A Review on Interface Engineering of MXenes for Perovskite Solar Cells
Corresponding Author: Soo‑Jin Park
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 123
Abstract
With an excellent power conversion efficiency of 25.7%, closer to the Shockley–Queisser limit, perovskite solar cells (PSCs) have become a strong candidate for a next-generation energy harvester. However, the lack of stability and reliability in PSCs remained challenging for commercialization. Strategies, such as interfacial and structural engineering, have a more critical influence on enhanced performance. MXenes, two-dimensional materials, have emerged as promising materials in solar cell applications due to their metallic electrical conductivity, high carrier mobility, excellent optical transparency, wide tunable work function, and superior mechanical properties. Owing to different choices of transition elements and surface-terminating functional groups, MXenes possess the feature of tuning the work function, which is an essential metric for band energy alignment between the absorber layer and the charge transport layers for charge carrier extraction and collection in PSCs. Furthermore, adopting MXenes to their respective components helps reduce the interfacial recombination resistance and provides smooth charge transfer paths, leading to enhanced conductivity and operational stability of PSCs. This review paper aims to provide an overview of the applications of MXenes as components, classified according to their roles as additives (into the perovskite absorber layer, charge transport layers, and electrodes) and themselves alone or as interfacial layers, and their significant importance in PSCs in terms of device performance and stability. Lastly, we discuss the present research status and future directions toward its use in PSCs.
Highlights:
1 This review discusses the roles of MXenes in different positions/layers in perovskite solar cells.
2 The issues in different layers/interfaces and their addressal with the incorporations of MXenes in perovskite solar cells are elaborately discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(22), 221104 (2015). https://doi.org/10.1063/1.4922150
- G. Nazir, S.Y. Lee, J.H. Lee, A. Rehman, J.K. Lee et al., Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater. 34(50), 2204380 (2022). https://doi.org/10.1002/adma.202204380
- K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming shockley-queisser limit using halide perovskite platform? Joule 6(4), 756–771 (2022). https://doi.org/10.1016/j.joule.2022.01.009
- P. Wang, Y. Wu, B. Cai, Q. Ma, X. Zheng et al., Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv. Funct. Mater. 29(47), 1807661 (2019). https://doi.org/10.1002/adfm.201807661
- W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). https://doi.org/10.1126/science.aaa0472
- H.J. Snaith, Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17(5), 372–376 (2018). https://doi.org/10.1038/s41563-018-0071-z
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat–stable perovskite solar cells with tailored-dimensionality 2d/3d heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
- S. Riaz, S.-J. Park, Thioacetamide-derived nitrogen and sulfur co-doped carbon quantum dots for “green” quantum dot solar cells. J. Ind. Eng. Chem. 105, 111–120 (2022). https://doi.org/10.1016/j.jiec.2021.09.009
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2d metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- X. Fan, Y. Ding, Y. Liu, J. Liang, Y. Chen, Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7), 8124–8134 (2019). https://doi.org/10.1021/acsnano.9b03161
- Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao et al., G-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6(19), 9124–9131 (2018). https://doi.org/10.1039/C8TA02706D
- Q. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian et al., Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3d laminate with in-plane chemical ordering. Nat. Commun. 8(1), 14949 (2017). https://doi.org/10.1038/ncomms14949
- Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1), 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
- Q. Xu, W. Yang, Y. Wen, S. Liu, Z. Liu et al., Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl. Mater. Today 16, 90–101 (2019). https://doi.org/10.1016/j.apmt.2019.05.001
- S. Ahn, T.-H. Han, K. Maleski, J. Song, Y.-H. Kim et al., A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32(23), 2000919 (2020). https://doi.org/10.1002/adma.202000919
- Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou et al., The marriage of the FeN4 moiety and mxene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30(43), 1803220 (2018). https://doi.org/10.1002/adma.201803220
- J.-H. Lee, G. Yang, C.-H. Kim, R.L. Mahajan, S.-Y. Lee et al., Flexible solid-state hybrid supercapacitors for the internet of everything (IOE). Energy Environ. Sci. 15(6), 2233–2258 (2022). https://doi.org/10.1039/D1EE03567C
- M. Hadadian, J.-P. Correa-Baena, E.K. Goharshadi, A. Ummadisingu, J.-Y. Seo et al., Enhancing efficiency of perovskite solar cells via n-doped graphene: crystal modification and surface passivation. Adv. Mater. 28(39), 8681–8686 (2016). https://doi.org/10.1002/adma.201602785
- L.-L. Jiang, Z.-K. Wang, M. Li, C.-C. Zhang, Q.-Q. Ye et al., Passivated perovskite crystallization via g-C3N4 for high-performance solar cells. Adv. Funct. Mater. 28(7), 1705875 (2018). https://doi.org/10.1002/adfm.201705875
- C. Ma, Y. Shi, W. Hu, M.-H. Chiu, Z. Liu et al., Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28(19), 3683–3689 (2016). https://doi.org/10.1002/adma.201600069
- A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha et al., Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. 6(16), 1600920 (2016). https://doi.org/10.1002/aenm.201600920
- J.-H. Lee, Y.-S. Kim, H.-J. Ru, S.-Y. Lee, S.-J. Park, Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett. 14(1), 188 (2022). https://doi.org/10.1007/s40820-022-00926-1
- W. Chen, K. Li, Y. Wang, X. Feng, Z. Liao et al., Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J. Phys. Chem. Lett. 8(3), 591–598 (2017). https://doi.org/10.1021/acs.jpclett.6b02843
- A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2d titanium carbide. Adv. Funct. Mater. 26(23), 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
- Y. Dall’Agnese, M.R. Lukatskaya, K.M. Cook, P.-L. Taberna, Y. Gogotsi et al., High capacitance of surface-modified 2d titanium carbide in acidic electrolyte. Electrochem. Commun. 48, 118–122 (2014). https://doi.org/10.1016/j.elecom.2014.09.002
- Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang, Communications High electrical conductivity 2d mxene serves as additive of perovskite for efficient solar cells. Small 14(47), 1802738 (2018). https://doi.org/10.1002/smll.201802738
- G. Murali, J. Rawal, J.K.R. Modigunta, Y.H. Park, J.-H. Lee et al., A review on MXenes: new-generation 2D materials for supercapacitors. Sustain. Energy Fuels 5(22), 5672–5693 (2021). https://doi.org/10.1039/D1SE00918D
- G. Murali, J.K. Reddy Modigunta, Y.H. Park, J.-H. Lee, J. Rawal et al., A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16, 13370–13429 (2022). https://doi.org/10.1021/acsnano.2c04750
- S.-J. Park, H.-C. Kim, H.-Y. Kim, Roles of work of adhesion between carbon blacks and thermoplastic polymers on electrical properties of composites. J. Colloid Interface Sci. 255(1), 145–149 (2002). https://doi.org/10.1006/jcis.2002.8481
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao et al., Synthesis and characterization of 2d molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
- J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund et al., A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 55(16), 5008–5013 (2016). https://doi.org/10.1002/anie.201510432
- R. Khaledialidusti, M. Khazaei, S. Khazaei, K. Ohno, High-throughput computational discovery of ternary-layered max phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 13(15), 7294–7307 (2021). https://doi.org/10.1039/D0NR08791B
- L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32(5), 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
- C.A. Voigt, M. Ghidiu, V. Natu, M.W. Barsoum, Anion adsorption, Ti3C2Tz MXene multilayers, and their effect on claylike swelling. J. Phys. Chem. C 122(40), 23172–23179 (2018). https://doi.org/10.1021/acs.jpcc.8b07447
- C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable synthesis of Ti3C2Tx mxene. Adv. Engin. Mater. 22(3), 1901241 (2020). https://doi.org/10.1002/adem.201901241
- J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mat. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
- M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter et al., Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57(19), 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
- X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset et al., A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide mxenes: a route towards selective reactivity vs. water. J. Mater. Chem. A 5(41), 22012–22023 (2017). https://doi.org/10.1039/C7TA01082F
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated max phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general lewis acidic etching route for preparing mxenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
