9TA13651G
Y. Wang, M. Wu, J. Li, H. Huang, J. Qiao, In situ growth of CoP nanops anchored on (N, P) Co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn–air battery. J. Mater. Chem. A 8, 19043–19049 (2020). https://doi.org/10.1039/d0ta06435a
J. Yang, L. Chang, H. Guo, J. Sun, J. Xu et al., Electronic structure modulation of bifunctional oxygen catalysts for rechargeable Zn–air batteries. J. Mater. Chem. A 8, 1229–1237 (2020). https://doi.org/10.1039/C9TA11654K
S.S. Shinde, C.-H. Lee, A. Sami, D.-H. Kim, S.-U. Lee et al., Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. ACS Nano 11, 347–357 (2017). https://doi.org/10.1021/acsnano.6b05914
S. Cui, L. Sun, F. Kong, L. Huo, H. Zhao, Carbon-coated MnCo2O4 nanowire as bifunctional oxygen catalysts for rechargeable Zn-air batteries. J. Power. Sources 430, 25–31 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.029
L. Wei, H.E. Karahan, S. Zhai, H. Liu, X. Chen et al., Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater. 29, 1701410 (2017). https://doi.org/10.1002/adma.201701410
X. Chen, J. Pu, X. Hu, Y. Yao, Y. Dou et al., Janus hollow nanofiber with bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Small 18, e2200578 (2022). https://doi.org/10.1002/smll.202200578
L.-B. Huang, L. Zhao, Y. Zhang, H. Luo, X. Zhang et al., Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. Chem. Eng. J. 418, 129409 (2021). https://doi.org/10.1016/j.cej.2021.129409
X. Wang, Y. Li, T. Jin, J. Meng, L. Jiao et al., Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Nano Lett. 17, 7989–7994 (2017). https://doi.org/10.1021/acs.nanolett.7b04502
J. Zhu, M. Xiao, G. Li, S. Li, J. Zhang et al., A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 10, 1903003 (2020). https://doi.org/10.1002/aenm.201903003
Y.-L. Zhang, Y.-K. Dai, B. Liu, X.-F. Gong, L. Zhao et al., Vacuum vapor migration strategy for atom–nanop composite catalysts boosting bifunctional oxygen catalysis and rechargeable Zn–air batteries. J. Mater. Chem. A 10, 3112–3121 (2022). https://doi.org/10.1039/D1TA10559K
K. He, J. Zai, X. Liu, Y. Zhu, A. Iqbal et al., One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Appl. Catal. B Environ. 265, 118594 (2020). https://doi.org/10.1016/j.apcatb.2020.118594
Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan et al., Self-catalyzed growth of Co, N-codoped CNTs on carbon-ened CoSx surface: a noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn–air batteries. Adv. Funct. Mater. 29, 1904481 (2019). https://doi.org/10.1002/adfm.201904481
X. Duan, S. Ren, N. Pan, M. Zhang, H. Zheng, MOF-derived Fe, Co@N–C bifunctional oxygen electrocatalysts for Zn–air batteries. J. Mater. Chem. A 8, 9355–9363 (2020). https://doi.org/10.1039/D0TA02825H
G.P. Kharabe, N. Manna, A. Nadeema, S.K. Singh, S. Mehta et al., A pseudo-boehmite AlOOH supported NGr composite-based air electrode for mechanically rechargeable Zn-air battery applications. J. Mater. Chem. A 10, 10014–10025 (2022). https://doi.org/10.1039/d2ta00546h
R. Khezri, S. Rezaei Motlagh, M. Etesami, A.A. Mohamad, F. Mahlendorf et al., Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem. Eng. J. 449, 137796 (2022). https://doi.org/10.1016/j.cej.2022.137796
H. Nishide, K. Oyaizu, Toward flexible batteries. Science 319, 737–738 (2008). https://doi.org/10.1126/science.1151831
S.-Y. Lee, K.-H. Choi, W.-S. Choi, Y.H. Kwon, H.-R. Jung et al., Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ. Sci. 6, 2414–2423 (2013). https://doi.org/10.1039/C3EE24260A
X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26, 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
M. Hilder, B. Winther-Jensen, N.B. Clark, Paper-based, printed zinc–air battery. J. Power. Sources 194, 1135–1141 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.054
G. Murali, J. Rawal, J.K.R. Modigunta, Y.H. Park, J.-H. Lee et al., A review on MXenes: new-generation 2D materials for supercapacitors. Sustain. Energy Fuels 5, 5672–5693 (2021). https://doi.org/10.1039/D1SE00918D
Y.-J. Heo, J.-H. Lee, S.-H. Kim, S.-J. Mun, S.-Y. Lee et al., Paper-derived millimeter-thick yarn supercapacitors enabling high volumetric energy density. ACS Appl. Mater. Interfaces 14, 42671–42682 (2022). https://doi.org/10.1021/acsami.2c10746
Y.H. Kwon, S.-W. Woo, H.-R. Jung, H.K. Yu, K. Kim et al., Cable-type flexible lithium ion battery based on hollow multi-Helix electrodes. Adv. Mater. 24, 5192–5197 (2012). https://doi.org/10.1002/adma.201202196
G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014). https://doi.org/10.1039/C3EE43182G
M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon et al., Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12, 4810–4816 (2012). https://doi.org/10.1021/nl302254v
H. Lin, W. Weng, J. Ren, L. Qiu, Z. Zhang et al., Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 26, 1217–1222 (2014). https://doi.org/10.1002/adma.201304319
H. Sun, H. Li, X. You, Z. Yang, J. Deng et al., Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 2, 345–349 (2014). https://doi.org/10.1039/C3TA13818F
H. Sun, X. You, J. Deng, X. Chen, Z. Yang et al., A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage. Angew. Chem. Int. Ed. 126, 6782–6786 (2014). https://doi.org/10.1002/ange.201403168
H. Sun, X. You, Z. Yang, J. Deng, H. Peng, Winding ultrathin, transparent, and electrically conductive carbon nanotube sheets into high-performance fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 1, 12422 (2013). https://doi.org/10.1039/c3ta12663c
Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu et al., Zinc–air batteries: atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc–air batteries. Adv. Mater. 30, 1870027 (2018). https://doi.org/10.1002/adma.201870027
T. Liu, J. Mou, Z. Wu, C. Lv, J. Huang et al., A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc–air batteries. Adv. Funct. Mater. 30, 2003407 (2020). https://doi.org/10.1002/adfm.202003407
J. Kuang, Y. Shen, Y. Zhang, J. Yao, J. Du et al., Synergistic bimetallic CoCu-codecorated carbon nanosheet arrays as integrated bifunctional cathodes for high-performance rechargeable/flexible zinc-air batteries. Small 19, e2207413 (2023). https://doi.org/10.1002/smll.202207413
Y. Zhang, D. Wu, F. Huang, Y. Cai, Y. Li et al., “water-in-salt” nonalkaline gel polymer electrolytes enable flexible zinc-air batteries with ultra-long operating time. Adv. Funct. Mater. 32, 2203204 (2022). https://doi.org/10.1002/adfm.202203204
D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6, 1474–1484 (2023). https://doi.org/10.1038/s41893-023-01172-y