V–Ti-Based Solid Solution Alloys for Solid-State Hydrogen Storage
Corresponding Author: Zongwen Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 175
Abstract
This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride (MH) tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures. V–Ti-based solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt% at ambient temperature. The preparation methods, structure characteristics, improvement methods of hydrogen storage performance, and attenuation mechanism are systematically summarized and discussed. The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically. For large-scale applications on MH tanks, it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity, good cyclic durability, and excellent activation performance.
Highlights:
1 Hydrogen storage performance of V-Ti-based solid solution alloys is related to the elementary composition, phase structure, and homogeneity.
2 Micro-strain accumulation is responsible for capacity degradation.
3 Low-cost and high-performance V-Ti-based solid solution alloys with high reversible hydrogen storage capacity, good cyclic durability, and excellent activation performance should be developed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao et al., Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 9, 100064 (2020). https://doi.org/10.1016/j.mtnano.2019.100064
- L. Ouyang, K. Chen, J. Jiang, X.-S. Yang, M. Zhu, Hydrogen storage in light-metal based systems: a review. J. Alloys Compd. 829, 154597 (2020). https://doi.org/10.1016/j.jallcom.2020.154597
- M. Hirscher, V.A. Yartys, M. Baricco, J. Bellosta von Colbe, D. Blanchard et al., Materials for hydrogen-based energy storage–past, recent progress and future outlook. J. Alloys Compd. 827, 153548 (2020). https://doi.org/10.1016/j.jallcom.2019.153548
- J. Andersson, S. Grönkvist, Large-scale storage of hydrogen. Int. J. Hydrog. Energy 44, 11901–11919 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.063
- E. Rivard, M. Trudeau, K. Zaghib, Hydrogen storage for mobility: a review. Materials 12, 1973 (2019). https://doi.org/10.3390/ma12121973
- Z. Peng, Q. Li, L. Ouyang, W. Jiang, K. Chen et al., Overview of hydrogen compression materials based on a three-stage metal hydride hydrogen compressor. J. Alloys Compd. 895, 162465 (2022). https://doi.org/10.1016/j.jallcom.2021.162465
- W. Jiang, C. He, X. Yang, X. Xiao, L. Ouyang et al., Influence of element substitution on structural stability and hydrogen storage performance: a theoretical and experimental study on TiCr2-xMnx alloy. Renew. Energy 197, 564–573 (2022). https://doi.org/10.1016/j.renene.2022.07.113
- L. Ren, Y. Li, Z. Li, X. Lin, C. Lu et al., Boosting hydrogen storage performance of MgH2 by oxygen vacancy-rich H-V2O5 nanosheet as an excited H-pump. Nano-Micro Lett. 16, 160 (2024). https://doi.org/10.1007/s40820-024-01375-8
- L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 14, 144 (2022). https://doi.org/10.1007/s40820-022-00891-9
- Y. Shang, C. Pistidda, G. Gizer, T. Klassen, M. Dornheim, Mg-based materials for hydrogen storage. J. Magnes. Alloys 9, 1837–1860 (2021). https://doi.org/10.1016/j.jma.2021.06.007
- Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnes. Alloys 9, 1922–1941 (2021). https://doi.org/10.1016/j.jma.2021.10.002
- H. Hu, C. Ma, Q. Chen, Mechanism and microstructural evolution of TiCrVFe hydrogen storage alloys upon de-/ hydrogenation. J. Alloys Compd. 877, 160315 (2021). https://doi.org/10.1016/j.jallcom.2021.160315
- L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023). https://doi.org/10.1007/s40820-023-01041-5
- L. Ouyang, F. Liu, H. Wang, J. Liu, X.-S. Yang et al., Magnesium-based hydrogen storage compounds: a review. J. Alloys Compd. 832, 154865 (2020). https://doi.org/10.1016/j.jallcom.2020.154865
- L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu, Application of dielectric barrier discharge plasma-assisted milling in energy storage materials—a review. J. Alloys Compd. 691, 422–435 (2017). https://doi.org/10.1016/j.jallcom.2016.08.179
- S. Shen, W. Liao, Z. Cao, J. Liu, H. Wang et al., Enhanced hydrogen storage properties of MgH2 with the co-addition of LiBH4 and YNi5 alloy. J. Mater. Sci. Technol. 178, 90–99 (2024). https://doi.org/10.1016/j.jmst.2023.08.039
- S. Shen, L. Ouyang, J. Liu, H. Wang, X.-S. Yang et al., In situ formed ultrafine metallic Ni from nickel (II) acetylacetonate precursor to realize an exceptional hydrogen storage performance of MgH2-Ni-EG nanocomposite. J. Magnes. Alloys 11, 3174–3185 (2023). https://doi.org/10.1016/j.jma.2021.12.003
- W. Liao, W. Jiang, X.-S. Yang, H. Wang, L. Ouyang et al., Enhancing (de)hydrogenation kinetics properties of the Mg/MgH2 system by adding ANi5 (A = Ce, Nd, Pr, Sm, and Y) alloys via ball milling. J. Rare Earths 39, 1010–1016 (2021). https://doi.org/10.1016/j.jre.2020.07.020
- J. Zhang, H. Li, X. Xiao, L. Ouyang, Preparation and regeneration of metal borohydrides for high-density hydrogen supply: progress, challenges, and perspectives. J. Alloys Compd. 951, 169887 (2023). https://doi.org/10.1016/j.jallcom.2023.169887
- Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem. Int. Ed. 59, 8623–8629 (2020). https://doi.org/10.1002/anie.201915988
- K. Chen, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Converting H+ from coordinated water into H- enables super facile synthesis of LiBH4. Green Chem. 21, 4380–4387 (2019). https://doi.org/10.1039/c9gc01897b
- L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang et al., Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv. Energy Mater. 7, 1700299 (2017). https://doi.org/10.1002/aenm.201700299
- S. Kumar, A. Jain, T. Ichikawa, Y. Kojima, G.K. Dey, Development of vanadium based hydrogen storage material: a review. Renew. Sustain. Energy Rev. 72, 791–800 (2017). https://doi.org/10.1016/j.rser.2017.01.063
- H. Itoh, H. Arashima, K. Kubo, T. Kabutomori, K. Ohnishi, Improvement of cyclic durability of BCC structured Ti–Cr–V alloys. J. Alloys Compd. 404, 417–420 (2005). https://doi.org/10.1016/j.jallcom.2004.12.175
- K. Goshome, N. Endo, M. Tetsuhiko, Evaluation of a BCC alloy as metal hydride compressor via 100 MPa-class high-pressure hydrogen apparatus. Int. J. Hydrog. Energy 44, 10800–10807 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.008
- M. Balcerzak, Structure and hydrogen storage properties of mechanically alloyed Ti–V alloys. Int. J. Hydrog. Energy 42, 23698–23707 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.224
- L. Pickering, D. Reed, A.I. Bevan, D. Book, Ti–V–Mn based metal hydrides for hydrogen compression applications. J. Alloys Compd. 645, S400–S403 (2015). https://doi.org/10.1016/j.jallcom.2014.12.098
- H. Miao, W.G. Wang, Mechanisms of improving the cyclic stability of V–Ti-based hydrogen storage electrode alloys. J. Alloys Compd. 508, 592–598 (2010). https://doi.org/10.1016/j.jallcom.2010.08.132
- M. Gao, S. Zhang, H. Miao, Y. Liu, H. Pan, Pulverization mechanism of the multiphase Ti–V-based hydrogen storage electrode alloy during charge/discharge cycling. J. Alloys Compd. 489, 552–557 (2010). https://doi.org/10.1016/j.jallcom.2009.09.107
- Y. Zhu, H. Pan, M. Gao, Y. Liu, R. Li et al., Degradation mechanisms of Ti–V-based multiphase hydrogen storage alloy electrode. Int. J. Hydrog. Energy 29, 313–318 (2004). https://doi.org/10.1016/S0360-3199(03)00153-8
- Q.A. Zhang, Y.Q. Lei, L.X. Chen, Q.D. Wang, Electrochemical behaviors of a V3TiNi0.56Hf0.24 alloy electrode during charge–discharge cycling. Mater. Chem. Phys. 71, 58–61 (2001). https://doi.org/10.1016/S0254-0584(01)00269-3