- X. Yu, X. Cai, H. Cui, S.-W. Lee, X.-F. Yu et al., Fluorine-free preparation of titanium carbide mxene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9(45), 17859–17864 (2017). https://doi.org/10.1039/C7NR05997C
- J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55(47), 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
- V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3), 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019
- H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60(16), 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
- A.E. Ghazaly, H. Ahmed, A.R. Rezk, J. Halim, P.O.Å. Persson et al., Ultrafast, one-step, salt-solution-based acoustic synthesis of Ti3C2 MXene. ACS Nano 15(3), 4287–4293 (2021). https://doi.org/10.1021/acsnano.0c07242
- W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
- S.-Y. Pang, Y.-T. Wong, S. Yuan, Y. Liu, M.-K. Tsang et al., Universal strategy for Hf-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy material. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
- Y. Xie, P.R.C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B 87(23), 235441 (2013). https://doi.org/10.1103/PhysRevB.87.235441
- M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23(17), 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
- M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y. Liang et al., OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Phys. Rev. B 92(7), 075411 (2015). https://doi.org/10.1103/PhysRevB.92.075411
- H.A. Tahini, X. Tan, S.C. Smith, The origin of low workfunctions in oh terminated MXenes. Nanoscale 9(21), 7016–7020 (2017). https://doi.org/10.1039/C7NR01601H
- Y. Liu, H. Xiao, W.A. Goddard III., Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138(49), 15853–15856 (2016). https://doi.org/10.1021/jacs.6b10834
- J. Lei, A. Kutana, B.I. Yakobson, Predicting stable phase monolayer Mo2C (MXene), a superconductor with chemically-tunable critical temperature. J. Mater. Chem. C 5(14), 3438–3444 (2017). https://doi.org/10.1039/C7TC00789B
- Y. Liang, M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki et al., Theoretical prediction of two-dimensional functionalized mxene nitrides as topological insulators. Phys. Rev. B 96(19), 195414 (2017). https://doi.org/10.1103/PhysRevB.96.195414
- M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Topological insulators in the ordered double transition metals M′2M′′C2 MXenes (M′=Mo, W; M′′=Ti, Zr, Hf). Phys. Rev. B 94(12), 125152 (2016). https://doi.org/10.1103/PhysRevB.94.125152
- B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt et al., Control of electronic properties of 2d carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons 1(3), 227–234 (2016). https://doi.org/10.1039/C5NH00125K
- C. Si, J. Zhou, Z. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7(31), 17510–17515 (2015). https://doi.org/10.1021/acsami.5b05401
- I. Mathews, S. Sofia, E. Ma, J. Jean, H.S. Laine et al., Economically sustainable growth of perovskite photovoltaics manufacturing. Joule 4(4), 822–839 (2020). https://doi.org/10.1016/j.joule.2020.01.006
- L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
- L.A. Muscarella, E.M. Hutter, S. Sanchez, C.D. Dieleman, T.J. Savenije et al., Crystal orientation and grain size: do they determine optoelectronic properties of MAPBi3 perovskite? J. Phys. Chem. Lett. 10(20), 6010–6018 (2019). https://doi.org/10.1021/acs.jpclett.9b02757
- E. Ochoa-Martinez, M. Ochoa, R.D. Ortuso, P. Ferdowsi, R. Carron et al., Physical passivation of grain boundaries and defects in perovskite solar cells by an isolating thin polymer. ACS Energy Lett. 6(7), 2626–2634 (2021). https://doi.org/10.1021/acsenergylett.1c01187
- J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017). https://doi.org/10.1126/science.aam6323
- J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- C. Pereyra, H. Xie, M. Lira-Cantu, Additive engineering for stable halide perovskite solar cells. J. Energy Chem. 60, 599–634 (2021). https://doi.org/10.1016/j.jechem.2021.01.037
- S. Palei, H. Kim, J.H. Seo, D. Singh, K. Seo, Stability and efficiency enhancement of perovskite solar cells using phenyltriethylammonium iodide. Adv. Mater. Interfaces 9(16), 2200464 (2022). https://doi.org/10.1002/admi.202200464
- T. Webb, S.J. Sweeney, W. Zhang, Device architecture engineering: progress toward next generation perovskite solar cells. Adv. Funct. Mater. 31(35), 2103121 (2021). https://doi.org/10.1002/adfm.202103121
- J. Li, R. Xia, W. Qi, X. Zhou, J. Cheng et al., Encapsulation of perovskite solar cells for enhanced stability: structures mater, and characterization. J. Power Sources 485, 229313 (2021). https://doi.org/10.1016/j.jpowsour.2020.229313
- W. Ke, M.G. Kanatzidis, Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10(1), 965 (2019). https://doi.org/10.1038/s41467-019-08918-3
- P.-K. Kung, M.-H. Li, P.-Y. Lin, J.-Y. Jhang, M. Pantaler et al., Lead-free double perovskites for perovskite solar cells. Solar RRL 4(2), 1900306 (2020). https://doi.org/10.1002/solr.201900306
- J. Wang, J. Dong, F. Lu, C. Sun, Q. Zhang et al., Two-dimensional lead-free halide perovskite materials and devices. J. Mater. Chem. A 7(41), 23563–23576 (2019). https://doi.org/10.1039/C9TA06455A
- M. Wang, W. Wang, B. Ma, W. Shen, L. Liu et al., Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13(1), 62 (2021). https://doi.org/10.1007/s40820-020-00578-z
- N.F. Montcada, M. Méndez, K.T. Cho, M.K. Nazeeruddin, E. Palomares, Photo-induced dynamic processes in perovskite solar cells: the influence of perovskite composition in the charge extraction and the carrier recombination. Nanoscale 10(13), 6155–6158 (2018). https://doi.org/10.1039/C8NR00180D
- A. Listorti, E.J. Juarez-Perez, C. Frontera, V. Roiati, L. Garcia-Andrade et al., Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1628–1637 (2015). https://doi.org/10.1021/acs.jpclett.5b00483
- H.S. Jung, N.-G. Park, Perovskite solar cells: from materials to devices. Small 11(1), 10–25 (2015). https://doi.org/10.1002/smll.201402767
- S.-S. Li, C.-H. Chang, Y.-C. Wang, C.-W. Lin, D.-Y. Wang et al., Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanops. Energy Environ. Sci. 9(4), 1282–1289 (2016). https://doi.org/10.1039/C5EE03229F
- C. Lan, S. Zhao, C. Zhang, W. Liu, S. Hayase et al., Concentration gradient-controlled growth of large-grain CH3NH3PbI3 films and enhanced photovoltaic performance of solar cells under ambient conditions. CrystEngComm 18(48), 9243–9251 (2016). https://doi.org/10.1039/C6CE02151D
- Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
- N. Tripathi, Y. Shirai, M. Yanagida, A. Karen, K. Miyano, Novel surface passivation technique for low-temperature solution-processed perovskite pv cells. ACS Appl. Mater. Interfaces 8(7), 4644–4650 (2016). https://doi.org/10.1021/acsami.5b11286
- J.H. Heo, F. Zhang, J.K. Park, H. Joon Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6(7), 1672–1688 (2022). https://doi.org/10.1016/j.joule.2022.05.013
- L. Zhu, J. Shi, S. Lv, Y. Yang, X. Xu et al., Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells. Nano Energy 15, 540–548 (2015). https://doi.org/10.1016/j.nanoen.2015.04.039
- Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang et al., Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr 3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv. Sci. 8(19), 2101418 (2021). https://doi.org/10.1002/advs.202101418
- D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl et al., Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy 82, 105771 (2021). https://doi.org/10.1016/j.nanoen.2021.105771
- P. Cheng, P. Wang, Z. Xu, X. Jia, Q. Wei et al., Ligand-size related dimensionality control in metal halide perovskites. ACS Energy Lett. 4(8), 1830–1838 (2019). https://doi.org/10.1021/acsenergylett.9b01100
- X. Xiao, J. Dai, Y. Fang, J. Zhao, X. Zheng et al., Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3(3), 684–688 (2018). https://doi.org/10.1021/acsenergylett.8b00047
- C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
- H. Tsai, R. Asadpour, J.-C. Blancon, C.C. Stoumpos, J. Even et al., Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9(1), 2130 (2018). https://doi.org/10.1038/s41467-018-04430-2
- X. Jin, L. Yang, X.-F. Wang, Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants. Nano-Micro Lett. 13(1), 68 (2021). https://doi.org/10.1007/s40820-021-00602-w
- A.S.R. Bati, A.A. Sutanto, M. Hao, M. Batmunkh, Y. Yamauchi et al., Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Rep. Phys. Sci. 2(10), 100598 (2021). https://doi.org/10.1016/j.xcrp.2021.100598
- X. Liu, Z. Zhang, J. Jiang, C. Tian, X. Wang et al., Chlorine-terminated mxene quantum dots for improving crystallinity and moisture stability in high-performance perovskite solar cells. Chem. Eng. J. 432, 134382 (2022). https://doi.org/10.1016/j.cej.2021.134382
- J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
- J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
- X. Zhang, H. Xiong, J. Qi, C. Hou, Y. Li et al., Antisolvent-derived intermediate phases for low-temperature flexible perovskite solar cells. ACS Appl. Energ. Mater. 1(11), 6477–6486 (2018). https://doi.org/10.1021/acsaem.8b01413
