Rational Design of Ruddlesden–Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells
Corresponding Author: Meng Ni
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 177
Abstract
Reversible protonic ceramic cells (RePCCs) hold promise for efficient energy storage, but their practicality is hindered by a lack of high-performance air electrode materials. Ruddlesden–Popper perovskite Sr3Fe2O7−δ (SF) exhibits superior proton uptake and rapid ionic conduction, boosting activity. However, excessive proton uptake during RePCC operation degrades SF’s crystal structure, impacting durability. This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes, incorporating Sr-deficiency and Nb-substitution to create Sr2.8Fe1.8Nb0.2O7−δ (D-SFN). Nb stabilizes SF's crystal, curbing excessive phase formation, and Sr-deficiency boosts oxygen vacancy concentration, optimizing oxygen transport. The D-SFN electrode demonstrates outstanding activity and durability, achieving a peak power density of 596 mW cm−2 in fuel cell mode and a current density of − 1.19 A cm−2 in electrolysis mode at 1.3 V, 650 °C, with excellent cycling durability. This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
Highlights:
1 A novel A/B-sites co-substitution strategy was introduced to enhance the performance and durability of Ruddlesden–Popper perovskite Sr3Fe2O7−δ (SF)-based air electrodes for reversible protonic ceramic cells (RePCCs).
2 Simultaneous Sr-deficiency and Nb-substitution in SF result in Sr2.8Fe1.8Nb0.2O7−δ (D-SFN), offering improved structural stability under RePCC conditions by suppressing the formation of Sr3Fe2(OH)12 phase.
3 The introduction of Sr-deficiency enhances oxygen vacancy concentration in D-SFN, promoting efficient oxygen transport within the material and contributing to excellent activity in RePCCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Bidwell, Thinking through participation in renewable energy decisions. Nat. Energy 1, 16051 (2016). https://doi.org/10.1038/nenergy.2016.51
- S. Zhao, T. Liu, Y. Dai, J. Wang, Y. Wang et al., Pt/C as a bifunctional ORR/iodide oxidation reaction (IOR) catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 7.65%. Appl. Catal. B Environ. 320, 121992 (2023). https://doi.org/10.1016/j.apcatb.2022.121992
- P.P. Lopes, V.R. Stamenkovic, Past, present, and future of lead-acid batteries. Science 369, 923–924 (2020). https://doi.org/10.1126/science.abd3352
- B. Gangaja, S. Nair, D. Santhanagopalan, Surface-engineered Li4Ti5O12 nanostructures for high-power Li-ion batteries. Nano-Micro Lett. 12, 30 (2020). https://doi.org/10.1007/s40820-020-0366-x
- H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
- W. Lv, Z. Tong, Y.-M. Yin, J. Yin, Z.-F. Ma, Novel nano-composites SDC-LiNaSO4 as functional layer for ITSOFC. Nano-Micro Lett. 7, 268–275 (2015). https://doi.org/10.1007/s40820-015-0038-4
- C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu et al., Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019). https://doi.org/10.1038/s41560-019-0333-2
- Y. Song, J. Liu, Y. Wang, D. Guan, A. Seong et al., Nanocomposites: a new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells. Adv. Energy Mater. 11, 2101899 (2021). https://doi.org/10.1002/aenm.202101899
- W. Zhang, Y. Zhou, X. Hu, Y. Ding, J. Gao et al., A synergistic three-phase, triple-conducting air electrode for reversible proton-conducting solid oxide cells. ACS Energy Lett. 8, 3999–4007 (2023). https://doi.org/10.1021/acsenergylett.3c01251
- Z. Liu, Z. Tang, Y. Song, G. Yang, W. Qian et al., High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Lett. 14, 217 (2022). https://doi.org/10.1007/s40820-022-00967-6
- A. Magrasó, R. Haugsrud, M. Segarra, T. Norby, Defects and transport in Gd-doped BaPrO3. J. Electroceram. 23, 80–88 (2009). https://doi.org/10.1007/s10832-008-9541-z
- S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3, 202–210 (2018). https://doi.org/10.1038/s41560-017-0085-9
- N. Wang, C. Tang, L. Du, R. Zhu, L. Xing et al., Advanced cathode materials for protonic ceramic fuel cells: Recent progress and future perspectives. Adv. Energy Mater. 12, 2201882 (2022). https://doi.org/10.1002/aenm.202201882