- M.D. Dolan, M.A. Kochanek, C.N. Munnings, K.G. McLennan, D.M. Viano, Hydride phase equilibria in V–Ti–Ni alloy membranes. J. Alloys Compd. 622, 276–281 (2015). https://doi.org/10.1016/j.jallcom.2014.10.081
- S. Suwarno, Y. Gosselin, J.K. Solberg, J.P. Maehlen, M. Williams et al., Selective hydrogen absorption from gaseous mixtures by BCC Ti–V alloys. Int. J. Hydrog. Energy 37, 4127–4138 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.100
- T.M. Adams, J. Mickalonis, Hydrogen permeability of multiphase V–Ti–Ni metallic membranes. Mater. Lett. 61, 817–820 (2007). https://doi.org/10.1016/j.matlet.2006.05.078
- S.-W. Cho, E. Akiba, Y. Nakamura, H. Enoki, Hydrogen isotope effects in Ti1.0Mn0.9V1.1 and Ti1.0Cr1.5V1.7 alloys. J. Alloys Compd. 297, 253–260 (2000). https://doi.org/10.1016/S0925-8388(99)00585-X
- E. Akiba, H. Iba, Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6, 461–470 (1998). https://doi.org/10.1016/S0966-9795(97)00088-5
- S. Ono, K. Nomura, Y. Ikeda, The reaction of hydrogen with alloys of vanadium and titanium. J. Less Common Met. 72, 159–165 (1980). https://doi.org/10.1016/0022-5088(80)90135-6
- Y. Fei, X. Kong, Z. Wu, H. Li, V.K. Peterson, In situ neutron-diffraction study of the Ti38V30Cr14Mn18 structure during hydrogenation. J. Power Sources 241, 355–358 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.118
- Y. Wu, W. Zhao, L. Jiang, Z. Li, X. Guo et al., Effect of Fe and Al on hydrogen storage properties of 75 V–Ti–Cr alloys. J. Alloys Compd. 887, 161181 (2021). https://doi.org/10.1016/j.jallcom.2021.161181
- X.Y. Chen, R.R. Chen, K. Yu, X. Ding, X.Z. Li et al., Effect of Ce substitution on hydrogen absorption/desorption of Laves phase-related BCC solid solution Ti33V37Mn30 alloy. J. Alloys Compd. 783, 617–624 (2019). https://doi.org/10.1016/j.jallcom.2018.12.302
- P. Ruz, S. Banerjee, R. Halder, A. Kumar, V. Sudarsan, Thermodynamics, kinetics and microstructural evolution of Ti0.43Zr0.07Cr0.25V0.25 alloy upon hydrogenation. Int. J. Hydrog. Energy 42, 11482–11492 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.184
- J.M. Abdul, L.H. Chown, Influence of Fe on hydrogen storage properties of V-rich ternary alloys. Int. J. Hydrog. Energy 41, 2781–2787 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.154
- S.-I. Towata, T. Noritake, A. Itoh, M. Aoki, K. Miwa, Effect of partial niobium and iron substitution on short-term cycle durability of hydrogen storage Ti–Cr–V alloys. Int. J. Hydrog. Energy 38, 3024–3029 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.100
- Z. Dehouche, M. Savard, F. Laurencelle, J. Goyette, Ti–V–Mn based alloys for hydrogen compression system. J. Alloys Compd. 400, 276–280 (2005). https://doi.org/10.1016/j.jallcom.2005.04.007
- C. Raufast, D. Planté, S. Miraglia, Investigation of the structural and hydrogenation properties of disordered Ti–V–Cr-Mo BCC solid solutions. J. Alloys Compd. 617, 633–638 (2014). https://doi.org/10.1016/j.jallcom.2014.07.089
- Z. Hang, X. Xiao, K. Yu, S. Li, C. Chen et al., Influence of Fe content on the microstructure and hydrogen storage properties of Ti16Zr5Cr22V57−xFex (x =2–8) alloys. Int. J. Hydrog. Energy 35, 8143–8148 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.184
- X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, The activation mechanism of Ti–V-based hydrogen storage alloys. J. Alloys Compd. 375, 221–223 (2004). https://doi.org/10.1016/j.jallcom.2003.11.027
- M. Taghizadeh, S.M. Abbasi, M. Seifollahi, S.M.G. Mirsaeed, The effect of remelting on microstructure and hydrogen storage properties of Ti–Mn–V alloy. Trans. Indian Inst. Met. 74, 811–816 (2021). https://doi.org/10.1007/s12666-020-02178-2
- Z. Chen, L. Luo, Z. Su, W. Liu, F. Zhang et al., Effect of LaH3 additive on microstructures and hydrogen storage properties of V40Ti26Cr26Fe8 alloys prepared by hydride powder sintering method. Int. J. Hydrog. Energy 44, 13538–13548 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.038
- Y. Mao, S. Yang, C. Wu, L. Luo, Y. Chen, Preparation of (FeV80)48Ti26+xCr26(x=0–4) alloys by the hydride sintering method and their hydrogen storage performance. J. Alloys Compd. 705, 533–538 (2017). https://doi.org/10.1016/j.jallcom.2017.02.166
- S. Kumar, P.K. Singh, Y. Kojima, V. Kain, Cyclic hydrogen storage properties of VTiCrAl alloy. Int. J. Hydrog. Energy 43, 7096–7101 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.103
- A. Kawabata, H. Yoshinaga, M. Tsukahara, T. Sakai, S. Sakurai et al., A novel thermic process for producing V-based solid solution type hydrogen storage alloy. Mater. Trans. 42, 1794–1799 (2001). https://doi.org/10.2320/matertrans.42.1794
- M. Balcerzak, Structural, electrochemical and hydrogen sorption studies of nanocrystalline Ti–V-Co and Ti–V–Ni-Co alloys synthesized by mechanical alloying method. J. Mater. Eng. Perform. 28, 4838–4844 (2019). https://doi.org/10.1007/s11665-019-04266-x
- A. Dagher, H.G. Salem, T.M. Moustafa, E.B. Mettawee, E. Abdel-Rahman, Hydrogen absorption characteristics of mechanically alloyed Ti–Zr–Ni and Ti–V–Ni powders. Int. J. Hydrog. Energy 39, 17740–17746 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.109
- J.-Y. Wang, Comparison of hydrogen storage properties of Ti0.37V0.38Mn0.25 alloys prepared by mechanical alloying and vacuum arc melting. Int. J. Hydrog. Energy 34, 3771–3777 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.028
- S. Couillaud, H. Enoki, S. Amira, J.L. Bobet, E. Akiba et al., Effect of ball milling and cold rolling on hydrogen storage properties of nanocrystalline TiV1.6Mn0.4 alloy. J. Alloys Compd. 484, 154–158 (2009). https://doi.org/10.1016/j.jallcom.2009.05.037
- J. Huot, H. Enoki, E. Akiba, Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1. J. Alloys Compd. 453, 203–209 (2008). https://doi.org/10.1016/j.jallcom.2006.11.193
- B.K. Singh, G. Shim, S.-W. Cho, Effects of mechanical milling on hydrogen storage properties of Ti0.32 Cr0.43V0.25 alloy. Int. J. Hydrog. Energy 32, 4961–4965 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.010
- D. Cauceglia, M.D. Hampton, J.K. Lomness, D.K. Slattery, M. Resan, Hydrogen uptake characteristics of mechanically alloyed TiVNi. J. Alloys Compd. 417, 159–163 (2006). https://doi.org/10.1016/j.jallcom.2005.01.143
- H.-B. Wang, Q. Wang, C. Dong, F. Xu, L.-X. Sun et al., Microstructure and storage properties of low V-containing Ti–Cr–V hydrogen storage alloys prepared by arc melting and suction casting. Rare Met. 32, 354–358 (2013). https://doi.org/10.1007/s12598-013-0101-6
- M. Uno, K. Takahashi, T. Maruyama, H. Muta, S. Yamanaka, Hydrogen solubility of BCC titanium alloys. J. Alloys Compd. 366, 213–216 (2004). https://doi.org/10.1016/S0925-8388(03)00749-7
- H. Arashima, F. Takahashi, T. Ebisawa, H. Itoh, T. Kabutomori, Correlation between hydrogen absorption properties and homogeneity of Ti–Cr–V alloys. J. Alloys Compd. 356, 405–408 (2003). https://doi.org/10.1016/S0925-8388(03)00363-3
- S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, B.T. Børresen et al., Microstructure and hydrogen storage properties of as-cast and rapidly solidified Ti-rich Ti–V alloys. Trans. Nonferrous Met. Soc. China 22, 1831–1838 (2012). https://doi.org/10.1016/s1003-6326(11)61394-0
- I. Kunce, M. Polanski, J. Bystrzycki, Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrog. Energy 39, 9904–9910 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.067
- B.K. Singh, S.W. Cho, K.S. Bartwal, Microstructure and hydrogen storage properties of (Ti0.32Cr0.43V0.25) + x wt% La (x = 0–10) alloys. Int. J. Hydrog. Energy 39, 8351–8356 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.168
- M. Aoki, T. Noritake, A. Ito, M. Ishikiriyama, S.-I. Towata, Improvement of cyclic durability of Ti–Cr–V alloy by Fe substitution. Int. J. Hydrog. Energy 36, 12329–12332 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.019