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(1), 591 (2012). https://doi.org/10.1038/srep00591
- J.-H. Im, H.-S. Kim, N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2(8), 081510 (2014). https://doi.org/10.1063/1.4891275
- D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang et al., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 3(41), 18762–18766 (2013). https://doi.org/10.1039/C3RA43228A
- J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong et al., Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. ACS Appl. Mater. Interfaces 6(12), 9711–9718 (2014). https://doi.org/10.1021/am502131t
- Y. Zhao, X. Zhang, X. Han, C. Hou, H. Wang et al., Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx mxene for two-step-processed CH3NH3PbI3 solar cells. Chem. Eng. J. 417, 127912 (2021). https://doi.org/10.1016/j.cej.2020.127912
- L. Yang, P. Hou, B. Wang, C. Dall’Agnese, Y. Dall’Agnese et al., Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2Tx MXene. Chem. Eng. J. 446, 136963 (2022). https://doi.org/10.1016/j.cej.2022.136963
- S. Bykkam, A. Mishra, D.N. Prasad, M.R. Maurya, J.-J. Cabibihan et al., 2d-MXene as an additive to improve the power conversion efficiency of monolithic perovskite solar cells. Mater. Lett. 309, 131353 (2022). https://doi.org/10.1016/j.matlet.2021.131353
- M.F.U. Din, V. Held, S. Ullah, S. Sousani, M. Omastova et al., A synergistic effect of the ion beam sputtered niox hole transport layer and mxene doping on inverted perovskite solar cells. Nanotechnology 33(42), 425202 (2022). https://doi.org/10.1088/1361-6528/ac7ed4
- Y. Li, D. Wang, L. Yang, S. Yin, Preparation and performance of perovskite solar cells with two dimensional MXene as active layer additive. J. Alloy Compd. 904, 163742 (2022). https://doi.org/10.1016/j.jallcom.2022.163742
- L. Yang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen, Y. Gao et al., Surface-modified metallic Ti3C2Tx mxene as electron transport layer for planar heterojunction perovskite solar cells. Adv. Funct. Mater. 29(46), 1905694 (2019). https://doi.org/10.1002/adfm.201905694
- J. Zhang, C. Huang, Y. Sun, H. Yu, Amino-functionalized niobium-carbide mxene serving as electron transport layer and perovskite additive for the preparation of high-performance and stable methylammonium-free perovskite solar cells. Adv. Funct. Mater. 32(24), 2113367 (2022). https://doi.org/10.1002/adfm.202113367
- J. Wang, Z. Cai, D. Lin, K. Chen, L. Zhao et al., Plasma oxidized Ti3C2Tx MXene as electron transport layer for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 13(27), 32495–32502 (2021). https://doi.org/10.1021/acsami.1c07146
- L. Yang, D. Kan, C. Dall’Agnese, Y. Dall’Agnese, B. Wang et al., Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti3C2Tx in air. J. Mater. Chem. A 9(8), 5016–5025 (2021). https://doi.org/10.1039/D0TA11397B
- P. Wu, S. Wang, X. Li, F. Zhang, Advances in SnO2-based perovskite solar cells: from preparation to photovoltaic applications. J. Mater. Chem. A 9(35), 19554–19588 (2021). https://doi.org/10.1039/D1TA04130D
- W.-Q. Wu, D. Chen, Y.-B. Cheng, R.A. Caruso, Thin films of tin oxide nanosheets used as the electron transporting layer for improved performance and ambient stability of perovskite photovoltaics. Solar RRL 1(11), 1700117 (2017). https://doi.org/10.1002/solr.201700117
- L. Huang, X. Zhou, R. Wu, C. Shi, R. Xue et al., Oriented haloing metal-organic framework providing high efficiency and high moisture-resistance for perovskite solar cells. J. Power Sources 433, 226699 (2019). https://doi.org/10.1016/j.jpowsour.2019.226699
- B. Ding, S.-Y. Huang, Q.-Q. Chu, Y. Li, C.-X. Li et al., Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 6(22), 10233–10242 (2018). https://doi.org/10.1039/C8TA01192C
- X. Huang, Z. Hu, J. Xu, P. Wang, L. Wang et al., Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Solar Energy Mater. Solar Cells 164, 87–92 (2017). https://doi.org/10.1016/j.solmat.2017.02.010
- L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at mxene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12(1), 44 (2020). https://doi.org/10.1007/s40820-020-0379-5
- H. Zheng, Y. Wang, B. Niu, R. Ge, Y. Lei et al., Controlling the defect density of perovskite films by mxene/ SnO2 hybrid electron transport layers for efficient and stable photovoltaics. J. Phys. Chem. C 125(28), 15210–15222 (2021). https://doi.org/10.1021/acs.jpcc.1c04361
- Z. Li, P. Wang, C. Ma, F. Igbari, Y. Kang et al., Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells. J. Am. Chem. Soc. 143(6), 2593–2600 (2021). https://doi.org/10.1021/jacs.0c12739
- V.S.N. Chava, P.S. Chandrasekhar, A. Gomez, L. Echegoyen, S.T. Sreenivasan, Mxene-based tailoring of carrier dynamics, defect passivation, and interfacial band alignment for efficient planar p–i–n perovskite solar cells. ACS Appl. Energy Mater. 4(11), 12137–12148 (2021). https://doi.org/10.1021/acsaem.1c01669
- L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7(10), 5635–5642 (2019). https://doi.org/10.1039/C8TA12140K
- Y. Niu, C. Tian, J. Gao, F. Fan, Y. Zhang et al., Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy 89, 106455 (2021). https://doi.org/10.1016/j.nanoen.2021.106455
- L. Yin, C. Liu, C. Ding, C. Zhao, I.Z. Mitrovic et al., Functionalized-mxene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells. Cell Rep. Phys. Sci. 3(6), 100905 (2022). https://doi.org/10.1016/j.xcrp.2022.100905
- Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14(6), 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J
- Z. Wang, D. Zhang, G. Yang, J. Yu, Exceeding 19% efficiency for inverted perovskite solar cells used conventional organic small molecule tpd as hole transport layer. Appl. Phys. Lett. 118(18), 183301 (2021). https://doi.org/10.1063/5.0050512
- B. Li, K. Yang, Q. Liao, Y. Wang, M. Su et al., Imide-functionalized triarylamine-based donor-acceptor polymers as hole transporting layers for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 31(21), 2100332 (2021). https://doi.org/10.1002/adfm.202100332
- S. Ma, X. Zhang, X. Liu, R. Ghadari, M. Cai et al., Pyridine-triphenylamine hole transport material for inverted perovskite solar cells. J. Energy Chem. 54, 395–402 (2021). https://doi.org/10.1016/j.jechem.2020.06.002
- L. Gao, C. Ma, S. Wei, A.V. Kuklin, H. Zhang et al., Applications of few-layer Nb2C MXene: narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 15(1), 954–965 (2021). https://doi.org/10.1021/acsnano.0c07608
- O. Mashtalir, M.R. Lukatskaya, M.-Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27(23), 3501–3506 (2015). https://doi.org/10.1002/adma.201500604
- Y. Liu, P. Stradins, S.-H. Wei, Van der waals metal-semiconductor junction: weak fermi level pinning enables effective tuning of schottky barrier. Sci. Adv. 2(4), e1600069 (2016). https://doi.org/10.1126/sciadv.1600069
- J. Zhang, C. Huang, H. Yu, Modulate the work function of Nb2CTx MXene as the hole transport layer for perovskite solar cells. Appl. Phys. Lett. 119(3), 033506 (2021). https://doi.org/10.1063/5.0057978
- S. Saha, A.K. Bhowmick, Computer simulation of thermoplastic elastomers from rubber-plastic blends and comparison with experiments. Polymer 103, 233–242 (2016). https://doi.org/10.1016/j.polymer.2016.09.065
- Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: a review. Compos. A: Appl. Sci. Manuf. 41(7), 806–819 (2010). https://doi.org/10.1016/j.compositesa.2010.03.005
- H. Zhu, J. Liang, J. Xu, M. Bo, J. Li et al., Research on anti-chloride ion penetration property of crumb rubber concrete at different ambient temperatures. Constr. Build. Mater. 189, 42–53 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.193
- J. Yu, N. Wang, M. Wang, J. Zhang, D. Hou, Recyclable rubber-cement composites produced by interfacial strengthened strategy from polyvinyl alcohol. Constr. Build. Mater. 264, 120541 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120541
- J.-B. Du, L. Yang, X. Jin, C.-L. Liu, H.-H. Wang et al., Spray deposition of vinyl tris(2-methoxyethoxy) silane-doped Ti3C2Tx mxene hole transporting layer for planar perovskite solar cells. J. Alloy Compd. 900, 163372 (2022). https://doi.org/10.1016/j.jallcom.2021.163372
- Z.-K. Yu, W.-F. Fu, W.-Q. Liu, Z.-Q. Zhang, Y.-J. Liu et al., Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells. Chinese Chem. Lett. 28(1), 13–18 (2017). https://doi.org/10.1016/j.cclet.2016.06.021
- W. Hu, T. Liu, X. Yin, H. Liu, X. Zhao et al., Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. J. Mater. Chem. A 5(4), 1434–1441 (2017). https://doi.org/10.1039/C6TA09174A
- S. Ye, W. Sun, Y. Li, W. Yan, H. Peng et al., Cuscn-based inverted planar perovskite solar cell with an average pce of 15.6%. Nano Lett. 15(6), 3723–3728 (2015). https://doi.org/10.1021/acs.nanolett.5b00116
- J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
- Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka et al., Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. J. Mater. Chem. A 2(34), 13827–13830 (2014). https://doi.org/10.1039/C4TA02976C
- L. Hu, L. Zhang, W. Ren, C. Zhang, Y. Wu et al., High efficiency perovskite solar cells with PTAA hole transport layer enabled by PMMA:F4-TCNQ buried interface layer. J. Mater. Chem. C 10(26), 9714–9722 (2022). https://doi.org/10.1039/D2TC01494G
