MOF-Like 3D Graphene-Based Catalytic Membrane Fabricated by One-Step Laser Scribing for Robust Water Purification and Green Energy Production
Corresponding Author: Lei Ye
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 174
Abstract
Increasing both clean water and green energy demands for survival and development are the grand challenges of our age. Here, we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane (3D-GCM) with active metal nanoparticles (AMNs) loading for simultaneously obtaining the water purification and clean energy generation, via a “green” one-step laser scribing technology. The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs, which exhibits high permeated fluxes (over 100 L m−2 h−1) and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving (0.1 bar). After adsorption saturating, the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis, and restores the adsorption capacity well for the next time membrane separation. Most importantly, the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation. Moreover, the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation, realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation. This “green” precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.
Highlights:
1 A novel multifunctional three-dimensional graphene-metal frame film for the combination of water purification and hydrolysis hydrogen production, which has excellent purification efficiency and extremely low energy consumption.
2 A “green” one-step laser scribing technology without any organic solvent in the whole preparation process.
3 Metal nanoparticles as the active site can be loaded in a graphene film and wrapped by graphene, preventing undesirable aggregation and increasing catalytic active sites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Zheng, J. Li, S. Ci, P. Cai, Y. Ding et al., Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen. Appl. Catal. B 277, 119178 (2020). https://doi.org/10.1016/j.apcatb.2020.119178
- I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 12, 72 (2020). https://doi.org/10.1007/s40820-020-0411-9
- B. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan et al., Prussian blue analogs for rechargeable batteries. iScience 3, 110–133 (2018). https://doi.org/10.1016/j.isci.2018.04.008
- S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13, 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
- H. Wang, X. Mi, Y. Li, S. Zhan, 3D graphene-based macrostructures for water treatment. Adv. Mater. 32(3), 1806843 (2019). https://doi.org/10.1002/adma.201806843
- Y. Sun, F. Yu, C. Li, X. Dai, J. Ma, Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 12, 2 (2019). https://doi.org/10.1007/s40820-019-0336-3
- T. Xu, M.A. Shehzad, X. Wang, B. Wu, L. Ge et al., Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Lett. 12, 51 (2020). https://doi.org/10.1007/s40820-020-0386-6
- Y. Yang, X. Yang, L. Liang, Y. Gao, H. Cheng et al., Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057 (2019). https://doi.org/10.1126/science.aau5321
- K.H. Thebo, X. Qian, Q. Zhang, L. Chen, H.M. Cheng et al., Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9, 1486 (2018). https://doi.org/10.1038/s41467-018-03919-0
- Z. Zhang, S. Li, B. Mi, J. Wang, J. Ding, Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off. Sci. Adv. 6(34), eaba9471 (2020). https://doi.org/10.1126/sciadv.aba9471
- C.N. Yeh, K. Raidongia, J. Shao, Q.H. Yang, J. Huang, On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166 (2014). https://doi.org/10.1038/nchem.2145
- Y. Zhong, S. Mahmud, Z. He, Y. Yang, Z. Zhang et al., Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. J. Hazard. Mater. 397, 122774 (2020). https://doi.org/10.1016/j.jhazmat.2020.122774
- L. Wan, M. Long, D. Zhou, L. Zhang, W. Cai, Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide. Nano-Micro Lett. 4, 90 (2012). https://doi.org/10.1007/bf03353698
- M. Zhang, Y. Mao, G. Liu, G. Liu, Y. Fan et al., Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem. Int. Ed. 59(4), 1689–1695 (2020). https://doi.org/10.1002/anie.201913010
- L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang et al., Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380 (2017). https://doi.org/10.1038/nature24044
- A.B. Alayande, H.D. Park, J.S. Vrouwenvelder, I.S. Kim, Implications of chemical reduction using hydriodic acid on the antimicrobial properties of graphene oxide and reduced graphene oxide membranes. Small 15(28), 1901023 (2019). https://doi.org/10.1002/smll.201901023