- J.-H. Yoo, G. Shim, C.-N. Park, W.-B. Kim, S.-W. Cho, Influence of Mn or Mn plus Fe on the hydrogen storage properties of the Ti–Cr–V alloy. Int. J. Hydrog. Energy 34, 9116–9121 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.064
- J. Chen, Z. Li, H. Huang, Y. Lv, B. Liu et al., Superior cycle life of TiZrFeMnCrV high entropy alloy for hydrogen storage. Scr. Mater. 212, 114548 (2022). https://doi.org/10.1016/j.scriptamat.2022.114548
- V. Zadorozhnyy, I. Tomilin, E. Berdonosova, C. Gammer, M. Zadorozhnyy et al., Composition design, synthesis and hydrogen storage ability of multi-principAl–component alloy TiVZrNbTa. J. Alloys Compd. 901, 163638 (2022). https://doi.org/10.1016/j.jallcom.2022.163638
- T. Kuriiwa, T. Maruyama, A. Kamegawa, M. Okada, Effects of V content on hydrogen storage properties of V–Ti–Cr alloys with high desorption pressure. Int. J. Hydrog. Energy 35, 9082–9087 (2010). https://doi.org/10.1016/j.ijhydene.2010.06.024
- D.P. Sai, N. Kumar, V. Saxena, Analysis of the potential metal hydrides for hydrogen storage in automobile applications, in Advanced Combustion for Sustainable Transport (Springer Singapore, 2021), pp. 299–330. https://doi.org/10.1007/978-981-16-8418-0_10
- S.F. Santos, J. Huot, Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions. J. Alloys Compd. 472, 247–251 (2009). https://doi.org/10.1016/j.jallcom.2008.04.062
- Y. Yan, Y. Chen, C. Wu, M. Tao, H. Liang, A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity. J Power Sources 164, 799–802 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.097
- Z. Hang, X. Xiao, S. Li, H. Ge, C. Chen et al., Influence of heat treatment on the microstructure and hydrogen storage properties of Ti10V77Cr6Fe6Zr alloy. J. Alloys Compd. 529, 128–133 (2012). https://doi.org/10.1016/j.jallcom.2012.03.044
- J. Mi, F. Lü, X. Liu, L. Jiang, Z. Li et al., Enhancement of cerium and hydrogen storage property of a low-cost Ti–V based BCC alloy prepared by commercial ferrovanadium. J. Rare Earths 28, 781–784 (2010). https://doi.org/10.1016/S1002-0721(09)60200-3
- X. Liu, L. Jiang, Z. Li, Z. Huang, S. Wang, Improve plateau property of Ti32Cr46V22 BCC alloy with heat treatment and Ce additive. J. Alloys Compd. 471, L36–L38 (2009). https://doi.org/10.1016/j.jallcom.2008.04.004
- Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, The effect of Si on V30Ti35Cr25Fe10 BCC hydrogen storage alloy. J. Alloys Compd. 441, 297–300 (2007). https://doi.org/10.1016/j.jallcom.2006.09.096
- C. Wu, X. Zheng, Y. Chen, M. Tao, G. Tong et al., Hydrogen storage and cyclic properties of V60Ti(21.4+x)Cr(66–x)Fe12 (0≤x≤3) alloys. Int. J. Hydrog. Energy 35, 8130–8135 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.017
- X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, Hydrogen storage performance of quenched Ti–V-based alloy. J. Alloys Compd. 373, 134–136 (2004). https://doi.org/10.1016/j.jallcom.2003.10.030
- S.-I. Towata, T. Noritake, A. Itoh, M. Aoki, K. Miwa, Cycle durability of Ti–Cr–V alloys partially substituted by Nb or Fe. J. Alloys Compd. 580, S226–S228 (2013). https://doi.org/10.1016/j.jallcom.2013.03.163
- X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, Effect of Cr content on hydrogen storage properties for Ti–V-based BCC-phase alloys. Int. J. Hydrog. Energy 29, 1377–1381 (2004). https://doi.org/10.1016/j.ijhydene.2004.01.015
- X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, Influence of Fe addition on hydrogen storage characteristics of Ti–V-based alloy. Int. J. Hydrog. Energy 31, 1176–1181 (2006). https://doi.org/10.1016/j.ijhydene.2005.09.008
- M. Tsukahara, Hydrogenation properties of vanadium-based alloys with large hydrogen storage capacity. Mater. Trans. 52, 68–72 (2011). https://doi.org/10.2320/matertrans.m2010216
- T. Matsunaga, M. Kon, K. Washio, T. Shinozawa, M. Ishikiriyama, TiCrVMo alloys with high dissociation pressure for high-pressure MH tank. Int. J. Hydrog. Energy 34, 1458–1462 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.061
- R.R. Chen, X.Y. Chen, X. Ding, X.Z. Li, J.J. Guo et al., Effects of Ti/Mn ratio on microstructure and hydrogen storage properties of Ti–V–Mn alloys. J. Alloys Compd. 748, 171–178 (2018). https://doi.org/10.1016/j.jallcom.2018.03.154
- M. Shibuya, J. Nakamura, H. Enoki, E. Akiba, High-pressure hydrogenation properties of Ti–V–Mn alloy for hybrid hydrogen storage vessel. J. Alloys Compd. 475, 543–545 (2009). https://doi.org/10.1016/j.jallcom.2008.07.121
- H. Hu, C. Ma, Q. Chen, Improved hydrogen storage properties of Ti2CrV alloy by Mo substitutional doping. Int. J. Hydrog. Energy 47, 11929–11937 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.212
- C.-Y. Seo, Z.-L. Zhang, J.-H. Kim, P.S. Lee, J.-Y. Lee, Effect of manganese addition on hydrogen storage performance of vanadium-based BCC hydrogen storage alloys. Met. Mater. Int. 8, 341–346 (2002). https://doi.org/10.1007/BF03186105
- X.P. Liu, F. Cuevas, L.J. Jiang, M. Latroche, Z.N. Li et al., Improvement of the hydrogen storage properties of Ti–Cr–V–Fe BCC alloy by Ce addition. J. Alloys Compd. 476, 403–407 (2009). https://doi.org/10.1016/j.jallcom.2008.09.042
- X.Y. Chen, R.R. Chen, X. Ding, H.Z. Fang, J.J. Guo et al., Crystal structure and hydrogen storage properties of Ti–V–Mn alloys. Int. J. Hydrog. Energy 43, 6210–6218 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.009
- X.Y. Chen, R.R. Chen, X. Ding, S. Wang, Y.Q. Su et al., Activation and de/hydriding behavior in Ti23V40Mn37 alloy by Hf and Hf/Cr substitutions. Int. J. Hydrog. Energy 45, 6813–6822 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.194
- X.Y. Chen, R.R. Chen, X. Ding, X.Z. Li, H.S. Ding et al., Substitution effect of Hf on hydrogen storage capacity and cycling durability of Ti23V40Mn37 metal hydride alloys. Int. J. Hydrog. Energy 43, 19567–19574 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.203
- L. Luo, Y. Li, T. Zhai, F. Hu, Z. Zhao et al., Microstructure and hydrogen storage properties of V48Fe12Ti15-xCr25Alx (x=0, 1) alloys. Int. J. Hydrog. Energy 44, 25188–25198 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.172
- J. Mi, X. Liu, Y. Li, L. Jiang, Z. Li et al., Effect of cerium content on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe85Cex (x=0–1.0) alloys. J. Rare Earths 27, 154–158 (2009). https://doi.org/10.1016/S1002-0721(08)60211-2
- B.K. Singh, S.-W. Cho, K.S. Bartwal, Effect on structure and hydrogen storage characteristics of composite alloys Ti0.32Cr0.43V0.25 with LaNi5 and rare-earth elements La, Ce, Y. J. Alloys Compd. 478, 785–788 (2009). https://doi.org/10.1016/j.jallcom.2008.12.011
- C.L. Wu, Y.G. Yan, Y.G. Chen, M.D. Tao, X. Zheng, Effect of rare earth (RE) elements on V-based hydrogen storage alloys. Int. J. Hydrog. Energy 33, 93–97 (2008). https://doi.org/10.1016/j.ijhydene.2007.09.002
- Y. Yan, Y. Chen, H. Liang, X. Zhou, C. Wu et al., Effect of Ce on the structure and hydrogen storage properties of V55Ti22.5Cr16.1Fe6.4. J. Alloys Compd. 429, 301–305 (2007). https://doi.org/10.1016/j.jallcom.2006.04.057
- K. Shashikala, S. Banerjee, A. Kumar, M.R. Pai, C.G.S. Pillai, Improvement of hydrogen storage properties of TiCrV alloy by Zr substitution for Ti. Int. J. Hydrog. Energy 34, 6684–6689 (2009). https://doi.org/10.1016/j.ijhydene.2009.06.065
- S. Basak, K. Shashikala, S.K. Kulshreshtha, Hydrogen absorption characteristics of Zr substituted Ti0.85VFe0.15 alloy. Int. J. Hydrog. Energy 33, 350–355 (2008). https://doi.org/10.1016/j.ijhydene.2007.07.023