- Y.S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy Environ. Sci. 7(4), 1454–1460 (2014). https://doi.org/10.1039/C3EE44174A
- J. Liu, M. Durstock, L. Dai, Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci. 7(4), 1297–1306 (2014). https://doi.org/10.1039/C3EE42963F
- L. Lu, T. Xu, W. Chen, J.M. Lee, Z. Luo et al., The role of n-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett. 13(6), 2365–2369 (2013). https://doi.org/10.1021/nl304533j
- Y. Liu, G.-D. Li, L. Yuan, L. Ge, H. Ding et al., Carbon-protected bimetallic carbide nanops for a highly efficient alkaline hydrogen evolution reaction. Nanoscale 7(7), 3130–3136 (2015). https://doi.org/10.1039/C4NR06295G
- C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2d ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015). https://doi.org/10.1038/nmat4374
- Y.J. Heo, J.W. Lee, Y.R. Son, J.H. Lee, C.S. Yeo et al., Large-scale conductive yarns based on twistable korean traditional paper (Hanji) for supercapacitor applications: toward high-performance paper supercapacitors. Adv. Energy Mater. 8(27), 1801854 (2018). https://doi.org/10.1002/aenm.201801854
- Y.-J. Heo, J.-H. Lee, S.-H. Kim, S.-J. Mun, S.-Y. Lee et al., Derived millimeter-thick yarn supercapacitors enabling high volumetric energy density. ACS Appl. Mater. Interfaces 14(37), 42671–42682 (2022). https://doi.org/10.1021/acsami.2c10746
- S. Hussain, H. Liu, D. Vikraman, M. Hussain, S.H.A. Jaffery et al., Characteristics of Mo2C-CNTs hybrid blended hole transport layer in the perovskite solar cells and X-ray detectors. J. Alloy Compd. 885, 161039 (2021). https://doi.org/10.1016/j.jallcom.2021.161039
- S. Hussain, H. Liu, M. Hussain, M.T. Mehran, H.-S. Kim et al., Development of MXene/WO3 embedded pedot:PSS hole transport layers for highly efficient perovskite solar cells and X-ray detectors. Int. J. Energ. Res. 46(9), 12485–12497 (2022). https://doi.org/10.1002/er.8020
- H. Li, G. Tong, T. Chen, H. Zhu, G. Li et al., Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr 3 solar cells. J. Mater. Chem. A 6(29), 14255–14261 (2018). https://doi.org/10.1039/C8TA03811B
- H. Yuan, Y. Zhao, J. Duan, Y. Wang, X. Yang et al., All-inorganic CsPbBr 3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 6(47), 24324–24329 (2018). https://doi.org/10.1039/C8TA08900K
- J. Cao, F. Meng, L. Gao, S. Yang, Y. Yan et al., Alternative electrodes for htms and noble-metal-free perovskite solar cells: 2d MXenes electrodes. RSC Adv. 9(59), 34152–34157 (2019). https://doi.org/10.1039/C9RA06091J
- G. Tong, X. Geng, Y. Yu, L. Yu, J. Xu et al., Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process. RSC Adv. 7(30), 18224–18230 (2017). https://doi.org/10.1039/C7RA01430A
- S.N. Habisreutinger, R.J. Nicholas, H.J. Snaith, Carbon nanotubes in perovskite solar cells. Adv. Energy Mater. 7(10), 1601839 (2017). https://doi.org/10.1002/aenm.201601839
- T. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7(36), 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A
- L. Mi, Y. Zhang, T. Chen, E. Xu, Y. Jiang, Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells. RSC Adv. 10(21), 12298–12303 (2020). https://doi.org/10.1039/D0RA00288G
- T.M. Barnes, M.O. Reese, J.D. Bergeson, B.A. Larsen, J.L. Blackburn et al., Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides. Adv. Energy Mater. 2(3), 353–360 (2012). https://doi.org/10.1002/aenm.201100608
- B.-H. Jiang, H.-E. Lee, J.-H. Lu, T.-H. Tsai, T.-S. Shieh et al., High-performance semitransparent organic photovoltaics featuring a surface phase-matched transmission-enhancing Ag/ITO electrode. ACS Appl. Mater. Interfaces 12(35), 39496–39504 (2020). https://doi.org/10.1021/acsami.0c10906
- H. Wang, Y. Guo, L. He, L. Kloo, J. Song et al., Efficient naphthalene imide-based interface engineering materials for enhancing perovskite photovoltaic performance and stability. ACS Appl. Mater. Interfaces 12(37), 42348–42356 (2020). https://doi.org/10.1021/acsami.0c11620
- S.J. Lee, S.H. Lee, H.W. Kang, S. Nahm, B.H. Kim et al., Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode. Chem. Eng. J. 416, 129028 (2021). https://doi.org/10.1016/j.cej.2021.129028
- X. Zhang, V.A. Öberg, J. Du, J. Liu, E.M.J. Johansson, Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 11(2), 354–364 (2018). https://doi.org/10.1039/C7EE02772A
- J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31(16), 2010155 (2021). https://doi.org/10.1002/adfm.202010155
- S. Lee, J. Jang, T. Park, Y.M. Park, J.S. Park et al., Electrodeposited silver nanowire transparent conducting electrodes for thin-film solar cells. ACS Appl. Mater. Interfaces 12(5), 6169–6175 (2020). https://doi.org/10.1021/acsami.9b17168
- M.-R. Azani, A. Hassanpour, T. Torres, Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 10(48), 2002536 (2020). https://doi.org/10.1002/aenm.202002536
- Y. Yang, B. Xu, J. Hou, Solution-processed silver nanowire as flexible transparent electrodes in organic solar cells. Chin. J. Chem. 39(8), 2315–2329 (2021). https://doi.org/10.1002/cjoc.202000696
- J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong et al., Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze. J. Mater. Chem. A 3(10), 5375–5384 (2015). https://doi.org/10.1039/C4TA05728G
- T. Lei, R. Peng, W. Song, L. Hong, J. Huang et al., Bendable and foldable flexible organic solar cells based on Ag nanowire films with 10.30% efficiency. J. Mater. Chem. A 7(8), 3737–3744 (2019). https://doi.org/10.1039/C8TA11293B
- A.G. Ricciardulli, S. Yang, G.-J.A.H. Wetzelaer, X. Feng, P.W.M. Blom, Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28(14), 1706010 (2018). https://doi.org/10.1002/adfm.201706010
- X. Meng, X. Hu, X. Yang, J. Yin, Q. Wang et al., Roll-to-roll printing of meter-scale composite transparent electrodes with optimized mechanical and optical properties for photoelectronics. ACS Appl. Mater. Interfaces 10(10), 8917–8925 (2018). https://doi.org/10.1021/acsami.8b00093
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx mxene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- W. Chen, R. Zhang, X. Yang, H. Wang, H. Yang et al., A 1D:2D structured agnw: Mxene composite transparent electrode with high mechanical robustness for flexible photovoltaics. J. Mater. Chem. C 10(22), 8625–8633 (2022). https://doi.org/10.1039/D2TC01178F
- X. Fan, Doping and design of flexible transparent electrodes for high-performance flexible organic solar cells: recent advances and perspectives. Adv. Funct. Mater. 31(8), 2009399 (2021). https://doi.org/10.1002/adfm.202009399
- A. Di Vito, A. Pecchia, M. Auf der Maur, A. Di Carlo, Nonlinear work function tuning of lead-halide perovskites by MXenes with mixed terminations. Adv. Funct. Mater. 30(47), 1909028 (2020). https://doi.org/10.1002/adfm.201909028
- A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi et al., Titanium-carbide mxenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18(11), 1228–1234 (2019). https://doi.org/10.1038/s41563-019-0478-1
- X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D mxene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30(30), 2003295 (2020). https://doi.org/10.1002/adfm.202003295
- A.S.R. Bati, M. Hao, T.J. Macdonald, M. Batmunkh, Y. Yamauchi et al., 1D–2D synergistic mxene-nanotubes hybrids for efficient perovskite solar cells. Small 17(32), 2101925 (2021). https://doi.org/10.1002/smll.202101925
- C. Wu, W. Fang, Q. Cheng, J. Wan, R. Wen et al., Mxene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed. 61(43), e202210970 (2022). https://doi.org/10.1002/anie.202210970
- S. Liu, D. Zhou, X. Zhuang, R. Sun, H. Zhang et al., Interfacial Engineering of Au@Nb2CTx-MXene modulates the growth strain, suppresses the auger recombination, and enables an open-circuit voltage of over 1.2 V in perovskite solar cells. ACS Appl. Mater. Interfaces 15, 3961–3973 (2023). https://doi.org/10.1021/acsami.2c18362
- M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369(6511), 1615–1620 (2020). https://doi.org/10.1126/science.abb7167
- D. Xu, T. Li, Y. Han, X. He, S. Yang et al., Fluorine functionalized mxene QDs for near-record-efficiency CsPbI3 solar cell with high open-circuit voltage. Adv. Funct. Mater. 32(33), 2203704 (2022). https://doi.org/10.1002/adfm.202203704
- P. Guo, C. Liu, X. Li, Z. Chen, H. Zhu et al., Laser manufactured nano-mxenes with tailored halogen terminations enable interfacial ionic stabilization of high performance perovskite solar cells. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202202395
- T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4(1), 2885 (2013). https://doi.org/10.1038/ncomms3885
- Q. Jiang, X. Zhang, J. You, SnO2: a wonderful electron transport layer for perovskite solar cells. Small 14(31), 1801154 (2018). https://doi.org/10.1002/smll.201801154
- Q. Liu, M.-C. Qin, W.-J. Ke, X.-L. Zheng, Z. Chen et al., Enhanced stability of perovskite solar cells with low-temperature hydrothermally grown SnO2 electron transport layers. Adv. Funct. Mater. 26(33), 6069–6075 (2016). https://doi.org/10.1002/adfm.201600910