- Y. Cao, Z. Xiong, F. Xia, G.V. Franks, L. Zu et al., New structural insights into densely assembled reduced graphene oxide membranes. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201535
- M. Zhang, K. Guan, Y. Ji, G. Liu, W. Jin et al., Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019). https://doi.org/10.1038/s41467-019-09286-8
- J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546 (2017). https://doi.org/10.1038/nnano.2017.21
- C. Liu, L. Liu, X. Tian, Y. Wang, R. Li et al., Coupling metal–organic frameworks and g-CN to derive Fe@N-doped graphene-like carbon for peroxymonosulfate activation: upgrading framework stability and performance. Appl. Catal. B 255, 117763 (2019). https://doi.org/10.1016/j.apcatb.2019.117763
- S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A.R. Kim, S. Sengodan et al., Nitrogen-doped graphene encapsulated FeCoMoS nanops as advanced trifunctional catalyst for water splitting devices and zinc–air batteries. Appl. Catal. B 279, 119381 (2020). https://doi.org/10.1016/j.apcatb.2020.119381
- H.J. Huang, J.C.S. Wu, H.P. Chiang, Y.F.C. Chau, Y.S. Lin et al., Review of experimental setups for plasmonic photocatalytic reactions. Catalysts 10(1), 46 (2019). https://doi.org/10.3390/catal10010046
- W. Zhang, W. Li, Y. Li, S. Peng, Z. Xu, One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution. Catal. Today 335, 326 (2019). https://doi.org/10.1016/j.cattod.2018.12.016
- S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanops. Nat. Mater. 14, 567–576 (2015). https://doi.org/10.1038/nmat4281
- H. Luo, Z. Zeng, G. Zeng, C. Zhang, R. Xiao et al., Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chem. Eng. J. 383, 123196 (2020). https://doi.org/10.1016/j.cej.2019.123196
- Y.C. Qiao, Y.H. Wei, Y. Pang, Y.X. Li, D.Y. Wang et al., Graphene devices based on laser scribing technology. Jpn. J. Appl. Phys. 57, 04fa01 (2018). https://doi.org/10.7567/jjap.57.04fa01
- R. You, Y.Q. Liu, Y.L. Hao, D.D. Han, Y.L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32(15), e1901981 (2019). https://doi.org/10.1002/adma.201901981
- L. Fan, F. Zhao, Z. Huang, B. Chen, S.F. Zhou et al., Partial deligandation of M/Ce-BTC nanorods (M = Au, Cu, au-cu) with “Quasi-MOF” structures towards improving catalytic activity and stability. Appl. Catal. A Gen. 572, 34 (2019). https://doi.org/10.1016/j.apcata.2018.12.021
- J.B. Chang, C.H. Liu, J. Liu, Y.Y. Zhou, X. Gao et al., Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanops for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7, 307 (2015). https://doi.org/10.1007/s40820-015-0044-6
- Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a P-N heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12, 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
- S. Subudhi, S. Mansingh, S.P. Tripathy, A. Mohanty, P. Mohapatra et al., The fabrication of Au/Pd plasmonic alloys on UiO-66-NH2: an efficient visible light-induced photocatalyst towards the Suzuki Miyaura coupling reaction under ambient conditions. Catal. Sci. Technol. 9(23), 6579–6585 (2019). https://doi.org/10.1039/c9cy01431d
- L.H. Wee, M.R. Lohe, N. Janssens, S. Kaskel, J.A. Martens, Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22(27), 13742–13746 (2012). https://doi.org/10.1039/c2jm31536j
- M. Wang, M. Huang, D. Luo, Y. Li, M. Choe et al., Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021). https://doi.org/10.1038/s41586-021-03753-3
- L. Tong, X. Huang, P. Wang, L. Ye, M. Peng et al., Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 11, 2308 (2020). https://doi.org/10.1038/s41467-020-16125-8
- L. Tong, Z. Peng, R. Lin, Z. Li, Y. Wang et al., 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373(6561), 1353–1358 (2021). https://doi.org/10.1126/science.abg3161
- Y. Ito, C. Christodoulou, M.V. Nardi, N. Koch, M. Klaui et al., Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains. J. Am. Chem. Soc. 137, 7678 (2015). https://doi.org/10.1021/ja512897m
- P.R. Kidambi, B.C. Bayer, R. Blume, Z.J. Wang, C. Baehtz et al., Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 13(10), 4769–4778 (2013). https://doi.org/10.1021/nl4023572
- Y. Yang, Z. Xiong, Z. Wang, Y. Liu, Z. He et al., Super-adsorptive and photo-regenerable carbon nanotube based membrane for highly efficient water purification. J. Membr. Sci. 621, 119000 (2021). https://doi.org/10.1016/j.memsci.2020.119000