- A. Kamble, P. Sharma, J. Huot, Effect of addition of Zr, Ni, and Zr-Ni alloy on the hydrogen absorption of Body Centred Cubic 52Ti–12V–36Cr alloy. Int. J. Hydrog. Energy 43, 7424–7429 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.106
- J.-H. Yoo, G. Shim, S.-W. Cho, C.-N. Park, Effects of desorption temperature and substitution of Fe for Cr on the hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy. Int. J. Hydrog. Energy 32, 2977–2981 (2007). https://doi.org/10.1016/j.ijhydene.2007.01.012
- T. Mouri, H. Iba, Hydrogen-absorbing alloys with a large capacity for a new energy carrier. Mater. Sci. Eng. A 329, 346–350 (2002). https://doi.org/10.1016/S0921-5093(01)01597-0
- Z. Huang, F. Cuevas, X. Liu, L. Jiang, S. Wang et al., Effects of Si addition on the microstructure and the hydrogen storage properties of Ti2.65V45Fe8.5Cr20Ce0.5 BCC solid solution alloys. Int. J. Hydrog. Energy 34, 9385–9392 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.055
- J. Mi, X. Guo, X. Liu, L. Jiang, Z. Li et al., Effect of Al on microstructures and hydrogen storage properties of Ti2.65Cr20(V0.45Fe0.085)100–xAlxCe0.5 alloy. J. Alloys Compd. 485, 324–327 (2009). https://doi.org/10.1016/j.jallcom.2009.05.096
- Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao et al., Effect of Al on hydrogen storage properties of V30Ti35Cr25Fe10 alloy. J. Alloys Compd. 426, 253–255 (2006). https://doi.org/10.1016/j.jallcom.2005.12.122
- J.-H. Yoo, G. Shim, J.-S. Yoon, S.-W. Cho, Effects of substituting Al for Cr in the Ti0.32Cr0.43V0.25 alloy on its microstructure and hydrogen storage properties. Int. J. Hydrog. Energy 34, 1463–1467 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.102
- U. Ulmer, K. Asano, T. Bergfeldt, V.S.K. Chakravadhanula, R. Dittmeyer et al., Effect of oxygen on the microstructure and hydrogen storage properties of V–Ti–Cr–Fe quaternary solid solutions. Int. J. Hydrog. Energy 39, 20000–20008 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.152
- S. Selvaraj, A. Jain, S. Kumar, T. Zhang, S. Isobe et al., Study of cyclic performance of V–Ti–Cr alloys employed for hydrogen compressor. Int. J. Hydrog. Energy 43, 2881–2889 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.159
- A. Martínez, D.S. dos Santos, Influence of the substitution of V by Nb in the structure and properties of hydrogen absorption/desorption of TiCr1.1V0.9 alloy. J. Alloys Compd. 536, S231–S235 (2012). https://doi.org/10.1016/j.jallcom.2011.11.092
- B.H. Silva, C. Zlotea, G. Vaughan, Y. Champion, W.J. Botta et al., Hydrogen absorption/desorption reactions of the (TiVNb)85Cr15 multicomponent alloy. J. Alloys Compd. 901, 163620 (2022). https://doi.org/10.1016/j.jallcom.2022.163620
- S. Yang, F. Yang, C. Wu, Y. Chen, Y. Mao et al., Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40−xZrx (0≤x≤2) alloys. J. Alloys Compd. 663, 460–465 (2016). https://doi.org/10.1016/j.jallcom.2015.12.125
- T. Kuriiwa, T. Tamura, T. Amemiya, T. Fuda, A. Kamegawa et al., New V-based alloys with high Protium absorption and desorption capacity. J. Alloys Compd. 293, 433–436 (1999). https://doi.org/10.1016/S0925-8388(99)00325-4
- Q. Zeng, F. Wang, Z. Li, M. Rong, J. Wang et al., Influence of Zr addition on the microstructure and hydrogenation kinetics of Ti50-xV25Cr25Zrx (x = 0, 5, 7, and 9) alloys. Materials 17, 1366 (2024). https://doi.org/10.3390/ma17061366
- S. Zhang, X. Ding, R. Chen, J. Zhang, Y. Su et al., Modification of nano-eutectic structure and the relation on hydrogen storage properties: a novel Ti–V–Zr medium entropy alloy. Int. J. Hydrog. Energy 47, 34533–34544 (2022). https://doi.org/10.1016/j.ijhydene.2022.08.039
- B. Liu, X. Chen, L. Shang, Q. Tao, R. Chen, Crucial role of ZrxNiy addition during hydrogen absorption/desorption of Ti37V40Mn23 alloy. J. Alloys Compd. 997, 174840 (2024). https://doi.org/10.1016/j.jallcom.2024.174840
- A. Kamble, P. Sharma, J. Huot, Effect of the addition of 4 wt% Zr to BCC solid solution Ti52V12Cr36 at melting/milling on hydrogen sorption properties. Front. Mater. 8, 821126 (2022). https://doi.org/10.3389/fmats.2021.821126
- H. Kwon, J. Kim, S.-W. Cho, J.-H. Yoo, K.-M. Roh et al., The effect of Sc addition on the hydrogen storage capacity of Ti0.32Cr0.43V0.25 alloy. Int. J. Hydrog. Energy 39, 10600–10605 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.011
- J. Zhu, L. Ma, F. Liang, L. Wang, Effect of Sc substitution on hydrogen storage properties of Ti–V–Cr–Mn alloys. Int. J. Hydrog. Energy 40, 6860–6865 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.149
- L. Luo, H. Han, D. Feng, W. Lv, L. Chen et al., Nanocrystalline high entropy alloys with ultrafast kinetics and high storage capacity for large-scale room-temperature-applicable hydrogen storage. Renewables 2, 138–149 (2024). https://doi.org/10.31635/renewables.024.202300049
- X. Zhang, H. Xiao, X. He, R. Tang, W. Zhou et al., Impacts of Y dopants on the microstructure and cyclic stability of TiCrVFeMo alloys. Int. J. Hydrog. Energy 61, 1220–1229 (2024). https://doi.org/10.1016/j.ijhydene.2024.02.330
- F. Liang, N. Ding, W. Liu, H. Yan, L. Wang, Superior reversible hydrogen storage capacity of V-based solid solution alloy above atmospheric pressure with yttrium substitution. Mater. Lett. 297, 129945 (2021). https://doi.org/10.1016/j.matlet.2021.129945
- M. de Brito Ferraz, W.J. Botta, G. Zepon, Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25V10Zn15 high entropy alloy. Int. J. Hydrog. Energy 47, 22881–22892 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.098
- R.-R. Jeng, S.-L. Lee, C.-W. Hsu, Y.-P. Wu, J.-C. Lin, Effects of the addition of Pd on the hydrogen absorption–desorption characteristics of Ti33V33Cr34 alloys. J. Alloys Compd. 464, 467–471 (2008). https://doi.org/10.1016/j.jallcom.2007.10.010
- X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, Improvement of activation performance of the quenched Ti–V-based BCC phase alloys. J. Alloys Compd. 386, 258–260 (2005). https://doi.org/10.1016/j.jallcom.2004.05.014
- L. Luo, F. Yang, Y. Li, L. Li, Y. Li, Investigation of the microstructure and hydrogen storage behavior of V48Fe12Ti15+xCr25-x (x=0, 5, 10, 15) alloys. Int. J. Hydrog. Energy 47, 9653–9671 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.058
- P. Pei, X. Song, M. Zhao, P. Zhang, G. Chen, Influences of V content on hydrogen storage properties in low vanadium Ti–V–Cr alloy. Rare Met. Mater. Eng. 37, 1419–1423 (2008). https://doi.org/10.1016/S1875-5372(09)60039-4
- S.-W. Cho, C.-S. Han, C.-N. Park, E. Akiba, The hydrogen storage characteristics of Ti–Cr–V alloys. J. Alloys Compd. 288, 294–298 (1999). https://doi.org/10.1016/S0925-8388(99)00096-1
- K. Goshome, N. Endo, T. Maeda, Evaluation of the pressure dependence of the cycle durability and thermodynamics of a metal hydride compressor composed of ternary V40 and V70TiCr. Int. J. Hydrog. Energy 46, 9479–9487 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.101
- K. Sakaki, H. Kim, E.H. Majzoub, A. Machida, T. Watanuki et al., Displacement of hydrogen position in di-hydride of V–Ti–Cr solid solution alloys. Acta Mater. 234, 118055 (2022). https://doi.org/10.1016/j.actamat.2022.118055
- S.F. Santos, J. Huot, Hydrogen storage in Ti–Mn–(FeV) BCC alloys. J. Alloys Compd. 480, 5–8 (2009). https://doi.org/10.1016/j.jallcom.2008.09.191
- F. Ravalison, J. Huot, Hydrogenation thermodynamics of Ti16V60Cr24–xFex alloys (x = 0, 4, 8, 12, 16, 20, 24). Hydrogen 5, 29–38 (2024). https://doi.org/10.3390/hydrogen5010003
- J. Matsuda, Y. Nakamura, E. Akiba, Microstructure of Ti–V–Mn BCC alloys before and after hydrogen absorption–desorption. J. Alloys Compd. 509, 4352–4356 (2011). https://doi.org/10.1016/j.jallcom.2011.01.071