- Y. Wang, P. Xiang, A. Ren, H. Lai, Z. Zhang et al., Mxene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells. ACS Appl. Mater. Interfaces 12(48), 53973–53983 (2020). https://doi.org/10.1021/acsami.0c17338
- L. Yang, B. Wang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen et al., Hybridization of SnO2 and an in-situ-oxidized Ti3C2Tx mxene electron transport bilayer for high-performance planar perovskite solar cells. ACS Sustain. Chem. Eng. 9(40), 13672–13680 (2021). https://doi.org/10.1021/acssuschemeng.1c05245
- S.A.A. Shah, M.H. Sayyad, K. Khan, J. Sun, Z. Guo, Application of mxenes in perovskite solar cells: a short review. Nano Mater. 11(8), 2151 (2021). https://doi.org/10.3390/nano11082151
- Z. Liu, H.N. Alshareef, MXenes for optoelectronic devices. Adv. Electr. Mater. 7(9), 2100295 (2021). https://doi.org/10.1002/aelm.202100295
- J. Ghosh, P.K. Giri, Recent advances in perovskite/2D Materials based hybrid photodetectors. J. Phys. Mater. 4(3), 032008 (2021). https://doi.org/10.1088/2515-7639/abf544
- Y. Zheng, Y. Wang, Z. Li, Z. Yuan, S. Guo et al., MXene quantum dots/perovskite heterostructure enabling highly specific ultraviolet detection for skin prevention. Matter 6(2), 506–520 (2023). https://doi.org/10.1016/j.matt.2022.11.020
- Z. Liu, J.K. El-Demellawi, O.M. Bakr, B.S. Ooi, H.N. Alshareef, Plasmonic Nb2CTx MXene-MaPbI3 heterostructure for self-powered visible-NIR photodiodes. ACS Nano 16(5), 7904–7914 (2022). https://doi.org/10.1021/acsnano.2c00558
References
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(22), 221104 (2015). https://doi.org/10.1063/1.4922150
G. Nazir, S.Y. Lee, J.H. Lee, A. Rehman, J.K. Lee et al., Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater. 34(50), 2204380 (2022). https://doi.org/10.1002/adma.202204380
K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming shockley-queisser limit using halide perovskite platform? Joule 6(4), 756–771 (2022). https://doi.org/10.1016/j.joule.2022.01.009
P. Wang, Y. Wu, B. Cai, Q. Ma, X. Zheng et al., Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv. Funct. Mater. 29(47), 1807661 (2019). https://doi.org/10.1002/adfm.201807661
W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). https://doi.org/10.1126/science.aaa0472
H.J. Snaith, Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17(5), 372–376 (2018). https://doi.org/10.1038/s41563-018-0071-z
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat–stable perovskite solar cells with tailored-dimensionality 2d/3d heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
S. Riaz, S.-J. Park, Thioacetamide-derived nitrogen and sulfur co-doped carbon quantum dots for “green” quantum dot solar cells. J. Ind. Eng. Chem. 105, 111–120 (2022). https://doi.org/10.1016/j.jiec.2021.09.009
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2d metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
X. Fan, Y. Ding, Y. Liu, J. Liang, Y. Chen, Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7), 8124–8134 (2019). https://doi.org/10.1021/acsnano.9b03161
Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao et al., G-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6(19), 9124–9131 (2018). https://doi.org/10.1039/C8TA02706D
Q. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian et al., Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3d laminate with in-plane chemical ordering. Nat. Commun. 8(1), 14949 (2017). https://doi.org/10.1038/ncomms14949
Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1), 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
Q. Xu, W. Yang, Y. Wen, S. Liu, Z. Liu et al., Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl. Mater. Today 16, 90–101 (2019). https://doi.org/10.1016/j.apmt.2019.05.001
S. Ahn, T.-H. Han, K. Maleski, J. Song, Y.-H. Kim et al., A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32(23), 2000919 (2020). https://doi.org/10.1002/adma.202000919
Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou et al., The marriage of the FeN4 moiety and mxene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30(43), 1803220 (2018). https://doi.org/10.1002/adma.201803220
J.-H. Lee, G. Yang, C.-H. Kim, R.L. Mahajan, S.-Y. Lee et al., Flexible solid-state hybrid supercapacitors for the internet of everything (IOE). Energy Environ. Sci. 15(6), 2233–2258 (2022). https://doi.org/10.1039/D1EE03567C
M. Hadadian, J.-P. Correa-Baena, E.K. Goharshadi, A. Ummadisingu, J.-Y. Seo et al., Enhancing efficiency of perovskite solar cells via n-doped graphene: crystal modification and surface passivation. Adv. Mater. 28(39), 8681–8686 (2016). https://doi.org/10.1002/adma.201602785
L.-L. Jiang, Z.-K. Wang, M. Li, C.-C. Zhang, Q.-Q. Ye et al., Passivated perovskite crystallization via g-C3N4 for high-performance solar cells. Adv. Funct. Mater. 28(7), 1705875 (2018). https://doi.org/10.1002/adfm.201705875
C. Ma, Y. Shi, W. Hu, M.-H. Chiu, Z. Liu et al., Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28(19), 3683–3689 (2016). https://doi.org/10.1002/adma.201600069
A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha et al., Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. 6(16), 1600920 (2016). https://doi.org/10.1002/aenm.201600920
J.-H. Lee, Y.-S. Kim, H.-J. Ru, S.-Y. Lee, S.-J. Park, Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett. 14(1), 188 (2022). https://doi.org/10.1007/s40820-022-00926-1
W. Chen, K. Li, Y. Wang, X. Feng, Z. Liao et al., Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J. Phys. Chem. Lett. 8(3), 591–598 (2017). https://doi.org/10.1021/acs.jpclett.6b02843
A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2d titanium carbide. Adv. Funct. Mater. 26(23), 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
Y. Dall’Agnese, M.R. Lukatskaya, K.M. Cook, P.-L. Taberna, Y. Gogotsi et al., High capacitance of surface-modified 2d titanium carbide in acidic electrolyte. Electrochem. Commun. 48, 118–122 (2014). https://doi.org/10.1016/j.elecom.2014.09.002
Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang, Communications High electrical conductivity 2d mxene serves as additive of perovskite for efficient solar cells. Small 14(47), 1802738 (2018). https://doi.org/10.1002/smll.201802738
G. Murali, J. Rawal, J.K.R. Modigunta, Y.H. Park, J.-H. Lee et al., A review on MXenes: new-generation 2D materials for supercapacitors. Sustain. Energy Fuels 5(22), 5672–5693 (2021). https://doi.org/10.1039/D1SE00918D
G. Murali, J.K. Reddy Modigunta, Y.H. Park, J.-H. Lee, J. Rawal et al., A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16, 13370–13429 (2022). https://doi.org/10.1021/acsnano.2c04750
S.-J. Park, H.-C. Kim, H.-Y. Kim, Roles of work of adhesion between carbon blacks and thermoplastic polymers on electrical properties of composites. J. Colloid Interface Sci. 255(1), 145–149 (2002). https://doi.org/10.1006/jcis.2002.8481
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao et al., Synthesis and characterization of 2d molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund et al., A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 55(16), 5008–5013 (2016). https://doi.org/10.1002/anie.201510432
R. Khaledialidusti, M. Khazaei, S. Khazaei, K. Ohno, High-throughput computational discovery of ternary-layered max phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 13(15), 7294–7307 (2021). https://doi.org/10.1039/D0NR08791B
L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32(5), 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
C.A. Voigt, M. Ghidiu, V. Natu, M.W. Barsoum, Anion adsorption, Ti3C2Tz MXene multilayers, and their effect on claylike swelling. J. Phys. Chem. C 122(40), 23172–23179 (2018). https://doi.org/10.1021/acs.jpcc.8b07447
C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable synthesis of Ti3C2Tx mxene. Adv. Engin. Mater. 22(3), 1901241 (2020). https://doi.org/10.1002/adem.201901241
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mat. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter et al., Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57(19), 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset et al., A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide mxenes: a route towards selective reactivity vs. water. J. Mater. Chem. A 5(41), 22012–22023 (2017). https://doi.org/10.1039/C7TA01082F
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated max phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general lewis acidic etching route for preparing mxenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
X. Yu, X. Cai, H. Cui, S.-W. Lee, X.-F. Yu et al., Fluorine-free preparation of titanium carbide mxene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9(45), 17859–17864 (2017). https://doi.org/10.1039/C7NR05997C
J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55(47), 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3), 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019
H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60(16), 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
A.E. Ghazaly, H. Ahmed, A.R. Rezk, J. Halim, P.O.Å. Persson et al., Ultrafast, one-step, salt-solution-based acoustic synthesis of Ti3C2 MXene. ACS Nano 15(3), 4287–4293 (2021). https://doi.org/10.1021/acsnano.0c07242
W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
S.-Y. Pang, Y.-T. Wong, S. Yuan, Y. Liu, M.-K. Tsang et al., Universal strategy for Hf-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy material. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
Y. Xie, P.R.C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B 87(23), 235441 (2013). https://doi.org/10.1103/PhysRevB.87.235441
M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23(17), 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y. Liang et al., OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Phys. Rev. B 92(7), 075411 (2015). https://doi.org/10.1103/PhysRevB.92.075411
H.A. Tahini, X. Tan, S.C. Smith, The origin of low workfunctions in oh terminated MXenes. Nanoscale 9(21), 7016–7020 (2017). https://doi.org/10.1039/C7NR01601H
Y. Liu, H. Xiao, W.A. Goddard III., Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138(49), 15853–15856 (2016). https://doi.org/10.1021/jacs.6b10834
J. Lei, A. Kutana, B.I. Yakobson, Predicting stable phase monolayer Mo2C (MXene), a superconductor with chemically-tunable critical temperature. J. Mater. Chem. C 5(14), 3438–3444 (2017). https://doi.org/10.1039/C7TC00789B
Y. Liang, M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki et al., Theoretical prediction of two-dimensional functionalized mxene nitrides as topological insulators. Phys. Rev. B 96(19), 195414 (2017). https://doi.org/10.1103/PhysRevB.96.195414
M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Topological insulators in the ordered double transition metals M′2M′′C2 MXenes (M′=Mo, W; M′′=Ti, Zr, Hf). Phys. Rev. B 94(12), 125152 (2016). https://doi.org/10.1103/PhysRevB.94.125152
B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt et al., Control of electronic properties of 2d carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons 1(3), 227–234 (2016). https://doi.org/10.1039/C5NH00125K
C. Si, J. Zhou, Z. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7(31), 17510–17515 (2015). https://doi.org/10.1021/acsami.5b05401
I. Mathews, S. Sofia, E. Ma, J. Jean, H.S. Laine et al., Economically sustainable growth of perovskite photovoltaics manufacturing. Joule 4(4), 822–839 (2020). https://doi.org/10.1016/j.joule.2020.01.006
L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
L.A. Muscarella, E.M. Hutter, S. Sanchez, C.D. Dieleman, T.J. Savenije et al., Crystal orientation and grain size: do they determine optoelectronic properties of MAPBi3 perovskite? J. Phys. Chem. Lett. 10(20), 6010–6018 (2019). https://doi.org/10.1021/acs.jpclett.9b02757
E. Ochoa-Martinez, M. Ochoa, R.D. Ortuso, P. Ferdowsi, R. Carron et al., Physical passivation of grain boundaries and defects in perovskite solar cells by an isolating thin polymer. ACS Energy Lett. 6(7), 2626–2634 (2021). https://doi.org/10.1021/acsenergylett.1c01187
J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017). https://doi.org/10.1126/science.aam6323
J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
C. Pereyra, H. Xie, M. Lira-Cantu, Additive engineering for stable halide perovskite solar cells. J. Energy Chem. 60, 599–634 (2021). https://doi.org/10.1016/j.jechem.2021.01.037
S. Palei, H. Kim, J.H. Seo, D. Singh, K. Seo, Stability and efficiency enhancement of perovskite solar cells using phenyltriethylammonium iodide. Adv. Mater. Interfaces 9(16), 2200464 (2022). https://doi.org/10.1002/admi.202200464
T. Webb, S.J. Sweeney, W. Zhang, Device architecture engineering: progress toward next generation perovskite solar cells. Adv. Funct. Mater. 31(35), 2103121 (2021). https://doi.org/10.1002/adfm.202103121
J. Li, R. Xia, W. Qi, X. Zhou, J. Cheng et al., Encapsulation of perovskite solar cells for enhanced stability: structures mater, and characterization. J. Power Sources 485, 229313 (2021). https://doi.org/10.1016/j.jpowsour.2020.229313
W. Ke, M.G. Kanatzidis, Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10(1), 965 (2019). https://doi.org/10.1038/s41467-019-08918-3
P.-K. Kung, M.-H. Li, P.-Y. Lin, J.-Y. Jhang, M. Pantaler et al., Lead-free double perovskites for perovskite solar cells. Solar RRL 4(2), 1900306 (2020). https://doi.org/10.1002/solr.201900306
J. Wang, J. Dong, F. Lu, C. Sun, Q. Zhang et al., Two-dimensional lead-free halide perovskite materials and devices. J. Mater. Chem. A 7(41), 23563–23576 (2019). https://doi.org/10.1039/C9TA06455A
M. Wang, W. Wang, B. Ma, W. Shen, L. Liu et al., Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13(1), 62 (2021). https://doi.org/10.1007/s40820-020-00578-z
N.F. Montcada, M. Méndez, K.T. Cho, M.K. Nazeeruddin, E. Palomares, Photo-induced dynamic processes in perovskite solar cells: the influence of perovskite composition in the charge extraction and the carrier recombination. Nanoscale 10(13), 6155–6158 (2018). https://doi.org/10.1039/C8NR00180D
A. Listorti, E.J. Juarez-Perez, C. Frontera, V. Roiati, L. Garcia-Andrade et al., Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1628–1637 (2015). https://doi.org/10.1021/acs.jpclett.5b00483
H.S. Jung, N.-G. Park, Perovskite solar cells: from materials to devices. Small 11(1), 10–25 (2015). https://doi.org/10.1002/smll.201402767
S.-S. Li, C.-H. Chang, Y.-C. Wang, C.-W. Lin, D.-Y. Wang et al., Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanops. Energy Environ. Sci. 9(4), 1282–1289 (2016). https://doi.org/10.1039/C5EE03229F
C. Lan, S. Zhao, C. Zhang, W. Liu, S. Hayase et al., Concentration gradient-controlled growth of large-grain CH3NH3PbI3 films and enhanced photovoltaic performance of solar cells under ambient conditions. CrystEngComm 18(48), 9243–9251 (2016). https://doi.org/10.1039/C6CE02151D
Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
N. Tripathi, Y. Shirai, M. Yanagida, A. Karen, K. Miyano, Novel surface passivation technique for low-temperature solution-processed perovskite pv cells. ACS Appl. Mater. Interfaces 8(7), 4644–4650 (2016). https://doi.org/10.1021/acsami.5b11286
J.H. Heo, F. Zhang, J.K. Park, H. Joon Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6(7), 1672–1688 (2022). https://doi.org/10.1016/j.joule.2022.05.013
L. Zhu, J. Shi, S. Lv, Y. Yang, X. Xu et al., Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells. Nano Energy 15, 540–548 (2015). https://doi.org/10.1016/j.nanoen.2015.04.039
Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang et al., Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr 3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv. Sci. 8(19), 2101418 (2021). https://doi.org/10.1002/advs.202101418
D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl et al., Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy 82, 105771 (2021). https://doi.org/10.1016/j.nanoen.2021.105771
P. Cheng, P. Wang, Z. Xu, X. Jia, Q. Wei et al., Ligand-size related dimensionality control in metal halide perovskites. ACS Energy Lett. 4(8), 1830–1838 (2019). https://doi.org/10.1021/acsenergylett.9b01100
X. Xiao, J. Dai, Y. Fang, J. Zhao, X. Zheng et al., Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3(3), 684–688 (2018). https://doi.org/10.1021/acsenergylett.8b00047
C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
H. Tsai, R. Asadpour, J.-C. Blancon, C.C. Stoumpos, J. Even et al., Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9(1), 2130 (2018). https://doi.org/10.1038/s41467-018-04430-2
X. Jin, L. Yang, X.-F. Wang, Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants. Nano-Micro Lett. 13(1), 68 (2021). https://doi.org/10.1007/s40820-021-00602-w
A.S.R. Bati, A.A. Sutanto, M. Hao, M. Batmunkh, Y. Yamauchi et al., Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Rep. Phys. Sci. 2(10), 100598 (2021). https://doi.org/10.1016/j.xcrp.2021.100598
X. Liu, Z. Zhang, J. Jiang, C. Tian, X. Wang et al., Chlorine-terminated mxene quantum dots for improving crystallinity and moisture stability in high-performance perovskite solar cells. Chem. Eng. J. 432, 134382 (2022). https://doi.org/10.1016/j.cej.2021.134382
J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
X. Zhang, H. Xiong, J. Qi, C. Hou, Y. Li et al., Antisolvent-derived intermediate phases for low-temperature flexible perovskite solar cells. ACS Appl. Energ. Mater. 1(11), 6477–6486 (2018). https://doi.org/10.1021/acsaem.8b01413
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(1), 591 (2012). https://doi.org/10.1038/srep00591
J.-H. Im, H.-S. Kim, N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2(8), 081510 (2014). https://doi.org/10.1063/1.4891275
D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang et al., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 3(41), 18762–18766 (2013). https://doi.org/10.1039/C3RA43228A
J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong et al., Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. ACS Appl. Mater. Interfaces 6(12), 9711–9718 (2014). https://doi.org/10.1021/am502131t
Y. Zhao, X. Zhang, X. Han, C. Hou, H. Wang et al., Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx mxene for two-step-processed CH3NH3PbI3 solar cells. Chem. Eng. J. 417, 127912 (2021). https://doi.org/10.1016/j.cej.2020.127912
L. Yang, P. Hou, B. Wang, C. Dall’Agnese, Y. Dall’Agnese et al., Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2Tx MXene. Chem. Eng. J. 446, 136963 (2022). https://doi.org/10.1016/j.cej.2022.136963