- R. Zohourian, R. Merkle, G. Raimondi, J. Maier, Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv. Funct. Mater. 28(35), 1801241 (2018). https://doi.org/10.1002/adfm.201801241
- Z. Wang, W. Yang, S.P. Shafi, L. Bi, Z. Wang et al., A high performance cathode for proton conducting solid oxide fuel cells. J. Mater. Chem. A 3, 8405–8412 (2015). https://doi.org/10.1039/c5ta00391a
- D. Huan, N. Shi, L. Zhang, W. Tan, Y. Xie et al., New, efficient, and reliable air electrode material for proton-conducting reversible solid oxide cells. ACS Appl. Mater. Interfaces 10, 1761–1770 (2018). https://doi.org/10.1021/acsami.7b16703
- N. Tarasova, I. Animitsa, A. Galisheva, V. Pryakhina, Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M=Ti, Zr) with Ruddlesden–Popper structure. Solid State Sci. 101, 106121 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106121
- A. Niemczyk, R. Merkle, J. Maier, K. Świerczek, Defect chemistry and proton uptake of La2−xSrxNiO4±δ and La2−xBaxNiO4±δ Ruddlesden-Popper phases. J. Solid State Chem. 306, 122731 (2022). https://doi.org/10.1016/j.jssc.2021.122731
- Z.L. Moreno Botello, A. Montenegro, N. Grimaldos Osorio, M. Huvé, C. Pirovano et al., Pure and Zr-doped YMnO3+δ as a YSZ-compatible SOFC cathode: A combined computational and experimental approach. J. Mater. Chem. A 7, 18589–18602 (2019). https://doi.org/10.1039/c9ta04912f
- J. Xu, H. Cai, G. Hao, L. Zhang, Z. Song et al., Characterization of high–valence Mo–doped PrBaCo2O5+ cathodes for IT–SOFCs. J. Alloys Compd. 842, 155600 (2020). https://doi.org/10.1016/j.jallcom.2020.155600
- C. Lu, R. Ren, Z. Zhu, G. Pan, G. Wang et al., BaCo0.4Fe0.4Nb0.1Sc0.1O3−δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode. Chem. Eng. J. 472, 144878 (2023). https://doi.org/10.1016/j.cej.2023.144878
- J. Wang, M. Saccoccio, D. Chen, Y. Gao, C. Chen et al., The effect of A-site and B-site substitution on BaFeO3–δ: An investigation as a cathode material for intermediate-temperature solid oxide fuel cells. J. Power. Sources 297, 511–518 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.016
- F. Dong, Y. Chen, R. Ran, D. Chen, M.O. Tadé et al., BaNb0.05Fe0.95O3–δ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A 1, 9781 (2013). https://doi.org/10.1039/c3ta11447c
- Z. Wang, Y. Wang, J. Wang, Y. Song, M.J. Robson et al., Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes. Nat. Catal. 5, 777–787 (2022). https://doi.org/10.1038/s41929-022-00829-9
- X. Chen, N. Yu, I.T. Bello, D. Guan, Z. Li et al., Facile anion engineering: A pathway to realizing enhanced triple conductivity in oxygen electrodes for reversible protonic ceramic electrochemical cells. Energy Storage Mater. 63, 103056 (2023). https://doi.org/10.1016/j.ensm.2023.103056
- T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
- J. Liu, F. Ciucci, The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data. Electrochim. Acta 331, 135316 (2020). https://doi.org/10.1016/j.electacta.2019.135316
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- A. Hagiwara, N. Hobara, K. Takizawa, K. Sato, H. Abe et al., Preparation and evaluation of mechanochemically fabricated LSM/ScSZ composite materials for SOFC cathodes. Solid State Ion. 177, 2967–2977 (2006). https://doi.org/10.1016/j.ssi.2006.08.021
- D. Huan, L. Zhang, K. Zhu, X. Li, N. Shi et al., Oxygen vacancy-engineered cobalt-free Ruddlesden–Popper cathode with excellent CO2 tolerance for solid oxide fuel cells. J. Power. Sources 497, 229872 (2021). https://doi.org/10.1016/j.jpowsour.2021.229872
- S. Jiang, J. Sunarso, W. Zhou, J. Shen, R. Ran et al., Cobalt-free SrNbxFe1–xO3–δ (x=0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. J. Power. Sources 298, 209–216 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.063
- D.O. Idisi, E.L. Meyer, E.M. Benecha, The role of iron oxide on the electronic and electrical properties of nitrogenated reduced graphene oxide: experimental and density functional theory approach. J. Mater. Sci. Mater. Electron. 35, 192 (2024). https://doi.org/10.1007/s10854-024-11947-4