- Z. Hang, L. Shi, Y. Feng, H. Dong, L. Yang et al., Experimental and theoretical insights into vanadium-based alloys for room temperature hydrogen storage on the example of Ti16Cr22Zr5V55-xFe2Mnx (x=0–3) alloys. J. Alloys Compd. 988, 174315 (2024). https://doi.org/10.1016/j.jallcom.2024.174315
- L. Pickering, J. Li, D. Reed, A.I. Bevan, D. Book, Ti–V–Mn based metal hydrides for hydrogen storage. J. Alloys Compd. 580, S233–S237 (2013). https://doi.org/10.1016/j.jallcom.2013.03.208
- X. Li, D. Wu, Q. Zhou, R. Tang, F. Xiao et al., Enhanced cyclic durability of low-cost Ti–V–Cr hydrogen storage alloys by elemental alloying. Mater. Chem. Phys. 317, 129132 (2024). https://doi.org/10.1016/j.matchemphys.2024.129132
- J.M. Abdul, S.K. Kolawole, G.A. Salawu, Microstructure and hydrogen storage characteristics of rhodium substituted Ti–V–Cr alloys. JOM 73, 4112–4118 (2021). https://doi.org/10.1007/s11837-021-04952-z
- Y. Zhu, X. Li, X.-S. Yang, P. Chen, G.C. Tsui et al., Compositionally complex doping for low-V Ti–Cr–V hydrogen storage alloys. Chem. Eng. J. 477, 146970 (2023). https://doi.org/10.1016/j.cej.2023.146970
- A. Kamble, P. Sharma, J. Huot, Effect of doping and p size on hydrogen absorption properties of BCC solid solution 52Ti–12V–36Cr. Int. J. Hydrog. Energy 42, 11523–11527 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.137
- X.B. Yu, Q. Wan, Z. Wu, B.J. Xia, N.X. Xu, Synergism of nano ZnO for improvement of hydrogen absorption performance of Ti–V-based alloys. J. Mater. Res. 19, 2799–2802 (2004). https://doi.org/10.1557/JMR.2004.0390
- M. Balcerzak, J. Ternieden, M. Felderhoff, Synthesis, thermal stability, and hydrogen storage properties of poorly crystalline TiVFeCuNb multi-principal element alloy. J. Alloys Compd. 943, 169142 (2023). https://doi.org/10.1016/j.jallcom.2023.169142
- X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chem. A 9, 663–701 (2021). https://doi.org/10.1039/d0ta09601f
- X. Ma, X. Ding, R. Chen, X. Chen, Q. Song et al., Study on microstructure and the hydrogen storage behavior of a TiVZrNbFe high-entropy alloy. Intermetallics 157, 107885 (2023). https://doi.org/10.1016/j.intermet.2023.107885
- L. Serrano, M. Moussa, J.-Y. Yao, G. Silva, J.-L. Bobet et al., Development of Ti–V–Nb–Cr–Mn high entropy alloys for hydrogen storage. J. Alloys Compd. 945, 169289 (2023). https://doi.org/10.1016/j.jallcom.2023.169289
- J. Montero, G. Ek, M. Sahlberg, C. Zlotea, Improving the hydrogen cycling properties by Mg addition in Ti–V–Zr–Nb refractory high entropy alloy. Scr. Mater. 194, 113699 (2021). https://doi.org/10.1016/j.scriptamat.2020.113699
- L. Huang, M. Long, W. Liu, S. Li, Effects of Cr on microstructure, mechanical properties and hydrogen desorption behaviors of ZrTiNbMoCr high entropy alloys. Mater. Lett. 293, 129718 (2021). https://doi.org/10.1016/j.matlet.2021.129718
- C. Zhang, Y. Wu, L. You, W. Qiu, Y. Zhang et al., Nanoscale phase separation of TiZrNbTa high entropy alloy induced by hydrogen absorption. Scr. Mater. 178, 503–507 (2020). https://doi.org/10.1016/j.scriptamat.2019.12.034
- C. Zhang, A. Song, Y. Yuan, Y. Wu, P. Zhang et al., Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy. Int. J. Hydrog. Energy 45, 5367–5374 (2020). https://doi.org/10.1016/j.ijhydene.2019.05.214
- H. Shen, J. Hu, P. Li, G. Huang, J. Zhang et al., Compositional dependence of hydrogenation performance of Ti–Zr–Hf–Mo–Nb high-entropy alloys for hydrogen/tritium storage. J. Mater. Sci. Technol. 55, 116–125 (2020). https://doi.org/10.1016/j.jmst.2019.08.060
- J. Montero, G. Ek, L. Laversenne, V. Nassif, G. Zepon et al., Hydrogen storage properties of the refractory Ti–V–Zr–Nb–Ta multi-principal element alloy. J. Alloys Compd. 835, 155376 (2020). https://doi.org/10.1016/j.jallcom.2020.155376
- C. Zhang, Y. Wu, L. You, X. Cao, Z. Lu et al., Investigation on the activation mechanism of hydrogen absorption in TiZrNbTa high entropy alloy. J. Alloys Compd. 781, 613–620 (2019). https://doi.org/10.1016/j.jallcom.2018.12.120
- M.M. Nygård, G. Ek, D. Karlsson, M.H. Sørby, M. Sahlberg et al., Counting electrons—a new approach to tailor the hydrogen sorption properties of high-entropy alloys. Acta Mater. 175, 121–129 (2019). https://doi.org/10.1016/j.actamat.2019.06.002
- H.-Z. Hu, H.-Q. Xiao, X.-C. He, W.-H. Zhou, X.-X. Zhang et al., Development of Ti–V–Cr–Mn–Mo–Ce high-entropy alloys for high-density hydrogen storage in water bath environments. Rare Met. 43, 5229–5241 (2024). https://doi.org/10.1007/s12598-024-02618-8
- M. Vaidya, K. Guruvidyathri, B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J. Alloys Compd. 774, 856–864 (2019). https://doi.org/10.1016/j.jallcom.2018.09.342
- M. Vaidya, G. Mohan Muralikrishna, S.V. Divinski, B.S. Murty, Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Scr. Mater. 157, 81–85 (2018). https://doi.org/10.1016/j.scriptamat.2018.07.040
- K. Guruvidyathri, B.S. Murty, J.W. Yeh, K.C. Hari Kumar, Gibbs energy-composition plots as a tool for high-entropy alloy design. J. Alloys Compd. 768, 358–367 (2018). https://doi.org/10.1016/j.jallcom.2018.07.264
- C. Chattopadhyay, A. Prasad, B.S. Murty, Phase prediction in high entropy alloys—a kinetic approach. Acta Mater. 153, 214–225 (2018). https://doi.org/10.1016/j.actamat.2018.05.002
- K.S. Senkevich, M.M. Serov, O.Z. Umarova, Fabrication of intermetallic titanium alloy based on Ti2AlNb by rapid quenching of melt. Met. Sci. Heat Treat.. Sci. Heat Treat. 59, 463–466 (2017). https://doi.org/10.1007/s11041-017-0172-3
- H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao et al., Hydrogen storage properties and thermal stability of V35Ti20Cr45 alloy by heat treatment. Int. J. Hydrog. Energy 39, 14887–14895 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.054
- R.-R. Jeng, C.-Y. Chou, S.-L. Lee, Y.-C. Wu, H.-Y. Bor, Effect of Mn, Ti/Cr ratio, and heat treatment on hydrogen storage properties of TI–V–CR–MN alloys. J. Chin. Inst. Eng. 34, 601–608 (2011). https://doi.org/10.1080/02533839.2011.577595
- S.-W. Cho, C.-S. Han, C.-N. Park, E. Akiba, Hydrogen storage characteristics of Ti–Zr–Cr–V alloys. J. Alloys Compd. 289, 244–250 (1999). https://doi.org/10.1016/S0925-8388(99)00162-0
- M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, Ti–V–Cr b.c.c. alloys with high protium content. J. Alloys Compd. 330, 511–516 (2002). https://doi.org/10.1016/S0925-8388(01)01647-4
- L. Luo, X. Bian, W.-Y. Wu, Z.-M. Yuan, Y.-Z. Li et al., Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy. J. Iron. Steel Res. Int. 27, 217–227 (2020). https://doi.org/10.1007/s42243-019-00337-4
- V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, V.I. Bondarchuk, G.S. Mogylnyy, Hydrogenation process in multiphase alloys of Ti–Zr–Mn–V system on the example of Ti42.75Zr27Mn20.25V10 alloy. Int. J. Hydrog. Energy 46, 8040–8047 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.283
- Y. Munekata, K. Washio, T. Suda, N. Hashimoto, S. Ohnuki et al., Role of annealing for improving hydrogen storage properties of Ti–Cr–V alloy. MRS Online Proc. Libr. 971, 721 (2011). https://doi.org/10.1557/PROC-0971-Z07-21
- B. Liu, X. Chen, S. Zhang, X. Ding, R. Chen, Formation of eutectic and hydrogen absorption/desorption behavior of heat-treated Ti19Hf4V40Mn35Cr2 alloys. Intermetallics 152, 107752 (2023). https://doi.org/10.1016/j.intermet.2022.107752
- C. Yang, Q. Wang, M. Wang, Y. Wang, R. Du et al., Effect of V content on hydrogen storage properties and cyclic durability of V–Ti–Cr–Fe alloys. Int. J. Hydrog. Energy 48, 26870–26880 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.307
- L. Luo, C. Wu, S. Yang, J. Zhou, Y. Chen et al., Decaying behaviors of V40(TiCr)51Fe8Mn hydrogen storage alloys with different p sizes. J. Alloys Compd. 645, S178–S183 (2015). https://doi.org/10.1016/j.jallcom.2014.12.261
- H. Kwon, J.-H. Yoo, K.-M. Roh, C.-Y. Suh, W.-B. Kim et al., Effect of p size and microstructure on the hydrogen storage property in a V–Ti–Cr solid solution system. J. Alloys Compd. 535, 87–90 (2012). https://doi.org/10.1016/j.jallcom.2012.04.078
- H. Kim, K. Sakaki, H. Ogawa, Y. Nakamura, J. Nakamura et al., Origin of degradation in the reversible hydrogen storage capacity of V1–xTix alloys from the atomic pair distribution function analysis. J. Phys. Chem. C 117, 26543–26550 (2013). https://doi.org/10.1021/jp408766r
- C. Wu, Q. Wang, Y. Mao, L. Huang, Y. Chen et al., Relationship between lattice defects and phase transformation in hydrogenation/dehydrogenation process of the V60Ti25Cr3Fe12 alloy. Int. J. Hydrog. Energy 44, 9368–9377 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.097
- K. Ikeda, S. Sashida, T. Otomo, H. Ohshita, T. Honda et al., Local structural changes in V–Ti–Cr alloy hydrides with hydrogen absorption/desorption cycling. Int. J. Hydrog. Energy 51, 79–87 (2024). https://doi.org/10.1016/j.ijhydene.2023.10.318
- U. Ulmer, D. Oertel, T. Diemant, C. Bonatto Minella, T. Bergfeldt et al., Performance improvement of V–Fe–Cr–Ti solid state hydrogen storage materials in impure hydrogen gas. ACS Appl. Mater. Interfaces 10, 1662–1671 (2018). https://doi.org/10.1021/acsami.7b13541
- Q. Xie, M. Jiang, H. Kong, Q. Huang, C. Wu et al., Enhanced air-poisoning resistance in vanadium-based hydrogen storage alloy by addition of Si. Prog. Nat. Sci. Mater. Int. 34, 648–653 (2024). https://doi.org/10.1016/j.pnsc.2024.05.010
- S. Suwarno, J.K. Solberg, B. Krogh, S. Raaen, V.A. Yartys, High temperature hydrogenation of Ti–V alloys: the effect of cycling and carbon monoxide on the bulk and surface properties. Int. J. Hydrog. Energy 41, 1699–1710 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.077
- H.C. Lin, K.M. Lin, K.C. Wu, H.H. Hsiung, H.K. Tsai, Cyclic hydrogen absorption–desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int. J. Hydrog. Energy 32, 4966–4972 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.057
- Z. Wu, C. Yang, Y. Yan, Y. Wang, X. Tang et al., Effect of dehydrogenation depth on cyclic hydrogen desorption properties of V40Ti2.55Cr2.65Fe8 alloy. J. Alloys Compd. 955, 170036 (2023). https://doi.org/10.1016/j.jallcom.2023.170036
- M. Tsukahara, K. Takahashi, A. Isomura, T. Sakai, Influence of oxygen on hydrogen storage and electrode properties for micro-designed V-based battery alloys. J. Alloys Compd. 265, 257–263 (1998). https://doi.org/10.1016/S0925-8388(97)00286-7
- T. Huang, Z. Wu, B. Xia, J. Chen, X. Yu et al., TiCr1.2(V–Fe)0.6: a novel hydrogen storage alloy with high capacity. Sci. Technol. Adv. Mater. 4, 491–494 (2003). https://doi.org/10.1016/j.stam.2003.12.001
- U. Ulmer, K. Asano, A. Patyk, H. Enoki, Y. Nakamura et al., Cost reduction possibilities of vanadium-based solid solutions—microstructural, thermodynamic, cyclic and environmental effects of ferrovanadium substitution. J. Alloys Compd. 648, 1024–1030 (2015). https://doi.org/10.1016/j.jallcom.2015.07.110
- Y. Nakamura, J. Nakamura, K. Sakaki, K. Asano, E. Akiba, Hydrogenation properties of Ti–V–Mn alloys with a BCC structure containing high and low oxygen concentrations. J. Alloys Compd. 509, 1841–1847 (2011). https://doi.org/10.1016/j.jallcom.2010.10.059
- T. Dou, Z. Wu, J. Mao, N. Xu, Application of commercial ferrovanadium to reduce cost of Ti–V-based BCC phase hydrogen storage alloys. Mater. Sci. Eng. A 476, 34–38 (2008). https://doi.org/10.1016/j.msea.2007.04.080
- T. Bibienne, C. Gosselin, J.-L. Bobet, J. Huot, Replacement of vanadium by ferrovanadium in a Ti-based body centred cubic (BCC) alloy: towards a low-cost hydrogen storage material. Appl. Sci. 8, 1151 (2018). https://doi.org/10.3390/app8071151
- J. Mi, X. Liu, Z. Li, L. Jiang, Z. Huang et al., Effects of Si and Ce on the microstructure and hydrogen storage property of Ti26.5Cr20V45Fe85Ce0.5 alloy. Sci. China Ser. E Technol. Sci. 52, 256–259 (2009). https://doi.org/10.1007/s11431-009-0026-3
- A. Bishnoi, P. Sharma, Effect of industrial grade raw materials and its associated impurities on first hydrogenation of BCC solid solution alloys. Int. J. Hydrog. Energy 56, 471–483 (2024). https://doi.org/10.1016/j.ijhydene.2023.12.134
References
X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao et al., Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 9, 100064 (2020). https://doi.org/10.1016/j.mtnano.2019.100064
L. Ouyang, K. Chen, J. Jiang, X.-S. Yang, M. Zhu, Hydrogen storage in light-metal based systems: a review. J. Alloys Compd. 829, 154597 (2020). https://doi.org/10.1016/j.jallcom.2020.154597
M. Hirscher, V.A. Yartys, M. Baricco, J. Bellosta von Colbe, D. Blanchard et al., Materials for hydrogen-based energy storage–past, recent progress and future outlook. J. Alloys Compd. 827, 153548 (2020). https://doi.org/10.1016/j.jallcom.2019.153548
J. Andersson, S. Grönkvist, Large-scale storage of hydrogen. Int. J. Hydrog. Energy 44, 11901–11919 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.063
E. Rivard, M. Trudeau, K. Zaghib, Hydrogen storage for mobility: a review. Materials 12, 1973 (2019). https://doi.org/10.3390/ma12121973
Z. Peng, Q. Li, L. Ouyang, W. Jiang, K. Chen et al., Overview of hydrogen compression materials based on a three-stage metal hydride hydrogen compressor. J. Alloys Compd. 895, 162465 (2022). https://doi.org/10.1016/j.jallcom.2021.162465
W. Jiang, C. He, X. Yang, X. Xiao, L. Ouyang et al., Influence of element substitution on structural stability and hydrogen storage performance: a theoretical and experimental study on TiCr2-xMnx alloy. Renew. Energy 197, 564–573 (2022). https://doi.org/10.1016/j.renene.2022.07.113
L. Ren, Y. Li, Z. Li, X. Lin, C. Lu et al., Boosting hydrogen storage performance of MgH2 by oxygen vacancy-rich H-V2O5 nanosheet as an excited H-pump. Nano-Micro Lett. 16, 160 (2024). https://doi.org/10.1007/s40820-024-01375-8
L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 14, 144 (2022). https://doi.org/10.1007/s40820-022-00891-9
Y. Shang, C. Pistidda, G. Gizer, T. Klassen, M. Dornheim, Mg-based materials for hydrogen storage. J. Magnes. Alloys 9, 1837–1860 (2021). https://doi.org/10.1016/j.jma.2021.06.007
Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnes. Alloys 9, 1922–1941 (2021). https://doi.org/10.1016/j.jma.2021.10.002
H. Hu, C. Ma, Q. Chen, Mechanism and microstructural evolution of TiCrVFe hydrogen storage alloys upon de-/ hydrogenation. J. Alloys Compd. 877, 160315 (2021). https://doi.org/10.1016/j.jallcom.2021.160315
L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023). https://doi.org/10.1007/s40820-023-01041-5
L. Ouyang, F. Liu, H. Wang, J. Liu, X.-S. Yang et al., Magnesium-based hydrogen storage compounds: a review. J. Alloys Compd. 832, 154865 (2020). https://doi.org/10.1016/j.jallcom.2020.154865
L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu, Application of dielectric barrier discharge plasma-assisted milling in energy storage materials—a review. J. Alloys Compd. 691, 422–435 (2017). https://doi.org/10.1016/j.jallcom.2016.08.179
S. Shen, W. Liao, Z. Cao, J. Liu, H. Wang et al., Enhanced hydrogen storage properties of MgH2 with the co-addition of LiBH4 and YNi5 alloy. J. Mater. Sci. Technol. 178, 90–99 (2024). https://doi.org/10.1016/j.jmst.2023.08.039
S. Shen, L. Ouyang, J. Liu, H. Wang, X.-S. Yang et al., In situ formed ultrafine metallic Ni from nickel (II) acetylacetonate precursor to realize an exceptional hydrogen storage performance of MgH2-Ni-EG nanocomposite. J. Magnes. Alloys 11, 3174–3185 (2023). https://doi.org/10.1016/j.jma.2021.12.003
W. Liao, W. Jiang, X.-S. Yang, H. Wang, L. Ouyang et al., Enhancing (de)hydrogenation kinetics properties of the Mg/MgH2 system by adding ANi5 (A = Ce, Nd, Pr, Sm, and Y) alloys via ball milling. J. Rare Earths 39, 1010–1016 (2021). https://doi.org/10.1016/j.jre.2020.07.020
J. Zhang, H. Li, X. Xiao, L. Ouyang, Preparation and regeneration of metal borohydrides for high-density hydrogen supply: progress, challenges, and perspectives. J. Alloys Compd. 951, 169887 (2023). https://doi.org/10.1016/j.jallcom.2023.169887
Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem. Int. Ed. 59, 8623–8629 (2020). https://doi.org/10.1002/anie.201915988
K. Chen, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Converting H+ from coordinated water into H- enables super facile synthesis of LiBH4. Green Chem. 21, 4380–4387 (2019). https://doi.org/10.1039/c9gc01897b
L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang et al., Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv. Energy Mater. 7, 1700299 (2017). https://doi.org/10.1002/aenm.201700299
S. Kumar, A. Jain, T. Ichikawa, Y. Kojima, G.K. Dey, Development of vanadium based hydrogen storage material: a review. Renew. Sustain. Energy Rev. 72, 791–800 (2017). https://doi.org/10.1016/j.rser.2017.01.063
H. Itoh, H. Arashima, K. Kubo, T. Kabutomori, K. Ohnishi, Improvement of cyclic durability of BCC structured Ti–Cr–V alloys. J. Alloys Compd. 404, 417–420 (2005). https://doi.org/10.1016/j.jallcom.2004.12.175
K. Goshome, N. Endo, M. Tetsuhiko, Evaluation of a BCC alloy as metal hydride compressor via 100 MPa-class high-pressure hydrogen apparatus. Int. J. Hydrog. Energy 44, 10800–10807 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.008
M. Balcerzak, Structure and hydrogen storage properties of mechanically alloyed Ti–V alloys. Int. J. Hydrog. Energy 42, 23698–23707 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.224
L. Pickering, D. Reed, A.I. Bevan, D. Book, Ti–V–Mn based metal hydrides for hydrogen compression applications. J. Alloys Compd. 645, S400–S403 (2015). https://doi.org/10.1016/j.jallcom.2014.12.098
H. Miao, W.G. Wang, Mechanisms of improving the cyclic stability of V–Ti-based hydrogen storage electrode alloys. J. Alloys Compd. 508, 592–598 (2010). https://doi.org/10.1016/j.jallcom.2010.08.132
M. Gao, S. Zhang, H. Miao, Y. Liu, H. Pan, Pulverization mechanism of the multiphase Ti–V-based hydrogen storage electrode alloy during charge/discharge cycling. J. Alloys Compd. 489, 552–557 (2010). https://doi.org/10.1016/j.jallcom.2009.09.107
Y. Zhu, H. Pan, M. Gao, Y. Liu, R. Li et al., Degradation mechanisms of Ti–V-based multiphase hydrogen storage alloy electrode. Int. J. Hydrog. Energy 29, 313–318 (2004). https://doi.org/10.1016/S0360-3199(03)00153-8
Q.A. Zhang, Y.Q. Lei, L.X. Chen, Q.D. Wang, Electrochemical behaviors of a V3TiNi0.56Hf0.24 alloy electrode during charge–discharge cycling. Mater. Chem. Phys. 71, 58–61 (2001). https://doi.org/10.1016/S0254-0584(01)00269-3
M.D. Dolan, M.A. Kochanek, C.N. Munnings, K.G. McLennan, D.M. Viano, Hydride phase equilibria in V–Ti–Ni alloy membranes. J. Alloys Compd. 622, 276–281 (2015). https://doi.org/10.1016/j.jallcom.2014.10.081
S. Suwarno, Y. Gosselin, J.K. Solberg, J.P. Maehlen, M. Williams et al., Selective hydrogen absorption from gaseous mixtures by BCC Ti–V alloys. Int. J. Hydrog. Energy 37, 4127–4138 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.100
T.M. Adams, J. Mickalonis, Hydrogen permeability of multiphase V–Ti–Ni metallic membranes. Mater. Lett. 61, 817–820 (2007). https://doi.org/10.1016/j.matlet.2006.05.078
S.-W. Cho, E. Akiba, Y. Nakamura, H. Enoki, Hydrogen isotope effects in Ti1.0Mn0.9V1.1 and Ti1.0Cr1.5V1.7 alloys. J. Alloys Compd. 297, 253–260 (2000). https://doi.org/10.1016/S0925-8388(99)00585-X
E. Akiba, H. Iba, Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6, 461–470 (1998). https://doi.org/10.1016/S0966-9795(97)00088-5
S. Ono, K. Nomura, Y. Ikeda, The reaction of hydrogen with alloys of vanadium and titanium. J. Less Common Met. 72, 159–165 (1980). https://doi.org/10.1016/0022-5088(80)90135-6
Y. Fei, X. Kong, Z. Wu, H. Li, V.K. Peterson, In situ neutron-diffraction study of the Ti38V30Cr14Mn18 structure during hydrogenation. J. Power Sources 241, 355–358 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.118
Y. Wu, W. Zhao, L. Jiang, Z. Li, X. Guo et al., Effect of Fe and Al on hydrogen storage properties of 75 V–Ti–Cr alloys. J. Alloys Compd. 887, 161181 (2021). https://doi.org/10.1016/j.jallcom.2021.161181
X.Y. Chen, R.R. Chen, K. Yu, X. Ding, X.Z. Li et al., Effect of Ce substitution on hydrogen absorption/desorption of Laves phase-related BCC solid solution Ti33V37Mn30 alloy. J. Alloys Compd. 783, 617–624 (2019). https://doi.org/10.1016/j.jallcom.2018.12.302
P. Ruz, S. Banerjee, R. Halder, A. Kumar, V. Sudarsan, Thermodynamics, kinetics and microstructural evolution of Ti0.43Zr0.07Cr0.25V0.25 alloy upon hydrogenation. Int. J. Hydrog. Energy 42, 11482–11492 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.184
J.M. Abdul, L.H. Chown, Influence of Fe on hydrogen storage properties of V-rich ternary alloys. Int. J. Hydrog. Energy 41, 2781–2787 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.154
S.-I. Towata, T. Noritake, A. Itoh, M. Aoki, K. Miwa, Effect of partial niobium and iron substitution on short-term cycle durability of hydrogen storage Ti–Cr–V alloys. Int. J. Hydrog. Energy 38, 3024–3029 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.100
Z. Dehouche, M. Savard, F. Laurencelle, J. Goyette, Ti–V–Mn based alloys for hydrogen compression system. J. Alloys Compd. 400, 276–280 (2005). https://doi.org/10.1016/j.jallcom.2005.04.007
C. Raufast, D. Planté, S. Miraglia, Investigation of the structural and hydrogenation properties of disordered Ti–V–Cr-Mo BCC solid solutions. J. Alloys Compd. 617, 633–638 (2014). https://doi.org/10.1016/j.jallcom.2014.07.089
Z. Hang, X. Xiao, K. Yu, S. Li, C. Chen et al., Influence of Fe content on the microstructure and hydrogen storage properties of Ti16Zr5Cr22V57−xFex (x =2–8) alloys. Int. J. Hydrog. Energy 35, 8143–8148 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.184
X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, The activation mechanism of Ti–V-based hydrogen storage alloys. J. Alloys Compd. 375, 221–223 (2004). https://doi.org/10.1016/j.jallcom.2003.11.027
M. Taghizadeh, S.M. Abbasi, M. Seifollahi, S.M.G. Mirsaeed, The effect of remelting on microstructure and hydrogen storage properties of Ti–Mn–V alloy. Trans. Indian Inst. Met. 74, 811–816 (2021). https://doi.org/10.1007/s12666-020-02178-2
Z. Chen, L. Luo, Z. Su, W. Liu, F. Zhang et al., Effect of LaH3 additive on microstructures and hydrogen storage properties of V40Ti26Cr26Fe8 alloys prepared by hydride powder sintering method. Int. J. Hydrog. Energy 44, 13538–13548 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.038
Y. Mao, S. Yang, C. Wu, L. Luo, Y. Chen, Preparation of (FeV80)48Ti26+xCr26(x=0–4) alloys by the hydride sintering method and their hydrogen storage performance. J. Alloys Compd. 705, 533–538 (2017). https://doi.org/10.1016/j.jallcom.2017.02.166
S. Kumar, P.K. Singh, Y. Kojima, V. Kain, Cyclic hydrogen storage properties of VTiCrAl alloy. Int. J. Hydrog. Energy 43, 7096–7101 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.103
A. Kawabata, H. Yoshinaga, M. Tsukahara, T. Sakai, S. Sakurai et al., A novel thermic process for producing V-based solid solution type hydrogen storage alloy. Mater. Trans. 42, 1794–1799 (2001). https://doi.org/10.2320/matertrans.42.1794
M. Balcerzak, Structural, electrochemical and hydrogen sorption studies of nanocrystalline Ti–V-Co and Ti–V–Ni-Co alloys synthesized by mechanical alloying method. J. Mater. Eng. Perform. 28, 4838–4844 (2019). https://doi.org/10.1007/s11665-019-04266-x
A. Dagher, H.G. Salem, T.M. Moustafa, E.B. Mettawee, E. Abdel-Rahman, Hydrogen absorption characteristics of mechanically alloyed Ti–Zr–Ni and Ti–V–Ni powders. Int. J. Hydrog. Energy 39, 17740–17746 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.109
J.-Y. Wang, Comparison of hydrogen storage properties of Ti0.37V0.38Mn0.25 alloys prepared by mechanical alloying and vacuum arc melting. Int. J. Hydrog. Energy 34, 3771–3777 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.028
S. Couillaud, H. Enoki, S. Amira, J.L. Bobet, E. Akiba et al., Effect of ball milling and cold rolling on hydrogen storage properties of nanocrystalline TiV1.6Mn0.4 alloy. J. Alloys Compd. 484, 154–158 (2009). https://doi.org/10.1016/j.jallcom.2009.05.037
J. Huot, H. Enoki, E. Akiba, Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1. J. Alloys Compd. 453, 203–209 (2008). https://doi.org/10.1016/j.jallcom.2006.11.193
B.K. Singh, G. Shim, S.-W. Cho, Effects of mechanical milling on hydrogen storage properties of Ti0.32 Cr0.43V0.25 alloy. Int. J. Hydrog. Energy 32, 4961–4965 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.010
D. Cauceglia, M.D. Hampton, J.K. Lomness, D.K. Slattery, M. Resan, Hydrogen uptake characteristics of mechanically alloyed TiVNi. J. Alloys Compd. 417, 159–163 (2006). https://doi.org/10.1016/j.jallcom.2005.01.143
H.-B. Wang, Q. Wang, C. Dong, F. Xu, L.-X. Sun et al., Microstructure and storage properties of low V-containing Ti–Cr–V hydrogen storage alloys prepared by arc melting and suction casting. Rare Met. 32, 354–358 (2013). https://doi.org/10.1007/s12598-013-0101-6
M. Uno, K. Takahashi, T. Maruyama, H. Muta, S. Yamanaka, Hydrogen solubility of BCC titanium alloys. J. Alloys Compd. 366, 213–216 (2004). https://doi.org/10.1016/S0925-8388(03)00749-7
H. Arashima, F. Takahashi, T. Ebisawa, H. Itoh, T. Kabutomori, Correlation between hydrogen absorption properties and homogeneity of Ti–Cr–V alloys. J. Alloys Compd. 356, 405–408 (2003). https://doi.org/10.1016/S0925-8388(03)00363-3
S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, B.T. Børresen et al., Microstructure and hydrogen storage properties of as-cast and rapidly solidified Ti-rich Ti–V alloys. Trans. Nonferrous Met. Soc. China 22, 1831–1838 (2012). https://doi.org/10.1016/s1003-6326(11)61394-0
I. Kunce, M. Polanski, J. Bystrzycki, Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrog. Energy 39, 9904–9910 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.067
B.K. Singh, S.W. Cho, K.S. Bartwal, Microstructure and hydrogen storage properties of (Ti0.32Cr0.43V0.25) + x wt% La (x = 0–10) alloys. Int. J. Hydrog. Energy 39, 8351–8356 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.168
M. Aoki, T. Noritake, A. Ito, M. Ishikiriyama, S.-I. Towata, Improvement of cyclic durability of Ti–Cr–V alloy by Fe substitution. Int. J. Hydrog. Energy 36, 12329–12332 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.019
J.-H. Yoo, G. Shim, C.-N. Park, W.-B. Kim, S.-W. Cho, Influence of Mn or Mn plus Fe on the hydrogen storage properties of the Ti–Cr–V alloy. Int. J. Hydrog. Energy 34, 9116–9121 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.064
J. Chen, Z. Li, H. Huang, Y. Lv, B. Liu et al., Superior cycle life of TiZrFeMnCrV high entropy alloy for hydrogen storage. Scr. Mater. 212, 114548 (2022). https://doi.org/10.1016/j.scriptamat.2022.114548
V. Zadorozhnyy, I. Tomilin, E. Berdonosova, C. Gammer, M. Zadorozhnyy et al., Composition design, synthesis and hydrogen storage ability of multi-principAl–component alloy TiVZrNbTa. J. Alloys Compd. 901, 163638 (2022). https://doi.org/10.1016/j.jallcom.2022.163638
T. Kuriiwa, T. Maruyama, A. Kamegawa, M. Okada, Effects of V content on hydrogen storage properties of V–Ti–Cr alloys with high desorption pressure. Int. J. Hydrog. Energy 35, 9082–9087 (2010). https://doi.org/10.1016/j.ijhydene.2010.06.024
D.P. Sai, N. Kumar, V. Saxena, Analysis of the potential metal hydrides for hydrogen storage in automobile applications, in Advanced Combustion for Sustainable Transport (Springer Singapore, 2021), pp. 299–330. https://doi.org/10.1007/978-981-16-8418-0_10
S.F. Santos, J. Huot, Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions. J. Alloys Compd. 472, 247–251 (2009). https://doi.org/10.1016/j.jallcom.2008.04.062
Y. Yan, Y. Chen, C. Wu, M. Tao, H. Liang, A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity. J Power Sources 164, 799–802 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.097
Z. Hang, X. Xiao, S. Li, H. Ge, C. Chen et al., Influence of heat treatment on the microstructure and hydrogen storage properties of Ti10V77Cr6Fe6Zr alloy. J. Alloys Compd. 529, 128–133 (2012). https://doi.org/10.1016/j.jallcom.2012.03.044
J. Mi, F. Lü, X. Liu, L. Jiang, Z. Li et al., Enhancement of cerium and hydrogen storage property of a low-cost Ti–V based BCC alloy prepared by commercial ferrovanadium. J. Rare Earths 28, 781–784 (2010). https://doi.org/10.1016/S1002-0721(09)60200-3
X. Liu, L. Jiang, Z. Li, Z. Huang, S. Wang, Improve plateau property of Ti32Cr46V22 BCC alloy with heat treatment and Ce additive. J. Alloys Compd. 471, L36–L38 (2009). https://doi.org/10.1016/j.jallcom.2008.04.004
Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, The effect of Si on V30Ti35Cr25Fe10 BCC hydrogen storage alloy. J. Alloys Compd. 441, 297–300 (2007). https://doi.org/10.1016/j.jallcom.2006.09.096
C. Wu, X. Zheng, Y. Chen, M. Tao, G. Tong et al., Hydrogen storage and cyclic properties of V60Ti(21.4+x)Cr(66–x)Fe12 (0≤x≤3) alloys. Int. J. Hydrog. Energy 35, 8130–8135 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.017
X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, Hydrogen storage performance of quenched Ti–V-based alloy. J. Alloys Compd. 373, 134–136 (2004). https://doi.org/10.1016/j.jallcom.2003.10.030
S.-I. Towata, T. Noritake, A. Itoh, M. Aoki, K. Miwa, Cycle durability of Ti–Cr–V alloys partially substituted by Nb or Fe. J. Alloys Compd. 580, S226–S228 (2013). https://doi.org/10.1016/j.jallcom.2013.03.163
X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, Effect of Cr content on hydrogen storage properties for Ti–V-based BCC-phase alloys. Int. J. Hydrog. Energy 29, 1377–1381 (2004). https://doi.org/10.1016/j.ijhydene.2004.01.015
X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, Influence of Fe addition on hydrogen storage characteristics of Ti–V-based alloy. Int. J. Hydrog. Energy 31, 1176–1181 (2006). https://doi.org/10.1016/j.ijhydene.2005.09.008
M. Tsukahara, Hydrogenation properties of vanadium-based alloys with large hydrogen storage capacity. Mater. Trans. 52, 68–72 (2011). https://doi.org/10.2320/matertrans.m2010216
T. Matsunaga, M. Kon, K. Washio, T. Shinozawa, M. Ishikiriyama, TiCrVMo alloys with high dissociation pressure for high-pressure MH tank. Int. J. Hydrog. Energy 34, 1458–1462 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.061
R.R. Chen, X.Y. Chen, X. Ding, X.Z. Li, J.J. Guo et al., Effects of Ti/Mn ratio on microstructure and hydrogen storage properties of Ti–V–Mn alloys. J. Alloys Compd. 748, 171–178 (2018). https://doi.org/10.1016/j.jallcom.2018.03.154
M. Shibuya, J. Nakamura, H. Enoki, E. Akiba, High-pressure hydrogenation properties of Ti–V–Mn alloy for hybrid hydrogen storage vessel. J. Alloys Compd. 475, 543–545 (2009). https://doi.org/10.1016/j.jallcom.2008.07.121
H. Hu, C. Ma, Q. Chen, Improved hydrogen storage properties of Ti2CrV alloy by Mo substitutional doping. Int. J. Hydrog. