Highly Flexible Fabrics/Epoxy Composites with Hybrid Carbon Nanofillers for Absorption-Dominated Electromagnetic Interference Shielding
Corresponding Author: Soo‑Jin Park
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 188
Abstract
Epoxy-based nanocomposites can be ideal electromagnetic interference (EMI)-shielding materials owing to their lightness, chemical inertness, and mechanical durability. However, poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications, such as smart wristband, medical cloth, aerospace, and military equipment. In this study, we explored hybrid nanofillers of single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (rGO) as conductive inks and polyester fabrics (PFs) as a substrate for flexible EMI-shielding composites. The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m−1 and 38.5 MPa m1/2, which are ~ 270 and 65% enhancement over those of the composites without SWCNTs, respectively. Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test. An EMI-shielding effectiveness of ~ 41 dB in the X-band frequency of 8.2–12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient. These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks, leading to superior EMI-shielding performance. We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices.
Highlights:
1 Highly flexible carbon ink-loaded polyester fabric/epoxy composites with outstanding mechanical durability and absorption-dominant EMI-shielding characteristics are fabricated.
2 The fracture toughness is ~ 38.5 MPa m1/2 and electrical conductivity is maintained after 1000 bending cycles.
3 A superior electromagnetic interference SE/t of ~ 66.8 dB mm–1 was observed in the X-band frequency with over 0.7 absorption coefficient, related to the hierarchical structures composed of macro-scaled voids from the polyester nonwoven fabric skeleton and nano-scaled networks from SWCNTs/rGO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Papadopoulos, W.M. Qiu, M. Ameys, S. Smout, M. Willegems et al., Touchscreen tags based on thin-film electronics for the internet of everything. Nat. Electron. 2(12), 606–611 (2019). https://doi.org/10.1038/s41928-019-0333-z
- J.H. Lee, G. Yang, C.H. Kim, R. Mahajan, S.Y. Lee et al., Flexible solid-state hybrid supercapacitors for the internet of everything (IoE). Energy Environ. Sci. 15, 2233–2258 (2022). https://doi.org/10.1039/D1EE03567C
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- J.Y. Cheng, C.B. Li, Y.F. Xiong, H.B. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- Y.H. Yu, P. Yi, W.B. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- Y.J. Yim, S.J. Park, Electromagnetic interference shielding effectiveness of high-density polyethylene composites reinforced with multi-walled carbon nanotubes. J. Ind. Eng. Chem. 21, 155–157 (2015). https://doi.org/10.1016/j.jiec.2014.04.001
- W.B. Zhang, L.F. Wei, Z.L. Ma, Q.Q. Fan, J.Z. Ma, Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 177, 412–426 (2021). https://doi.org/10.1016/j.carbon.2021.02.093
- S.H. Ryu, B. Park, Y.K. Han, S.J. Kwon, T. Kim et al., Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 10(8), 4446–4455 (2022). https://doi.org/10.1039/d1ta10065c
- P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6
- P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- A.O. Monteiro, P.B. Cachim, P.M.F.J. Costa, Self-sensing piezoresistive cement composite loaded with carbon black ps. Cem. Concr. Comp. 81, 59–65 (2017). https://doi.org/10.1016/j.cemconcomp.2017.04.009
- Z.W. Li, Z.J. Lin, M.S. Han, Y.B. Mu, P.P. Yu et al., Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications. Chem. Eng. J. 420, 129826 (2021). https://doi.org/10.1016/j.cej.2021.129826
- I. Abdalla, A. Salim, M.M. Zhu, J.Y. Yu, Z.L. Li et al., Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency. ACS Appl. Mater. Interfaces 10(51), 44561–44569 (2018). https://doi.org/10.1021/acsami.8b17514
- Y.S. Kim, J.H. Lee, S.J. Park, Effect of ambient plasma treatment on single-walled carbon nanotubes-based epoxy/fabrics for improving fracture toughness and electromagnetic shielding effectiveness. Compos. Part A Appl. Sci. Manuf. 148, 106456 (2021). https://doi.org/10.1016/j.compositesa.2021.106456
- S. Ganguly, N. Kanovsky, P. Das, A. Gedanken, S. Margel, Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non-contact heating applications. Adv. Mater. Interfaces 8(23), 2101255 (2021). https://doi.org/10.1002/admi.202101255
- Y.L. Zhang, J.W. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- A.V. Menon, G. Madras, S. Bose, Light weight, ultrathin, and “thermally-clickable” self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J. 366, 72–82 (2019). https://doi.org/10.1016/j.cej.2019.02.086
- K.X. Jin, J.X. Xing, X.G. Liu, Z.H. Jiang, S.M. Yang et al., Manipulating the assembly of the CNC/RGO composite film for superior electromagnetic interference shielding properties. J. Mater. Chem. A 9(47), 26999–27009 (2021). https://doi.org/10.1039/d1ta08147k
- L. Kong, X.W. Yin, H.L. Xu, X.Y. Yuan, T. Wang et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/j.carbon.2019.01.009
- R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091
- Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- Y. Cheng, X.Y. Li, Y.X. Qin, Y.T. Fang, G.L. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7(39), eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
- Y. Zare, K.Y. Rhee, S.J. Park, A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model. Results Phys. 14, 102406 (2019). https://doi.org/10.1016/j.rinp.2019.102406
- P.R. Agrawal, R. Kumar, S. Teotia, S. Kumari, D.P. Mondal et al., Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B Eng. 160, 131–139 (2019). https://doi.org/10.1016/j.compositesb.2018.10.033
- R.L. Yang, X.C. Gui, L. Yao, Q.M. Hu, L.L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- C. Pavlou, M.G.P. Carbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4
- L.F. Wei, W.B. Zhang, J.Z. Ma, S.L. Bai, Y.J. Ren et al., π-π stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites. Carbon 149, 679–692 (2019). https://doi.org/10.1016/j.carbon.2019.04.058
- X.F. Wang, Z.W. Lei, X.D. Ma, G.F. He, T. Xu et al., A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022). https://doi.org/10.1016/j.cej.2021.132605
- P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- L. Han, K. Li, Y. Fu, X. Yin, Y. Jiao et al., Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance. Compos. Sci. Technol. 222, 109407 (2022). https://doi.org/10.1016/j.compscitech.2022.109407
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
- S.Y. Lee, P. Singh, R.L. Mahajan, Role of oxygen functional groups for improved performance of graphene-silicone composites as a thermal interface material. Carbon 145, 131–139 (2019). https://doi.org/10.1016/j.carbon.2018.12.054
- Y.J. Heo, J.W. Lee, Y.R. Son, J.H. Lee, C.S. Yeo et al., Large-scale conductive yarns based on twistable Korean traditional paper (Hanji) for supercapacitor applications: toward high-performance paper supercapacitors. Adv. Energy Mater. 8(27), 1801854 (2018). https://doi.org/10.1002/aenm.201801854
- C.S. Yeo, Y.J. Heo, M.K. Shin, J.H. Lee, Y.Y. Park et al., Ultralong and millimeter-thick graphene oxide supercapacitors with high volumetric capacitance. ACS Appl. Energy Mater. 4(8), 8059–8069 (2021). https://doi.org/10.1021/acsaem.1c01366
- S.J. Park, J.S. Jin, Effect of corona discharge treatment on the dyeability of low-density polyethylene film. J. Colloid Interf. Sci. 236(1), 155–160 (2001). https://doi.org/10.1006/jcis.2000.7380
- S.J. Park, D.I. Seo, C. Nah, Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/red mud nanocomposites. J. Colloid Interf. Sci. 251(1), 225–229 (2002). https://doi.org/10.1006/jcis.2002.8336
- A. Yasmin, I.M. Daniel, Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45(24), 8211–8219 (2004). https://doi.org/10.1016/j.polymer.2004.09.054
- J. Hong, P. Xu, Electromagnetic interference shielding anisotropy of unidirectional CFRP composites. Materials 14(8), 1907 (2021). https://doi.org/10.3390/ma14081907
- D. Pan, G. Yang, H.M. Abo-Dief, J.W. Dong, F.M. Su et al., Vertically aligned silicon carbide nanowires/ boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
- S.J. Kim, W. Song, Y. Yi, B.K. Min, S. Mondal et al., High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces 10(4), 3921–3928 (2018). https://doi.org/10.1021/acsami.7b15386
- F. Pan, L. Cai, Y.Y. Shi, Y.Y. Dong, X.J. Zhu et al., Heterointerface engineering of beta-chitin/carbon nano-onions/Ni-P composites with boosted Maxwell-Wagner-Sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14, 85 (2022). https://doi.org/10.1007/s40820-022-00804-w
- G.L. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
- A. Jorio, R. Saito, Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 129(2), 021102 (2021). https://doi.org/10.1063/5.0030809
- M. Kamel, M.E. Zawahry, H. Helmy, M. Eid, Improvements in the dyeability of polyester fabrics by atmospheric pressure oxygen plasma treatment. J. Text Inst. 102(3), 220–231 (2011). https://doi.org/10.1080/00405001003672366
- L.Y. Meng, S.J. Park, Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films. J. Colloid Interf. Sci. 342(2), 559–563 (2010). https://doi.org/10.1016/j.jcis.2009.10.022
- F.M. Fowkes, Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J. Phys. Chem. 66(2), 382–382 (1962). https://doi.org/10.1021/j100808a524
- D.H. Kaelble, Dispersion-polar surface tension properties of organic solids. J. Adhes. 2(2), 66–81 (1970). https://doi.org/10.1080/0021846708544582
- D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym Sci. 13(8), 1741–1747 (1969). https://doi.org/10.1002/app.1969.070130815
- F. Yue, Q. Zhang, L.J. Xu, Y.Q. Zheng, C.X. Yao et al., Porous reduced graphene oxide/single-walled carbon nanotube film as freestanding and flexible electrode materials for electrosorption of organic dye. ACS Appl. Nano Mater. 2(10), 6258–6267 (2019). https://doi.org/10.1021/acsanm.9b01236
- Y.Y. Hsieh, Y.B. Fang, J. Daum, S.N. Kanakaraj, G.Q. Zhang et al., Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries. Carbon 145, 677–689 (2019). https://doi.org/10.1016/j.carbon.2019.01.055
- S.M. Zhao, Y.H. Yan, A.L. Gao, S. Zhao, J. Cui et al., Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(31), 26723–26732 (2018). https://doi.org/10.1021/acsami.8b09275
- E.Z. Zhou, J.B. Xi, Y. Guo, Y.J. Liu, Z. Xu et al., Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133, 316–322 (2018). https://doi.org/10.1016/j.carbon.2018.03.023
- A.V. Kyrylyuk, P. Schoot, Continuum percolation of carbon nanotubes in polymeric and colloidal media. PNAS 105(24), 8221–8226 (2008). https://doi.org/10.1073/pnas.0711449105
- S.A. Schelkunoff, The impedance concept and its application to problems of reflection, refraction, shielding and power absorption. Bell Syst. Tech. J. 17(1), 17–48 (1938). https://doi.org/10.1002/j.1538-7305.1938.tb00774.x
- S.A. Schelkunoff, Electromagnetic Waves. (1943).