- T.T. Pham, T.N. Pham, V. Chihaia, Q.A. Vu, T.T. Trinh et al., How do the doping concentrations of N and B in graphene modify the water adsorption? RSC Adv. 11, 19560–19568 (2021). https://doi.org/10.1039/d1ra01506k
- H. Zhang, Y. Gao, H. Xu, D. Guan, Z. Hu et al., Combined corner-sharing and edge-sharing networks in hybrid nanocomposite with unusual lattice-oxygen activation for efficient water oxidation. Adv. Funct. Mater. 32, 2207618 (2022). https://doi.org/10.1002/adfm.202207618
- A. Fujimori, A.E. Bocquet, T. Saitoh, T. Mizokawa, Electronic structure of 3d transition metal compounds: systematic chemical trends and multiplet effects. J. Electron Spectrosc. Relat. Phenom. 62, 141–152 (1993). https://doi.org/10.1016/0368-2048(93)80011-a
- A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy et al., Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004). https://doi.org/10.1038/nmat1040
- M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007). https://doi.org/10.1039/B702633A
- M. Liang, Y. Zhu, Y. Song, D. Guan, Z. Luo et al., A new durable surface nanops-modified perovskite cathode for protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere. Adv. Mater. 34, e2106379 (2022). https://doi.org/10.1002/adma.202106379
- X. Zhou, N. Hou, T. Gan, L. Fan, Y. Zhang et al., Enhanced oxygen reduction reaction activity of BaCe0.2Fe0.8O3–δ cathode for proton-conducting solid oxide fuel cells via Pr-doping. J. Power. Sources 495, 229776 (2021). https://doi.org/10.1016/j.jpowsour.2021.229776
- W. Xia, Q. Li, L. Sun, L. Huo, H. Zhao, Enhanced electrochemical performance and CO2 tolerance of Ba0.95La0.05Fe0.85Cu0.15O3- as Fe-based cathode electrocatalyst for solid oxide fuel cells. J. Eur. Ceram. Soc. 40, 1967–1974 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.039
- X. Xu, H. Wang, M. Fronzi, X. Wang, L. Bi et al., Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7, 20624–20632 (2019). https://doi.org/10.1039/c9ta05300j
- S.L. Millican, A.M. Deml, M. Papac, A. Zakutayev, R. O’Hayre et al., Predicting oxygen off-stoichiometry and hydrogen incorporation in complex perovskite oxides. Chem. Mater. 34, 510–518 (2022). https://doi.org/10.1021/acs.chemmater.0c04765
- H. Li, J. Li, X. Wang, C. Xie, Y. Wang et al., Electrochemical performance and enhancement of hydration kinetics on BaCo0.7Fe0.2Zr0.1O3–δ cathode for protonic ceramic fuel cells. ACS Appl. Energy Mater. 6, 8966–8975 (2023). https://doi.org/10.1021/acsaem.3c01698
- W. Zhang, H. Muroyama, Y. Mikami, Q. Liu, X. Liu et al., Effectively enhanced oxygen reduction activity and stability of triple-conducting composite cathodes by strongly interacting interfaces for protonic ceramic fuel cells. Chem. Eng. J. 461, 142056 (2023). https://doi.org/10.1016/j.cej.2023.142056
- Y. Lee, J. Kleis, J. Rossmeisl, D. Morgan, Ab initio energetics of LaBO3 (001) (B=Mn, Fe Co, and Ni) for solid oxide fuel cell cathodes. Phys. Rev. B 80(22), 224101 (2009). https://doi.org/10.1103/PhysRevB.80.224101
- D. Huan, L. Zhang, X. Li, Y. Xie, N. Shi et al., A durable ruddlesden-popper cathode for protonic ceramic fuel cells. ChemSusChem 13, 4994–5003 (2020). https://doi.org/10.1002/cssc.202001168
- J. Wang, K.Y. Lam, M. Saccoccio, Y. Gao, D. Chen et al., Ca and in Co-doped BaFeO3–δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells. J. Power. Sources 324, 224–232 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.089
- S. Wang, J. Zan, W. Qiu, D. Zheng, F. Li et al., Evaluation of perovskite oxides LnBaCo2O5+δ (Ln=La, Pr, Nd and Sm) as cathode materials for IT-SOFC. J. Electroanal. Chem. 886, 115144 (2021). https://doi.org/10.1016/j.jelechem.2021.115144
- Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong et al., Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3, 2842–2853 (2019). https://doi.org/10.1016/j.joule.2019.07.004
- J. Kim, A. Jun, J. Shin, G. Kim, Effect of Fe doping on layered GdBa0.5Sr0.5Co2O5+δ perovskite cathodes for intermediate temperature solid oxide fuel cells. J. Am. Ceram. Soc. 97(2), 651–656 (2014). https://doi.org/10.1111/jace.12692
- M. Gou, R. Ren, W. Sun, C. Xu, X. Meng et al., Nb-doped Sr2Fe1.5Mo0.5O6−δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells. Ceram. Int. 45, 15696–15704 (2019). https://doi.org/10.1016/j.ceramint.2019.03.130
- S. Yun, J. Yu, W. Lee, H. Lee, W.-S. Yoon, Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Mater. Horiz. 10, 829–841 (2023). https://doi.org/10.1039/d2mh01254e
- Y. Zhang, B. Chen, D. Guan, M. Xu, R. Ran et al., Thermal-expansion offset for high-performance fuel cell cathodes. Nature 591, 246–251 (2021). https://doi.org/10.1038/s41586-021-03264-1
- Y. Fu, A. Subardi, M. Hsieh, W. Chang, Electrochemical properties of La0.5Sr0.5Co0.8M0.2O3−δ (M=Mn, Fe, Ni, Cu) perovskite cathodes for IT-SOFCs. J. Am. Ceram. Soc. 99(4), 1345–1352 (2016). https://doi.org/10.1111/jace.14127
- Y. Wan, Y. Xing, Y. Li, D. Huan, C. Xia, Thermal cycling durability improved by doping fluorine to PrBaCo2O5+δ as oxygen reduction reaction electrocatalyst in intermediate-temperature solid oxide fuel cells. J. Power. Sources 402, 363–372 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.065
- Y. Wang, F. Jin, X. Hao, B. Niu, P. Lyu et al., B-site-ordered Co-based double perovskites Sr2Co1–Nb FeO5+ as active and stable cathodes for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 829, 154470 (2020). https://doi.org/10.1016/j.jallcom.2020.154470
- B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha et al., Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1–xCo0.8Fe0.2O3–δ (0.3≤x≤0.7). J. Eur. Ceram. Soc. 26, 2827–2832 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.047
- H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K.J. Yoon et al., A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm2 at 600 °C. Nat. Energy 3, 870–875 (2018). https://doi.org/10.1038/s41560-018-0230-0
- Y. Hou, L. Wang, L. Bian, Q. Zhang, L. Chen et al., Effect of high-valence elements doping at B site of La0.5Sr0.5FeO3−δ. Ceram. Int. 48, 4223–4229 (2022). https://doi.org/10.1016/j.ceramint.2021.10.214
- I.T. Bello, S. Zhai, Q. He, C. Cheng, Y. Dai et al., Materials development and prospective for protonic ceramic fuel cells. Int. J. Energy Res. 46, 2212–2240 (2022). https://doi.org/10.1002/er.7371
- K.-C. Lee, M.-B. Choi, D.-K. Lim, B. Singh, S.-J. Song, Effect of humidification on the performance of intermediate-temperature proton conducting ceramic fuel cells with ceramic composite cathodes. J. Power. Sources 232, 224–233 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.001
- R. Ren, Z. Wang, X. Meng, X. Wang, C. Xu et al., Tailoring the oxygen vacancy to achieve fast intrinsic proton transport in a perovskite cathode for protonic ceramic fuel cells. ACS Appl. Energy Mater. 3, 4914–4922 (2020). https://doi.org/10.1021/acsaem.0c00486
- R. Ren, Z. Wang, C. Xu, W. Sun, J. Qiao et al., Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3–δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells. J. Mater. Chem. A 7, 18365–18372 (2019). https://doi.org/10.1039/c9ta04335g
- Y. Li, Y. Tian, J. Li, J. Pu, B. Chi, Sr-free orthorhombic perovskite Pr0.8Ca0.2Fe0.8Co0.2O3–δ as a high-performance air electrode for reversible solid oxide cell. J. Power. Sources 528, 231202 (2022). https://doi.org/10.1016/j.jpowsour.2022.231202
- P. Yao, J. Zhang, Q. Qiu, G. Li, Y. Zhao et al., Design of a perovskite oxide cathode for a protonic ceramic fuel cell. Ceram. Int. 50, 2373–2382 (2024). https://doi.org/10.1016/j.ceramint.2023.11.015
- M.F. Hoedl, D. Gryaznov, R. Merkle, E.A. Kotomin, J. Maier, Interdependence of oxygenation and hydration in mixed-conducting (Ba, Sr)FeO3–δ perovskites studied by density functional theory. J. Phys. Chem. C 124, 11780–11789 (2020). https://doi.org/10.1021/acs.jpcc.0c01924
- R. Merkle, M.F. Hoedl, G. Raimondi, R. Zohourian, J. Maier, Oxides with mixed protonic and electronic conductivity. Annu. Rev. Mater. Res. 51, 461–493 (2021). https://doi.org/10.1146/annurev-matsci-091819-010219
- M. Matvejeff, M. Lehtimäki, A. Hirasa, Y.-H. Huang, H. Yamauchi et al., New water-containing phase derived from the Sr3Fe2O7−δ phase of the Ruddlesden−Popper structure. Chem. Mater. 17, 2775–2779 (2005). https://doi.org/10.1021/cm050106z
- K.V. Zakharchuk, A.A. Yaremchenko, D.P. Fagg, Electrical properties and thermal expansion of strontium aluminates. J. Alloys Compd. 613, 232–237 (2014). https://doi.org/10.1016/j.jallcom.2014.05.225
- P.R. Slater, C. Greaves, The ionic conductivity of proton containing garnets and their decomposition products. Solid State Ion. 53–56, 989–992 (1992). https://doi.org/10.1016/0167-2738(92)90281-s
- C. Zhou, D. Liu, M. Fei, X. Wang, R. Ran et al., Cathode water management towards improved performance of protonic ceramic fuel cells. J. Power. Sources 556, 232403 (2023). https://doi.org/10.1016/j.jpowsour.2022.232403
- D. Zou, Y. Yi, Y. Song, D. Guan, M. Xu et al., The BaCe0.16Y0.04Fe0.8O3–δ nanocomposite: a new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 10, 5381–5390 (2022). https://doi.org/10.1039/d1ta10652j
References
D. Bidwell, Thinking through participation in renewable energy decisions. Nat. Energy 1, 16051 (2016). https://doi.org/10.1038/nenergy.2016.51
S. Zhao, T. Liu, Y. Dai, J. Wang, Y. Wang et al., Pt/C as a bifunctional ORR/iodide oxidation reaction (IOR) catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 7.65%. Appl. Catal. B Environ. 320, 121992 (2023). https://doi.org/10.1016/j.apcatb.2022.121992
P.P. Lopes, V.R. Stamenkovic, Past, present, and future of lead-acid batteries. Science 369, 923–924 (2020). https://doi.org/10.1126/science.abd3352
B. Gangaja, S. Nair, D. Santhanagopalan, Surface-engineered Li4Ti5O12 nanostructures for high-power Li-ion batteries. Nano-Micro Lett. 12, 30 (2020). https://doi.org/10.1007/s40820-020-0366-x
H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
W. Lv, Z. Tong, Y.-M. Yin, J. Yin, Z.-F. Ma, Novel nano-composites SDC-LiNaSO4 as functional layer for ITSOFC. Nano-Micro Lett. 7, 268–275 (2015). https://doi.org/10.1007/s40820-015-0038-4
C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu et al., Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019). https://doi.org/10.1038/s41560-019-0333-2
Y. Song, J. Liu, Y. Wang, D. Guan, A. Seong et al., Nanocomposites: a new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells. Adv. Energy Mater. 11, 2101899 (2021). https://doi.org/10.1002/aenm.202101899
W. Zhang, Y. Zhou, X. Hu, Y. Ding, J. Gao et al., A synergistic three-phase, triple-conducting air electrode for reversible proton-conducting solid oxide cells. ACS Energy Lett. 8, 3999–4007 (2023). https://doi.org/10.1021/acsenergylett.3c01251
Z. Liu, Z. Tang, Y. Song, G. Yang, W. Qian et al., High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Lett. 14, 217 (2022). https://doi.org/10.1007/s40820-022-00967-6
A. Magrasó, R. Haugsrud, M. Segarra, T. Norby, Defects and transport in Gd-doped BaPrO3. J. Electroceram. 23, 80–88 (2009). https://doi.org/10.1007/s10832-008-9541-z
S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3, 202–210 (2018). https://doi.org/10.1038/s41560-017-0085-9
N. Wang, C. Tang, L. Du, R. Zhu, L. Xing et al., Advanced cathode materials for protonic ceramic fuel cells: Recent progress and future perspectives. Adv. Energy Mater. 12, 2201882 (2022). https://doi.org/10.1002/aenm.202201882
R. Zohourian, R. Merkle, G. Raimondi, J. Maier, Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv. Funct. Mater. 28(35), 1801241 (2018). https://doi.org/10.1002/adfm.201801241
Z. Wang, W. Yang, S.P. Shafi, L. Bi, Z. Wang et al., A high performance cathode for proton conducting solid oxide fuel cells. J. Mater. Chem. A 3, 8405–8412 (2015). https://doi.org/10.1039/c5ta00391a
D. Huan, N. Shi, L. Zhang, W. Tan, Y. Xie et al., New, efficient, and reliable air electrode material for proton-conducting reversible solid oxide cells. ACS Appl. Mater. Interfaces 10, 1761–1770 (2018). https://doi.org/10.1021/acsami.7b16703
N. Tarasova, I. Animitsa, A. Galisheva, V. Pryakhina, Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M=Ti, Zr) with Ruddlesden–Popper structure. Solid State Sci. 101, 106121 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106121