- S. Lin, Y. Zhao, Y.S. Yun, Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal-organic framework: adsorption performance and mechanisms. ACS Appl. Mater. Interfaces 10(33), 28076–28085 (2018). https://doi.org/10.1021/acsami.8b08596
- H. You, X. Ma, Z. Wu, L. Fei, X. Chen et al., Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro- bi-catalytic dye decomposition of NaNbO3 nanofibers. Nano Energy 52, 351–359 (2018). https://doi.org/10.1016/j.nanoen.2018.08.004
- Z. Zheng, T. Tachikawa, T. Majima, Single-p study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 136(19), 6870–6873 (2014). https://doi.org/10.1021/ja502704n
- T.V. Shahbazyan, Landau damping of surface plasmons in metal nanostructures. Phys. Rev. B 94, 235431 (2016). https://doi.org/10.1103/PhysRevB.94.235431
- O.H.C. Cheng, D.H. Son, M. Sheldon, Light-induced magnetism in plasmonic gold nanops. Nat. Photonics 14, 365 (2020). https://doi.org/10.1038/s41566-020-0603-3
References
D. Zheng, J. Li, S. Ci, P. Cai, Y. Ding et al., Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen. Appl. Catal. B 277, 119178 (2020). https://doi.org/10.1016/j.apcatb.2020.119178
I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 12, 72 (2020). https://doi.org/10.1007/s40820-020-0411-9
B. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan et al., Prussian blue analogs for rechargeable batteries. iScience 3, 110–133 (2018). https://doi.org/10.1016/j.isci.2018.04.008
S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13, 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
H. Wang, X. Mi, Y. Li, S. Zhan, 3D graphene-based macrostructures for water treatment. Adv. Mater. 32(3), 1806843 (2019). https://doi.org/10.1002/adma.201806843
Y. Sun, F. Yu, C. Li, X. Dai, J. Ma, Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 12, 2 (2019). https://doi.org/10.1007/s40820-019-0336-3
T. Xu, M.A. Shehzad, X. Wang, B. Wu, L. Ge et al., Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Lett. 12, 51 (2020). https://doi.org/10.1007/s40820-020-0386-6
Y. Yang, X. Yang, L. Liang, Y. Gao, H. Cheng et al., Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057 (2019). https://doi.org/10.1126/science.aau5321
K.H. Thebo, X. Qian, Q. Zhang, L. Chen, H.M. Cheng et al., Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9, 1486 (2018). https://doi.org/10.1038/s41467-018-03919-0
Z. Zhang, S. Li, B. Mi, J. Wang, J. Ding, Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off. Sci. Adv. 6(34), eaba9471 (2020). https://doi.org/10.1126/sciadv.aba9471
C.N. Yeh, K. Raidongia, J. Shao, Q.H. Yang, J. Huang, On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166 (2014). https://doi.org/10.1038/nchem.2145
Y. Zhong, S. Mahmud, Z. He, Y. Yang, Z. Zhang et al., Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. J. Hazard. Mater. 397, 122774 (2020). https://doi.org/10.1016/j.jhazmat.2020.122774
L. Wan, M. Long, D. Zhou, L. Zhang, W. Cai, Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide. Nano-Micro Lett. 4, 90 (2012). https://doi.org/10.1007/bf03353698
M. Zhang, Y. Mao, G. Liu, G. Liu, Y. Fan et al., Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem. Int. Ed. 59(4), 1689–1695 (2020). https://doi.org/10.1002/anie.201913010
L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang et al., Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380 (2017). https://doi.org/10.1038/nature24044
A.B. Alayande, H.D. Park, J.S. Vrouwenvelder, I.S. Kim, Implications of chemical reduction using hydriodic acid on the antimicrobial properties of graphene oxide and reduced graphene oxide membranes. Small 15(28), 1901023 (2019). https://doi.org/10.1002/smll.201901023
Y. Cao, Z. Xiong, F. Xia, G.V. Franks, L. Zu et al., New structural insights into densely assembled reduced graphene oxide membranes. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201535
M. Zhang, K. Guan, Y. Ji, G. Liu, W. Jin et al., Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019). https://doi.org/10.1038/s41467-019-09286-8
J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546 (2017). https://doi.org/10.1038/nnano.2017.21
C. Liu, L. Liu, X. Tian, Y. Wang, R. Li et al., Coupling metal–organic frameworks and g-CN to derive Fe@N-doped graphene-like carbon for peroxymonosulfate activation: upgrading framework stability and performance. Appl. Catal. B 255, 117763 (2019). https://doi.org/10.1016/j.apcatb.2019.117763
S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A.R. Kim, S. Sengodan et al., Nitrogen-doped graphene encapsulated FeCoMoS nanops as advanced trifunctional catalyst for water splitting devices and zinc–air batteries. Appl. Catal. B 279, 119381 (2020). https://doi.org/10.1016/j.apcatb.2020.119381
H.J. Huang, J.C.S. Wu, H.P. Chiang, Y.F.C. Chau, Y.S. Lin et al., Review of experimental setups for plasmonic photocatalytic reactions. Catalysts 10(1), 46 (2019). https://doi.org/10.3390/catal10010046
W. Zhang, W. Li, Y. Li, S. Peng, Z. Xu, One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution. Catal. Today 335, 326 (2019). https://doi.org/10.1016/j.cattod.2018.12.016
S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanops. Nat. Mater. 14, 567–576 (2015). https://doi.org/10.1038/nmat4281
H. Luo, Z. Zeng, G. Zeng, C. Zhang, R. Xiao et al., Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chem. Eng. J. 383, 123196 (2020). https://doi.org/10.1016/j.cej.2019.123196
Y.C. Qiao, Y.H. Wei, Y. Pang, Y.X. Li, D.Y. Wang et al., Graphene devices based on laser scribing technology. Jpn. J. Appl. Phys. 57, 04fa01 (2018). https://doi.org/10.7567/jjap.57.04fa01
R. You, Y.Q. Liu, Y.L. Hao, D.D. Han, Y.L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32(15), e1901981 (2019). https://doi.org/10.1002/adma.201901981
L. Fan, F. Zhao, Z. Huang, B. Chen, S.F. Zhou et al., Partial deligandation of M/Ce-BTC nanorods (M = Au, Cu, au-cu) with “Quasi-MOF” structures towards improving catalytic activity and stability. Appl. Catal. A Gen. 572, 34 (2019). https://doi.org/10.1016/j.apcata.2018.12.021
J.B. Chang, C.H. Liu, J. Liu, Y.Y. Zhou, X. Gao et al., Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanops for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7, 307 (2015). https://doi.org/10.1007/s40820-015-0044-6
Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a P-N heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12, 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
S. Subudhi, S. Mansingh, S.P. Tripathy, A. Mohanty, P. Mohapatra et al., The fabrication of Au/Pd plasmonic alloys on UiO-66-NH2: an efficient visible light-induced photocatalyst towards the Suzuki Miyaura coupling reaction under ambient conditions. Catal. Sci. Technol. 9(23), 6579–6585 (2019). https://doi.org/10.1039/c9cy01431d
L.H. Wee, M.R. Lohe, N. Janssens, S. Kaskel, J.A. Martens, Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22(27), 13742–13746 (2012). https://doi.org/10.1039/c2jm31536j
M. Wang, M. Huang, D. Luo, Y. Li, M. Choe et al., Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021). https://doi.org/10.1038/s41586-021-03753-3
L. Tong, X. Huang, P. Wang, L. Ye, M. Peng et al., Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 11, 2308 (2020). https://doi.org/10.1038/s41467-020-16125-8
L. Tong, Z. Peng, R. Lin, Z. Li, Y. Wang et al., 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373(6561), 1353–1358 (2021). https://doi.org/10.1126/science.abg3161
Y. Ito, C. Christodoulou, M.V. Nardi, N. Koch, M. Klaui et al., Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains. J. Am. Chem. Soc. 137, 7678 (2015). https://doi.org/10.1021/ja512897m
P.R. Kidambi, B.C. Bayer, R. Blume, Z.J. Wang, C. Baehtz et al., Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 13(10), 4769–4778 (2013). https://doi.org/10.1021/nl4023572
Y. Yang, Z. Xiong, Z. Wang, Y. Liu, Z. He et al., Super-adsorptive and photo-regenerable carbon nanotube based membrane for highly efficient water purification. J. Membr. Sci. 621, 119000 (2021). https://doi.org/10.1016/j.memsci.2020.119000
S. Lin, Y. Zhao, Y.S. Yun, Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal-organic framework: adsorption performance and mechanisms. ACS Appl. Mater. Interfaces 10(33), 28076–28085 (2018). https://doi.org/10.1021/acsami.8b08596
H. You, X. Ma, Z. Wu, L. Fei, X. Chen et al., Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro- bi-catalytic dye decomposition of NaNbO3 nanofibers. Nano Energy 52, 351–359 (2018). https://doi.org/10.1016/j.nanoen.2018.08.004
Z. Zheng, T. Tachikawa, T. Majima, Single-p study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 136(19), 6870–6873 (2014). https://doi.org/10.1021/ja502704n
T.V. Shahbazyan, Landau damping of surface plasmons in metal nanostructures. Phys. Rev. B 94, 235431 (2016). https://doi.org/10.1103/PhysRevB.94.235431
O.H.C. Cheng, D.H. Son, M. Sheldon, Light-induced magnetism in plasmonic gold nanops. Nat. Photonics 14, 365 (2020). https://doi.org/10.1038/s41566-020-0603-3