- M.Y. Peng, F.X. Qin, Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130(22), 225108 (2021). https://doi.org/10.1063/5.0075019
- X.P. Li, S.P. Zeng, E. Shiju, L.Y. Liang, Z.Y. Bai et al., Quick heat dissipation in absorption-dominated microwave shielding properties of flexible poly(vinylidene fluoride)/carbon nanotube/Co composite films with anisotropy-shaped Co (flowers or chains). ACS Appl. Mater. Interfaces 10(47), 40789–40799 (2018). https://doi.org/10.1021/acsami.8b14733
- L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3), 413–431 (2021). https://doi.org/10.1002/sus2.21
- J. Kruzelak, A. Kvasnicakova, K. Hlozekova, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3(1), 123–172 (2021). https://doi.org/10.1039/d0na00760a
- H.J. Duan, H.X. Zhu, J.F. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8(18), 9146–9159 (2020). https://doi.org/10.1039/d0ta01393e
- L. Ma, M. Hamidinejad, B. Zhao, C.Y. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2022). https://doi.org/10.1007/s40820-021-00759-4
- F.M. Oliveira, J. Luxa, D. Bouša, Z. Sofer, R. Gusmão, Electromagnetic interference shielding by reduced graphene oxide foils. ACS Appl. Nano Mater. 5(5), 6792–6800 (2022). https://doi.org/10.1021/acsanm.2c00785
- S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken et al., Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 38(12), 3936–3950 (2022). https://doi.org/10.1021/acs.langmuir.2c00278
- B. Huang, J. Yue, B. Fan, X.Z. Tang, Y. Liu et al., Constructing hierarchical structure via in situ growth of CNT in SiO2-coated carbon foam for high-performance EMI shielding application. Compos. Sci. Technol. 222, 109372 (2022). https://doi.org/10.1016/j.compscitech.2022.109372
- J. Joseph, P.R. Munda, D.A. John, A.M. Sidpara, J. Paul, Graphene and CNT filled hybrid thermoplastic composites for enhanced EMI shielding effectiveness. Mater. Res. Express 6(8), 085617 (2019). https://doi.org/10.1088/2053-1591/ab1e23
- Y. Chen, H.B. Zhang, Y.B. Yang, M. Wang, A.Y. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016). https://doi.org/10.1002/adfm.201503782
- G. Gedler, M. Antunes, J.I. Velasco, R. Ozisik, Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Mater. Des. 90, 906–914 (2016). https://doi.org/10.1016/j.matdes.2015.11.021
- J.J. Liang, Y. Wang, Y. Huang, Y.F. Ma, Z.F. Liu et al., Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922–925 (2009). https://doi.org/10.1016/j.carbon.2008.12.038
- X.H. Li, X.F. Li, K.N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
- P. Sambyal, S.K. Dhawan, P. Gairola, S.S. Chauhan, S.P. Gairola, Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-band. Curr. Appl. Phys. 18(5), 611–618 (2018). https://doi.org/10.1016/j.cap.2018.03.001
- H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- J.W. Dong, S.L. Luo, S.P. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13(50), 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
- P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao et al., Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
- R.H. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- L. Wang, L.X. Chen, P. Song, C.B. Liang, Y.J. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
- S. Liu, S.H. Qin, Y. Jiang, P.A. Song, H. Wang, Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 145, 106376 (2021). https://doi.org/10.1016/j.compositesa.2021.106376
- M. Rahaman, T.K. Chaki, D. Khastgir, Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J. Mater. Sci. 46(11), 3989–3999 (2011). https://doi.org/10.1007/s10853-011-5326-x
- X. Fan, G.C. Zhang, J.T. Li, Z.Y. Shang, H.M. Zhang et al., Study on foamability and electromagnetic interference shielding effectiveness of supercritical CO2 foaming epoxy/rubber/MWCNTs composite. Compos. Part A Appl. Sci. Manuf. 121, 64–73 (2019). https://doi.org/10.1016/j.compositesa.2019.03.008
References
N. Papadopoulos, W.M. Qiu, M. Ameys, S. Smout, M. Willegems et al., Touchscreen tags based on thin-film electronics for the internet of everything. Nat. Electron. 2(12), 606–611 (2019). https://doi.org/10.1038/s41928-019-0333-z
J.H. Lee, G. Yang, C.H. Kim, R. Mahajan, S.Y. Lee et al., Flexible solid-state hybrid supercapacitors for the internet of everything (IoE). Energy Environ. Sci. 15, 2233–2258 (2022). https://doi.org/10.1039/D1EE03567C
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
J.Y. Cheng, C.B. Li, Y.F. Xiong, H.B. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
Y.H. Yu, P. Yi, W.B. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
Y.J. Yim, S.J. Park, Electromagnetic interference shielding effectiveness of high-density polyethylene composites reinforced with multi-walled carbon nanotubes. J. Ind. Eng. Chem. 21, 155–157 (2015). https://doi.org/10.1016/j.jiec.2014.04.001
W.B. Zhang, L.F. Wei, Z.L. Ma, Q.Q. Fan, J.Z. Ma, Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 177, 412–426 (2021). https://doi.org/10.1016/j.carbon.2021.02.093
S.H. Ryu, B. Park, Y.K. Han, S.J. Kwon, T. Kim et al., Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 10(8), 4446–4455 (2022). https://doi.org/10.1039/d1ta10065c
P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6
P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
A.O. Monteiro, P.B. Cachim, P.M.F.J. Costa, Self-sensing piezoresistive cement composite loaded with carbon black ps. Cem. Concr. Comp. 81, 59–65 (2017). https://doi.org/10.1016/j.cemconcomp.2017.04.009
Z.W. Li, Z.J. Lin, M.S. Han, Y.B. Mu, P.P. Yu et al., Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications. Chem. Eng. J. 420, 129826 (2021). https://doi.org/10.1016/j.cej.2021.129826
I. Abdalla, A. Salim, M.M. Zhu, J.Y. Yu, Z.L. Li et al., Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency. ACS Appl. Mater. Interfaces 10(51), 44561–44569 (2018). https://doi.org/10.1021/acsami.8b17514
Y.S. Kim, J.H. Lee, S.J. Park, Effect of ambient plasma treatment on single-walled carbon nanotubes-based epoxy/fabrics for improving fracture toughness and electromagnetic shielding effectiveness. Compos. Part A Appl. Sci. Manuf. 148, 106456 (2021). https://doi.org/10.1016/j.compositesa.2021.106456
S. Ganguly, N. Kanovsky, P. Das, A. Gedanken, S. Margel, Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non-contact heating applications. Adv. Mater. Interfaces 8(23), 2101255 (2021). https://doi.org/10.1002/admi.202101255
Y.L. Zhang, J.W. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
A.V. Menon, G. Madras, S. Bose, Light weight, ultrathin, and “thermally-clickable” self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J. 366, 72–82 (2019). https://doi.org/10.1016/j.cej.2019.02.086
K.X. Jin, J.X. Xing, X.G. Liu, Z.H. Jiang, S.M. Yang et al., Manipulating the assembly of the CNC/RGO composite film for superior electromagnetic interference shielding properties. J. Mater. Chem. A 9(47), 26999–27009 (2021). https://doi.org/10.1039/d1ta08147k
L. Kong, X.W. Yin, H.L. Xu, X.Y. Yuan, T. Wang et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/j.carbon.2019.01.009
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091
Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
Y. Cheng, X.Y. Li, Y.X. Qin, Y.T. Fang, G.L. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7(39), eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
Y. Zare, K.Y. Rhee, S.J. Park, A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model. Results Phys. 14, 102406 (2019). https://doi.org/10.1016/j.rinp.2019.102406
P.R. Agrawal, R. Kumar, S. Teotia, S. Kumari, D.P. Mondal et al., Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B Eng. 160, 131–139 (2019). https://doi.org/10.1016/j.compositesb.2018.10.033
R.L. Yang, X.C. Gui, L. Yao, Q.M. Hu, L.L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
C. Pavlou, M.G.P. Carbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4
L.F. Wei, W.B. Zhang, J.Z. Ma, S.L. Bai, Y.J. Ren et al., π-π stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites. Carbon 149, 679–692 (2019). https://doi.org/10.1016/j.carbon.2019.04.058
X.F. Wang, Z.W. Lei, X.D. Ma, G.F. He, T. Xu et al., A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022). https://doi.org/10.1016/j.cej.2021.132605
P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
L. Han, K. Li, Y. Fu, X. Yin, Y. Jiao et al., Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance. Compos. Sci. Technol. 222, 109407 (2022). https://doi.org/10.1016/j.compscitech.2022.109407
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
S.Y. Lee, P. Singh, R.L. Mahajan, Role of oxygen functional groups for improved performance of graphene-silicone composites as a thermal interface material. Carbon 145, 131–139 (2019). https://doi.org/10.1016/j.carbon.2018.12.054
Y.J. Heo, J.W. Lee, Y.R. Son, J.H. Lee, C.S. Yeo et al., Large-scale conductive yarns based on twistable Korean traditional paper (Hanji) for supercapacitor applications: toward high-performance paper supercapacitors. Adv. Energy Mater. 8(27), 1801854 (2018). https://doi.org/10.1002/aenm.201801854
C.S. Yeo, Y.J. Heo, M.K. Shin, J.H. Lee, Y.Y. Park et al., Ultralong and millimeter-thick graphene oxide supercapacitors with high volumetric capacitance. ACS Appl. Energy Mater. 4(8), 8059–8069 (2021). https://doi.org/10.1021/acsaem.1c01366
S.J. Park, J.S. Jin, Effect of corona discharge treatment on the dyeability of low-density polyethylene film. J. Colloid Interf. Sci. 236(1), 155–160 (2001). https://doi.org/10.1006/jcis.2000.7380
S.J. Park, D.I. Seo, C. Nah, Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/red mud nanocomposites. J. Colloid Interf. Sci. 251(1), 225–229 (2002). https://doi.org/10.1006/jcis.2002.8336
A. Yasmin, I.M. Daniel, Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45(24), 8211–8219 (2004). https://doi.org/10.1016/j.polymer.2004.09.054
J. Hong, P. Xu, Electromagnetic interference shielding anisotropy of unidirectional CFRP composites. Materials 14(8), 1907 (2021). https://doi.org/10.3390/ma14081907
D. Pan, G. Yang, H.M. Abo-Dief, J.W. Dong, F.M. Su et al., Vertically aligned silicon carbide nanowires/ boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
S.J. Kim, W. Song, Y. Yi, B.K. Min, S. Mondal et al., High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces 10(4), 3921–3928 (2018). https://doi.org/10.1021/acsami.7b15386
F. Pan, L. Cai, Y.Y. Shi, Y.Y. Dong, X.J. Zhu et al., Heterointerface engineering of beta-chitin/carbon nano-onions/Ni-P composites with boosted Maxwell-Wagner-Sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14, 85 (2022). https://doi.org/10.1007/s40820-022-00804-w
G.L. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
A. Jorio, R. Saito, Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 129(2), 021102 (2021). https://doi.org/10.1063/5.0030809
M. Kamel, M.E. Zawahry, H. Helmy, M. Eid, Improvements in the dyeability of polyester fabrics by atmospheric pressure oxygen plasma treatment. J. Text Inst. 102(3), 220–231 (2011). https://doi.org/10.1080/00405001003672366
L.Y. Meng, S.J. Park, Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films. J. Colloid Interf. Sci. 342(2), 559–563 (2010). https://doi.org/10.1016/j.jcis.2009.10.022
F.M. Fowkes, Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J. Phys. Chem. 66(2), 382–382 (1962). https://doi.org/10.1021/j100808a524
D.H. Kaelble, Dispersion-polar surface tension properties of organic solids. J. Adhes. 2(2), 66–81 (1970). https://doi.org/10.1080/0021846708544582
D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym Sci. 13(8), 1741–1747 (1969). https://doi.org/10.1002/app.1969.070130815
F. Yue, Q. Zhang, L.J. Xu, Y.Q. Zheng, C.X. Yao et al., Porous reduced graphene oxide/single-walled carbon nanotube film as freestanding and flexible electrode materials for electrosorption of organic dye. ACS Appl. Nano Mater. 2(10), 6258–6267 (2019). https://doi.org/10.1021/acsanm.9b01236
Y.Y. Hsieh, Y.B. Fang, J. Daum, S.N. Kanakaraj, G.Q. Zhang et al., Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries. Carbon 145, 677–689 (2019). https://doi.org/10.1016/j.carbon.2019.01.055
S.M. Zhao, Y.H. Yan, A.L. Gao, S. Zhao, J. Cui et al., Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(31), 26723–26732 (2018). https://doi.org/10.1021/acsami.8b09275
E.Z. Zhou, J.B. Xi, Y. Guo, Y.J. Liu, Z. Xu et al., Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133, 316–322 (2018). https://doi.org/10.1016/j.carbon.2018.03.023
A.V. Kyrylyuk, P. Schoot, Continuum percolation of carbon nanotubes in polymeric and colloidal media. PNAS 105(24), 8221–8226 (2008). https://doi.org/10.1073/pnas.0711449105
S.A. Schelkunoff, The impedance concept and its application to problems of reflection, refraction, shielding and power absorption. Bell Syst. Tech. J. 17(1), 17–48 (1938). https://doi.org/10.1002/j.1538-7305.1938.tb00774.x
S.A. Schelkunoff, Electromagnetic Waves. (1943).
M.Y. Peng, F.X. Qin, Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130(22), 225108 (2021). https://doi.org/10.1063/5.0075019
X.P. Li, S.P. Zeng, E. Shiju, L.Y. Liang, Z.Y. Bai et al., Quick heat dissipation in absorption-dominated microwave shielding properties of flexible poly(vinylidene fluoride)/carbon nanotube/Co composite films with anisotropy-shaped Co (flowers or chains). ACS Appl. Mater. Interfaces 10(47), 40789–40799 (2018). https://doi.org/10.1021/acsami.8b14733
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3), 413–431 (2021). https://doi.org/10.1002/sus2.21
J. Kruzelak, A. Kvasnicakova, K. Hlozekova, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3(1), 123–172 (2021). https://doi.org/10.1039/d0na00760a
H.J. Duan, H.X. Zhu, J.F. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8(18), 9146–9159 (2020). https://doi.org/10.1039/d0ta01393e
L. Ma, M. Hamidinejad, B. Zhao, C.Y. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2022). https://doi.org/10.1007/s40820-021-00759-4
F.M. Oliveira, J. Luxa, D. Bouša, Z. Sofer, R. Gusmão, Electromagnetic interference shielding by reduced graphene oxide foils. ACS Appl. Nano Mater. 5(5), 6792–6800 (2022). https://doi.org/10.1021/acsanm.2c00785
S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken et al., Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 38(12), 3936–3950 (2022). https://doi.org/10.1021/acs.langmuir.2c00278
B. Huang, J. Yue, B. Fan, X.Z. Tang, Y. Liu et al., Constructing hierarchical structure via in situ growth of CNT in SiO2-coated carbon foam for high-performance EMI shielding application. Compos. Sci. Technol. 222, 109372 (2022). https://doi.org/10.1016/j.compscitech.2022.109372
J. Joseph, P.R. Munda, D.A. John, A.M. Sidpara, J. Paul, Graphene and CNT filled hybrid thermoplastic composites for enhanced EMI shielding effectiveness. Mater. Res. Express 6(8), 085617 (2019). https://doi.org/10.1088/2053-1591/ab1e23
Y. Chen, H.B. Zhang, Y.B. Yang, M. Wang, A.Y. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016). https://doi.org/10.1002/adfm.201503782
G. Gedler, M. Antunes, J.I. Velasco, R. Ozisik, Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Mater. Des. 90, 906–914 (2016). https://doi.org/10.1016/j.matdes.2015.11.021
J.J. Liang, Y. Wang, Y. Huang, Y.F. Ma, Z.F. Liu et al., Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922–925 (2009). https://doi.org/10.1016/j.carbon.2008.12.038
X.H. Li, X.F. Li, K.N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
P. Sambyal, S.K. Dhawan, P. Gairola, S.S. Chauhan, S.P. Gairola, Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-band. Curr. Appl. Phys. 18(5), 611–618 (2018). https://doi.org/10.1016/j.cap.2018.03.001
H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
J.W. Dong, S.L. Luo, S.P. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13(50), 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao et al., Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
R.H. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
L. Wang, L.X. Chen, P. Song, C.B. Liang, Y.J. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
S. Liu, S.H. Qin, Y. Jiang, P.A. Song, H. Wang, Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 145, 106376 (2021). https://doi.org/10.1016/j.compositesa.2021.106376
M. Rahaman, T.K. Chaki, D. Khastgir, Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J. Mater. Sci. 46(11), 3989–3999 (2011). https://doi.org/10.1007/s10853-011-5326-x
X. Fan, G.C. Zhang, J.T. Li, Z.Y. Shang, H.M. Zhang et al., Study on foamability and electromagnetic interference shielding effectiveness of supercritical CO2 foaming epoxy/rubber/MWCNTs composite. Compos. Part A Appl. Sci. Manuf. 121, 64–73 (2019). https://doi.org/10.1016/j.compositesa.2019.03.008