A. Niemczyk, R. Merkle, J. Maier, K. Świerczek, Defect chemistry and proton uptake of La2−xSrxNiO4±δ and La2−xBaxNiO4±δ Ruddlesden-Popper phases. J. Solid State Chem. 306, 122731 (2022). https://doi.org/10.1016/j.jssc.2021.122731
Z.L. Moreno Botello, A. Montenegro, N. Grimaldos Osorio, M. Huvé, C. Pirovano et al., Pure and Zr-doped YMnO3+δ as a YSZ-compatible SOFC cathode: A combined computational and experimental approach. J. Mater. Chem. A 7, 18589–18602 (2019). https://doi.org/10.1039/c9ta04912f
J. Xu, H. Cai, G. Hao, L. Zhang, Z. Song et al., Characterization of high–valence Mo–doped PrBaCo2O5+ cathodes for IT–SOFCs. J. Alloys Compd. 842, 155600 (2020). https://doi.org/10.1016/j.jallcom.2020.155600
C. Lu, R. Ren, Z. Zhu, G. Pan, G. Wang et al., BaCo0.4Fe0.4Nb0.1Sc0.1O3−δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode. Chem. Eng. J. 472, 144878 (2023). https://doi.org/10.1016/j.cej.2023.144878
J. Wang, M. Saccoccio, D. Chen, Y. Gao, C. Chen et al., The effect of A-site and B-site substitution on BaFeO3–δ: An investigation as a cathode material for intermediate-temperature solid oxide fuel cells. J. Power. Sources 297, 511–518 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.016
F. Dong, Y. Chen, R. Ran, D. Chen, M.O. Tadé et al., BaNb0.05Fe0.95O3–δ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A 1, 9781 (2013). https://doi.org/10.1039/c3ta11447c
Z. Wang, Y. Wang, J. Wang, Y. Song, M.J. Robson et al., Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes. Nat. Catal. 5, 777–787 (2022). https://doi.org/10.1038/s41929-022-00829-9
X. Chen, N. Yu, I.T. Bello, D. Guan, Z. Li et al., Facile anion engineering: A pathway to realizing enhanced triple conductivity in oxygen electrodes for reversible protonic ceramic electrochemical cells. Energy Storage Mater. 63, 103056 (2023). https://doi.org/10.1016/j.ensm.2023.103056
T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
J. Liu, F. Ciucci, The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data. Electrochim. Acta 331, 135316 (2020). https://doi.org/10.1016/j.electacta.2019.135316
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
A. Hagiwara, N. Hobara, K. Takizawa, K. Sato, H. Abe et al., Preparation and evaluation of mechanochemically fabricated LSM/ScSZ composite materials for SOFC cathodes. Solid State Ion. 177, 2967–2977 (2006). https://doi.org/10.1016/j.ssi.2006.08.021
D. Huan, L. Zhang, K. Zhu, X. Li, N. Shi et al., Oxygen vacancy-engineered cobalt-free Ruddlesden–Popper cathode with excellent CO2 tolerance for solid oxide fuel cells. J. Power. Sources 497, 229872 (2021). https://doi.org/10.1016/j.jpowsour.2021.229872
S. Jiang, J. Sunarso, W. Zhou, J. Shen, R. Ran et al., Cobalt-free SrNbxFe1–xO3–δ (x=0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. J. Power. Sources 298, 209–216 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.063
D.O. Idisi, E.L. Meyer, E.M. Benecha, The role of iron oxide on the electronic and electrical properties of nitrogenated reduced graphene oxide: experimental and density functional theory approach. J. Mater. Sci. Mater. Electron. 35, 192 (2024). https://doi.org/10.1007/s10854-024-11947-4
T.T. Pham, T.N. Pham, V. Chihaia, Q.A. Vu, T.T. Trinh et al., How do the doping concentrations of N and B in graphene modify the water adsorption? RSC Adv. 11, 19560–19568 (2021). https://doi.org/10.1039/d1ra01506k
H. Zhang, Y. Gao, H. Xu, D. Guan, Z. Hu et al., Combined corner-sharing and edge-sharing networks in hybrid nanocomposite with unusual lattice-oxygen activation for efficient water oxidation. Adv. Funct. Mater. 32, 2207618 (2022). https://doi.org/10.1002/adfm.202207618
A. Fujimori, A.E. Bocquet, T. Saitoh, T. Mizokawa, Electronic structure of 3d transition metal compounds: systematic chemical trends and multiplet effects. J. Electron Spectrosc. Relat. Phenom. 62, 141–152 (1993). https://doi.org/10.1016/0368-2048(93)80011-a
A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy et al., Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004). https://doi.org/10.1038/nmat1040