S. Bykkam, A. Mishra, D.N. Prasad, M.R. Maurya, J.-J. Cabibihan et al., 2d-MXene as an additive to improve the power conversion efficiency of monolithic perovskite solar cells. Mater. Lett. 309, 131353 (2022). https://doi.org/10.1016/j.matlet.2021.131353
M.F.U. Din, V. Held, S. Ullah, S. Sousani, M. Omastova et al., A synergistic effect of the ion beam sputtered niox hole transport layer and mxene doping on inverted perovskite solar cells. Nanotechnology 33(42), 425202 (2022). https://doi.org/10.1088/1361-6528/ac7ed4
Y. Li, D. Wang, L. Yang, S. Yin, Preparation and performance of perovskite solar cells with two dimensional MXene as active layer additive. J. Alloy Compd. 904, 163742 (2022). https://doi.org/10.1016/j.jallcom.2022.163742
L. Yang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen, Y. Gao et al., Surface-modified metallic Ti3C2Tx mxene as electron transport layer for planar heterojunction perovskite solar cells. Adv. Funct. Mater. 29(46), 1905694 (2019). https://doi.org/10.1002/adfm.201905694
J. Zhang, C. Huang, Y. Sun, H. Yu, Amino-functionalized niobium-carbide mxene serving as electron transport layer and perovskite additive for the preparation of high-performance and stable methylammonium-free perovskite solar cells. Adv. Funct. Mater. 32(24), 2113367 (2022). https://doi.org/10.1002/adfm.202113367
J. Wang, Z. Cai, D. Lin, K. Chen, L. Zhao et al., Plasma oxidized Ti3C2Tx MXene as electron transport layer for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 13(27), 32495–32502 (2021). https://doi.org/10.1021/acsami.1c07146
L. Yang, D. Kan, C. Dall’Agnese, Y. Dall’Agnese, B. Wang et al., Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti3C2Tx in air. J. Mater. Chem. A 9(8), 5016–5025 (2021). https://doi.org/10.1039/D0TA11397B
P. Wu, S. Wang, X. Li, F. Zhang, Advances in SnO2-based perovskite solar cells: from preparation to photovoltaic applications. J. Mater. Chem. A 9(35), 19554–19588 (2021). https://doi.org/10.1039/D1TA04130D
W.-Q. Wu, D. Chen, Y.-B. Cheng, R.A. Caruso, Thin films of tin oxide nanosheets used as the electron transporting layer for improved performance and ambient stability of perovskite photovoltaics. Solar RRL 1(11), 1700117 (2017). https://doi.org/10.1002/solr.201700117
L. Huang, X. Zhou, R. Wu, C. Shi, R. Xue et al., Oriented haloing metal-organic framework providing high efficiency and high moisture-resistance for perovskite solar cells. J. Power Sources 433, 226699 (2019). https://doi.org/10.1016/j.jpowsour.2019.226699
B. Ding, S.-Y. Huang, Q.-Q. Chu, Y. Li, C.-X. Li et al., Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 6(22), 10233–10242 (2018). https://doi.org/10.1039/C8TA01192C
X. Huang, Z. Hu, J. Xu, P. Wang, L. Wang et al., Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Solar Energy Mater. Solar Cells 164, 87–92 (2017). https://doi.org/10.1016/j.solmat.2017.02.010
L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at mxene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12(1), 44 (2020). https://doi.org/10.1007/s40820-020-0379-5
H. Zheng, Y. Wang, B. Niu, R. Ge, Y. Lei et al., Controlling the defect density of perovskite films by mxene/ SnO2 hybrid electron transport layers for efficient and stable photovoltaics. J. Phys. Chem. C 125(28), 15210–15222 (2021). https://doi.org/10.1021/acs.jpcc.1c04361
Z. Li, P. Wang, C. Ma, F. Igbari, Y. Kang et al., Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells. J. Am. Chem. Soc. 143(6), 2593–2600 (2021). https://doi.org/10.1021/jacs.0c12739
V.S.N. Chava, P.S. Chandrasekhar, A. Gomez, L. Echegoyen, S.T. Sreenivasan, Mxene-based tailoring of carrier dynamics, defect passivation, and interfacial band alignment for efficient planar p–i–n perovskite solar cells. ACS Appl. Energy Mater. 4(11), 12137–12148 (2021). https://doi.org/10.1021/acsaem.1c01669
L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7(10), 5635–5642 (2019). https://doi.org/10.1039/C8TA12140K
Y. Niu, C. Tian, J. Gao, F. Fan, Y. Zhang et al., Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy 89, 106455 (2021). https://doi.org/10.1016/j.nanoen.2021.106455
L. Yin, C. Liu, C. Ding, C. Zhao, I.Z. Mitrovic et al., Functionalized-mxene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells. Cell Rep. Phys. Sci. 3(6), 100905 (2022). https://doi.org/10.1016/j.xcrp.2022.100905
Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14(6), 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J
Z. Wang, D. Zhang, G. Yang, J. Yu, Exceeding 19% efficiency for inverted perovskite solar cells used conventional organic small molecule tpd as hole transport layer. Appl. Phys. Lett. 118(18), 183301 (2021). https://doi.org/10.1063/5.0050512
B. Li, K. Yang, Q. Liao, Y. Wang, M. Su et al., Imide-functionalized triarylamine-based donor-acceptor polymers as hole transporting layers for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 31(21), 2100332 (2021). https://doi.org/10.1002/adfm.202100332
S. Ma, X. Zhang, X. Liu, R. Ghadari, M. Cai et al., Pyridine-triphenylamine hole transport material for inverted perovskite solar cells. J. Energy Chem. 54, 395–402 (2021). https://doi.org/10.1016/j.jechem.2020.06.002
L. Gao, C. Ma, S. Wei, A.V. Kuklin, H. Zhang et al., Applications of few-layer Nb2C MXene: narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 15(1), 954–965 (2021). https://doi.org/10.1021/acsnano.0c07608
O. Mashtalir, M.R. Lukatskaya, M.-Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27(23), 3501–3506 (2015). https://doi.org/10.1002/adma.201500604
Y. Liu, P. Stradins, S.-H. Wei, Van der waals metal-semiconductor junction: weak fermi level pinning enables effective tuning of schottky barrier. Sci. Adv. 2(4), e1600069 (2016). https://doi.org/10.1126/sciadv.1600069
J. Zhang, C. Huang, H. Yu, Modulate the work function of Nb2CTx MXene as the hole transport layer for perovskite solar cells. Appl. Phys. Lett. 119(3), 033506 (2021). https://doi.org/10.1063/5.0057978
S. Saha, A.K. Bhowmick, Computer simulation of thermoplastic elastomers from rubber-plastic blends and comparison with experiments. Polymer 103, 233–242 (2016). https://doi.org/10.1016/j.polymer.2016.09.065
Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: a review. Compos. A: Appl. Sci. Manuf. 41(7), 806–819 (2010). https://doi.org/10.1016/j.compositesa.2010.03.005
H. Zhu, J. Liang, J. Xu, M. Bo, J. Li et al., Research on anti-chloride ion penetration property of crumb rubber concrete at different ambient temperatures. Constr. Build. Mater. 189, 42–53 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.193
J. Yu, N. Wang, M. Wang, J. Zhang, D. Hou, Recyclable rubber-cement composites produced by interfacial strengthened strategy from polyvinyl alcohol. Constr. Build. Mater. 264, 120541 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120541
J.-B. Du, L. Yang, X. Jin, C.-L. Liu, H.-H. Wang et al., Spray deposition of vinyl tris(2-methoxyethoxy) silane-doped Ti3C2Tx mxene hole transporting layer for planar perovskite solar cells. J. Alloy Compd. 900, 163372 (2022). https://doi.org/10.1016/j.jallcom.2021.163372
Z.-K. Yu, W.-F. Fu, W.-Q. Liu, Z.-Q. Zhang, Y.-J. Liu et al., Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells. Chinese Chem. Lett. 28(1), 13–18 (2017). https://doi.org/10.1016/j.cclet.2016.06.021
W. Hu, T. Liu, X. Yin, H. Liu, X. Zhao et al., Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. J. Mater. Chem. A 5(4), 1434–1441 (2017). https://doi.org/10.1039/C6TA09174A
S. Ye, W. Sun, Y. Li, W. Yan, H. Peng et al., Cuscn-based inverted planar perovskite solar cell with an average pce of 15.6%. Nano Lett. 15(6), 3723–3728 (2015). https://doi.org/10.1021/acs.nanolett.5b00116
J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka et al., Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. J. Mater. Chem. A 2(34), 13827–13830 (2014). https://doi.org/10.1039/C4TA02976C
L. Hu, L. Zhang, W. Ren, C. Zhang, Y. Wu et al., High efficiency perovskite solar cells with PTAA hole transport layer enabled by PMMA:F4-TCNQ buried interface layer. J. Mater. Chem. C 10(26), 9714–9722 (2022). https://doi.org/10.1039/D2TC01494G
Y.S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy Environ. Sci. 7(4), 1454–1460 (2014). https://doi.org/10.1039/C3EE44174A
J. Liu, M. Durstock, L. Dai, Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci. 7(4), 1297–1306 (2014). https://doi.org/10.1039/C3EE42963F
L. Lu, T. Xu, W. Chen, J.M. Lee, Z. Luo et al., The role of n-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett. 13(6), 2365–2369 (2013). https://doi.org/10.1021/nl304533j
Y. Liu, G.-D. Li, L. Yuan, L. Ge, H. Ding et al., Carbon-protected bimetallic carbide nanops for a highly efficient alkaline hydrogen evolution reaction. Nanoscale 7(7), 3130–3136 (2015). https://doi.org/10.1039/C4NR06295G
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2d ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015). https://doi.org/10.1038/nmat4374
Y.J. Heo, J.W. Lee, Y.R. Son, J.H. Lee, C.S. Yeo et al., Large-scale conductive yarns based on twistable korean traditional paper (Hanji) for supercapacitor applications: toward high-performance paper supercapacitors. Adv. Energy Mater. 8(27), 1801854 (2018). https://doi.org/10.1002/aenm.201801854
Y.-J. Heo, J.-H. Lee, S.-H. Kim, S.-J. Mun, S.-Y. Lee et al., Derived millimeter-thick yarn supercapacitors enabling high volumetric energy density. ACS Appl. Mater. Interfaces 14(37), 42671–42682 (2022). https://doi.org/10.1021/acsami.2c10746
S. Hussain, H. Liu, D. Vikraman, M. Hussain, S.H.A. Jaffery et al., Characteristics of Mo2C-CNTs hybrid blended hole transport layer in the perovskite solar cells and X-ray detectors. J. Alloy Compd. 885, 161039 (2021). https://doi.org/10.1016/j.jallcom.2021.161039
S. Hussain, H. Liu, M. Hussain, M.T. Mehran, H.-S. Kim et al., Development of MXene/WO3 embedded pedot:PSS hole transport layers for highly efficient perovskite solar cells and X-ray detectors. Int. J. Energ. Res. 46(9), 12485–12497 (2022). https://doi.org/10.1002/er.8020
H. Li, G. Tong, T. Chen, H. Zhu, G. Li et al., Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr 3 solar cells. J. Mater. Chem. A 6(29), 14255–14261 (2018). https://doi.org/10.1039/C8TA03811B
H. Yuan, Y. Zhao, J. Duan, Y. Wang, X. Yang et al., All-inorganic CsPbBr 3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 6(47), 24324–24329 (2018). https://doi.org/10.1039/C8TA08900K
J. Cao, F. Meng, L. Gao, S. Yang, Y. Yan et al., Alternative electrodes for htms and noble-metal-free perovskite solar cells: 2d MXenes electrodes. RSC Adv. 9(59), 34152–34157 (2019). https://doi.org/10.1039/C9RA06091J
G. Tong, X. Geng, Y. Yu, L. Yu, J. Xu et al., Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process. RSC Adv. 7(30), 18224–18230 (2017). https://doi.org/10.1039/C7RA01430A
S.N. Habisreutinger, R.J. Nicholas, H.J. Snaith, Carbon nanotubes in perovskite solar cells. Adv. Energy Mater. 7(10), 1601839 (2017). https://doi.org/10.1002/aenm.201601839
T. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7(36), 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A
L. Mi, Y. Zhang, T. Chen, E. Xu, Y. Jiang, Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells. RSC Adv. 10(21), 12298–12303 (2020). https://doi.org/10.1039/D0RA00288G
T.M. Barnes, M.O. Reese, J.D. Bergeson, B.A. Larsen, J.L. Blackburn et al., Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides. Adv. Energy Mater. 2(3), 353–360 (2012). https://doi.org/10.1002/aenm.201100608
B.-H. Jiang, H.-E. Lee, J.-H. Lu, T.-H. Tsai, T.-S. Shieh et al., High-performance semitransparent organic photovoltaics featuring a surface phase-matched transmission-enhancing Ag/ITO electrode. ACS Appl. Mater. Interfaces 12(35), 39496–39504 (2020). https://doi.org/10.1021/acsami.0c10906
H. Wang, Y. Guo, L. He, L. Kloo, J. Song et al., Efficient naphthalene imide-based interface engineering materials for enhancing perovskite photovoltaic performance and stability. ACS Appl. Mater. Interfaces 12(37), 42348–42356 (2020). https://doi.org/10.1021/acsami.0c11620
S.J. Lee, S.H. Lee, H.W. Kang, S. Nahm, B.H. Kim et al., Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode. Chem. Eng. J. 416, 129028 (2021). https://doi.org/10.1016/j.cej.2021.129028
X. Zhang, V.A. Öberg, J. Du, J. Liu, E.M.J. Johansson, Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 11(2), 354–364 (2018). https://doi.org/10.1039/C7EE02772A
J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31(16), 2010155 (2021). https://doi.org/10.1002/adfm.202010155
S. Lee, J. Jang, T. Park, Y.M. Park, J.S. Park et al., Electrodeposited silver nanowire transparent conducting electrodes for thin-film solar cells. ACS Appl. Mater. Interfaces 12(5), 6169–6175 (2020). https://doi.org/10.1021/acsami.9b17168
M.-R. Azani, A. Hassanpour, T. Torres, Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 10(48), 2002536 (2020). https://doi.org/10.1002/aenm.202002536
Y. Yang, B. Xu, J. Hou, Solution-processed silver nanowire as flexible transparent electrodes in organic solar cells. Chin. J. Chem. 39(8), 2315–2329 (2021). https://doi.org/10.1002/cjoc.202000696
J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong et al., Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze. J. Mater. Chem. A 3(10), 5375–5384 (2015). https://doi.org/10.1039/C4TA05728G
T. Lei, R. Peng, W. Song, L. Hong, J. Huang et al., Bendable and foldable flexible organic solar cells based on Ag nanowire films with 10.30% efficiency. J. Mater. Chem. A 7(8), 3737–3744 (2019). https://doi.org/10.1039/C8TA11293B
A.G. Ricciardulli, S. Yang, G.-J.A.H. Wetzelaer, X. Feng, P.W.M. Blom, Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28(14), 1706010 (2018). https://doi.org/10.1002/adfm.201706010
X. Meng, X. Hu, X. Yang, J. Yin, Q. Wang et al., Roll-to-roll printing of meter-scale composite transparent electrodes with optimized mechanical and optical properties for photoelectronics. ACS Appl. Mater. Interfaces 10(10), 8917–8925 (2018). https://doi.org/10.1021/acsami.8b00093
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx mxene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
W. Chen, R. Zhang, X. Yang, H. Wang, H. Yang et al., A 1D:2D structured agnw: Mxene composite transparent electrode with high mechanical robustness for flexible photovoltaics. J. Mater. Chem. C 10(22), 8625–8633 (2022). https://doi.org/10.1039/D2TC01178F
X. Fan, Doping and design of flexible transparent electrodes for high-performance flexible organic solar cells: recent advances and perspectives. Adv. Funct. Mater. 31(8), 2009399 (2021). https://doi.org/10.1002/adfm.202009399
A. Di Vito, A. Pecchia, M. Auf der Maur, A. Di Carlo, Nonlinear work function tuning of lead-halide perovskites by MXenes with mixed terminations. Adv. Funct. Mater. 30(47), 1909028 (2020). https://doi.org/10.1002/adfm.201909028
A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi et al., Titanium-carbide mxenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18(11), 1228–1234 (2019). https://doi.org/10.1038/s41563-019-0478-1
X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D mxene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30(30), 2003295 (2020). https://doi.org/10.1002/adfm.202003295
A.S.R. Bati, M. Hao, T.J. Macdonald, M. Batmunkh, Y. Yamauchi et al., 1D–2D synergistic mxene-nanotubes hybrids for efficient perovskite solar cells. Small 17(32), 2101925 (2021). https://doi.org/10.1002/smll.202101925
C. Wu, W. Fang, Q. Cheng, J. Wan, R. Wen et al., Mxene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed. 61(43), e202210970 (2022). https://doi.org/10.1002/anie.202210970
S. Liu, D. Zhou, X. Zhuang, R. Sun, H. Zhang et al., Interfacial Engineering of Au@Nb2CTx-MXene modulates the growth strain, suppresses the auger recombination, and enables an open-circuit voltage of over 1.2 V in perovskite solar cells. ACS Appl. Mater. Interfaces 15, 3961–3973 (2023). https://doi.org/10.1021/acsami.2c18362
M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369(6511), 1615–1620 (2020). https://doi.org/10.1126/science.abb7167
D. Xu, T. Li, Y. Han, X. He, S. Yang et al., Fluorine functionalized mxene QDs for near-record-efficiency CsPbI3 solar cell with high open-circuit voltage. Adv. Funct. Mater. 32(33), 2203704 (2022). https://doi.org/10.1002/adfm.202203704
P. Guo, C. Liu, X. Li, Z. Chen, H. Zhu et al., Laser manufactured nano-mxenes with tailored halogen terminations enable interfacial ionic stabilization of high performance perovskite solar cells. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202202395
T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4(1), 2885 (2013). https://doi.org/10.1038/ncomms3885
Q. Jiang, X. Zhang, J. You, SnO2: a wonderful electron transport layer for perovskite solar cells. Small 14(31), 1801154 (2018). https://doi.org/10.1002/smll.201801154
Q. Liu, M.-C. Qin, W.-J. Ke, X.-L. Zheng, Z. Chen et al., Enhanced stability of perovskite solar cells with low-temperature hydrothermally grown SnO2 electron transport layers. Adv. Funct. Mater. 26(33), 6069–6075 (2016). https://doi.org/10.1002/adfm.201600910
Y. Wang, P. Xiang, A. Ren, H. Lai, Z. Zhang et al., Mxene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells. ACS Appl. Mater. Interfaces 12(48), 53973–53983 (2020). https://doi.org/10.1021/acsami.0c17338
L. Yang, B. Wang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen et al., Hybridization of SnO2 and an in-situ-oxidized Ti3C2Tx mxene electron transport bilayer for high-performance planar perovskite solar cells. ACS Sustain. Chem. Eng. 9(40), 13672–13680 (2021). https://doi.org/10.1021/acssuschemeng.1c05245
S.A.A. Shah, M.H. Sayyad, K. Khan, J. Sun, Z. Guo, Application of mxenes in perovskite solar cells: a short review. Nano Mater. 11(8), 2151 (2021). https://doi.org/10.3390/nano11082151
Z. Liu, H.N. Alshareef, MXenes for optoelectronic devices. Adv. Electr. Mater. 7(9), 2100295 (2021). https://doi.org/10.1002/aelm.202100295
J. Ghosh, P.K. Giri, Recent advances in perovskite/2D Materials based hybrid photodetectors. J. Phys. Mater. 4(3), 032008 (2021). https://doi.org/10.1088/2515-7639/abf544
Y. Zheng, Y. Wang, Z. Li, Z. Yuan, S. Guo et al., MXene quantum dots/perovskite heterostructure enabling highly specific ultraviolet detection for skin prevention. Matter 6(2), 506–520 (2023). https://doi.org/10.1016/j.matt.2022.11.020
Z. Liu, J.K. El-Demellawi, O.M. Bakr, B.S. Ooi, H.N. Alshareef, Plasmonic Nb2CTx MXene-MaPbI3 heterostructure for self-powered visible-NIR photodiodes. ACS Nano 16(5), 7904–7914 (2022). https://doi.org/10.1021/acsnano.2c00558