M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007). https://doi.org/10.1039/B702633A
M. Liang, Y. Zhu, Y. Song, D. Guan, Z. Luo et al., A new durable surface nanops-modified perovskite cathode for protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere. Adv. Mater. 34, e2106379 (2022). https://doi.org/10.1002/adma.202106379
X. Zhou, N. Hou, T. Gan, L. Fan, Y. Zhang et al., Enhanced oxygen reduction reaction activity of BaCe0.2Fe0.8O3–δ cathode for proton-conducting solid oxide fuel cells via Pr-doping. J. Power. Sources 495, 229776 (2021). https://doi.org/10.1016/j.jpowsour.2021.229776
W. Xia, Q. Li, L. Sun, L. Huo, H. Zhao, Enhanced electrochemical performance and CO2 tolerance of Ba0.95La0.05Fe0.85Cu0.15O3- as Fe-based cathode electrocatalyst for solid oxide fuel cells. J. Eur. Ceram. Soc. 40, 1967–1974 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.039
X. Xu, H. Wang, M. Fronzi, X. Wang, L. Bi et al., Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7, 20624–20632 (2019). https://doi.org/10.1039/c9ta05300j
S.L. Millican, A.M. Deml, M. Papac, A. Zakutayev, R. O’Hayre et al., Predicting oxygen off-stoichiometry and hydrogen incorporation in complex perovskite oxides. Chem. Mater. 34, 510–518 (2022). https://doi.org/10.1021/acs.chemmater.0c04765
H. Li, J. Li, X. Wang, C. Xie, Y. Wang et al., Electrochemical performance and enhancement of hydration kinetics on BaCo0.7Fe0.2Zr0.1O3–δ cathode for protonic ceramic fuel cells. ACS Appl. Energy Mater. 6, 8966–8975 (2023). https://doi.org/10.1021/acsaem.3c01698
W. Zhang, H. Muroyama, Y. Mikami, Q. Liu, X. Liu et al., Effectively enhanced oxygen reduction activity and stability of triple-conducting composite cathodes by strongly interacting interfaces for protonic ceramic fuel cells. Chem. Eng. J. 461, 142056 (2023). https://doi.org/10.1016/j.cej.2023.142056
Y. Lee, J. Kleis, J. Rossmeisl, D. Morgan, Ab initio energetics of LaBO3 (001) (B=Mn, Fe Co, and Ni) for solid oxide fuel cell cathodes. Phys. Rev. B 80(22), 224101 (2009). https://doi.org/10.1103/PhysRevB.80.224101
D. Huan, L. Zhang, X. Li, Y. Xie, N. Shi et al., A durable ruddlesden-popper cathode for protonic ceramic fuel cells. ChemSusChem 13, 4994–5003 (2020). https://doi.org/10.1002/cssc.202001168
J. Wang, K.Y. Lam, M. Saccoccio, Y. Gao, D. Chen et al., Ca and in Co-doped BaFeO3–δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells. J. Power. Sources 324, 224–232 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.089
S. Wang, J. Zan, W. Qiu, D. Zheng, F. Li et al., Evaluation of perovskite oxides LnBaCo2O5+δ (Ln=La, Pr, Nd and Sm) as cathode materials for IT-SOFC. J. Electroanal. Chem. 886, 115144 (2021). https://doi.org/10.1016/j.jelechem.2021.115144
Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong et al., Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3, 2842–2853 (2019). https://doi.org/10.1016/j.joule.2019.07.004
J. Kim, A. Jun, J. Shin, G. Kim, Effect of Fe doping on layered GdBa0.5Sr0.5Co2O5+δ perovskite cathodes for intermediate temperature solid oxide fuel cells. J. Am. Ceram. Soc. 97(2), 651–656 (2014). https://doi.org/10.1111/jace.12692
M. Gou, R. Ren, W. Sun, C. Xu, X. Meng et al., Nb-doped Sr2Fe1.5Mo0.5O6−δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells. Ceram. Int. 45, 15696–15704 (2019). https://doi.org/10.1016/j.ceramint.2019.03.130
S. Yun, J. Yu, W. Lee, H. Lee, W.-S. Yoon, Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Mater. Horiz. 10, 829–841 (2023). https://doi.org/10.1039/d2mh01254e
Y. Zhang, B. Chen, D. Guan, M. Xu, R. Ran et al., Thermal-expansion offset for high-performance fuel cell cathodes. Nature 591, 246–251 (2021). https://doi.org/10.1038/s41586-021-03264-1
Y. Fu, A. Subardi, M. Hsieh, W. Chang, Electrochemical properties of La0.5Sr0.5Co0.8M0.2O3−δ (M=Mn, Fe, Ni, Cu) perovskite cathodes for IT-SOFCs. J. Am. Ceram. Soc. 99(4), 1345–1352 (2016). https://doi.org/10.1111/jace.14127
Y. Wan, Y. Xing, Y. Li, D. Huan, C. Xia, Thermal cycling durability improved by doping fluorine to PrBaCo2O5+δ as oxygen reduction reaction electrocatalyst in intermediate-temperature solid oxide fuel cells. J. Power. Sources 402, 363–372 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.065
Y. Wang, F. Jin, X. Hao, B. Niu, P. Lyu et al., B-site-ordered Co-based double perovskites Sr2Co1–Nb FeO5+ as active and stable cathodes for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 829, 154470 (2020). https://doi.org/10.1016/j.jallcom.2020.154470
B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha et al., Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1–xCo0.8Fe0.2O3–δ (0.3≤x≤0.7). J. Eur. Ceram. Soc. 26, 2827–2832 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.047
H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K.J. Yoon et al., A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm2 at 600 °C. Nat. Energy 3, 870–875 (2018). https://doi.org/10.1038/s41560-018-0230-0
Y. Hou, L. Wang, L. Bian, Q. Zhang, L. Chen et al., Effect of high-valence elements doping at B site of La0.5Sr0.5FeO3−δ. Ceram. Int. 48, 4223–4229 (2022). https://doi.org/10.1016/j.ceramint.2021.10.214
I.T. Bello, S. Zhai, Q. He, C. Cheng, Y. Dai et al., Materials development and prospective for protonic ceramic fuel cells. Int. J. Energy Res. 46, 2212–2240 (2022). https://doi.org/10.1002/er.7371
K.-C. Lee, M.-B. Choi, D.-K. Lim, B. Singh, S.-J. Song, Effect of humidification on the performance of intermediate-temperature proton conducting ceramic fuel cells with ceramic composite cathodes. J. Power. Sources 232, 224–233 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.001
R. Ren, Z. Wang, X. Meng, X. Wang, C. Xu et al., Tailoring the oxygen vacancy to achieve fast intrinsic proton transport in a perovskite cathode for protonic ceramic fuel cells. ACS Appl. Energy Mater. 3, 4914–4922 (2020). https://doi.org/10.1021/acsaem.0c00486
R. Ren, Z. Wang, C. Xu, W. Sun, J. Qiao et al., Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3–δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells. J. Mater. Chem. A 7, 18365–18372 (2019). https://doi.org/10.1039/c9ta04335g
Y. Li, Y. Tian, J. Li, J. Pu, B. Chi, Sr-free orthorhombic perovskite Pr0.8Ca0.2Fe0.8Co0.2O3–δ as a high-performance air electrode for reversible solid oxide cell. J. Power. Sources 528, 231202 (2022). https://doi.org/10.1016/j.jpowsour.2022.231202
P. Yao, J. Zhang, Q. Qiu, G. Li, Y. Zhao et al., Design of a perovskite oxide cathode for a protonic ceramic fuel cell. Ceram. Int. 50, 2373–2382 (2024). https://doi.org/10.1016/j.ceramint.2023.11.015
M.F. Hoedl, D. Gryaznov, R. Merkle, E.A. Kotomin, J. Maier, Interdependence of oxygenation and hydration in mixed-conducting (Ba, Sr)FeO3–δ perovskites studied by density functional theory. J. Phys. Chem. C 124, 11780–11789 (2020). https://doi.org/10.1021/acs.jpcc.0c01924
R. Merkle, M.F. Hoedl, G. Raimondi, R. Zohourian, J. Maier, Oxides with mixed protonic and electronic conductivity. Annu. Rev. Mater. Res. 51, 461–493 (2021). https://doi.org/10.1146/annurev-matsci-091819-010219
M. Matvejeff, M. Lehtimäki, A. Hirasa, Y.-H. Huang, H. Yamauchi et al., New water-containing phase derived from the Sr3Fe2O7−δ phase of the Ruddlesden−Popper structure. Chem. Mater. 17, 2775–2779 (2005). https://doi.org/10.1021/cm050106z
K.V. Zakharchuk, A.A. Yaremchenko, D.P. Fagg, Electrical properties and thermal expansion of strontium aluminates. J. Alloys Compd. 613, 232–237 (2014). https://doi.org/10.1016/j.jallcom.2014.05.225
P.R. Slater, C. Greaves, The ionic conductivity of proton containing garnets and their decomposition products. Solid State Ion. 53–56, 989–992 (1992). https://doi.org/10.1016/0167-2738(92)90281-s
C. Zhou, D. Liu, M. Fei, X. Wang, R. Ran et al., Cathode water management towards improved performance of protonic ceramic fuel cells. J. Power. Sources 556, 232403 (2023). https://doi.org/10.1016/j.jpowsour.2022.232403
D. Zou, Y. Yi, Y. Song, D. Guan, M. Xu et al., The BaCe0.16Y0.04Fe0.8O3–δ nanocomposite: a new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 10, 5381–5390 (2022). https://doi.org/10.1039/d1ta10652j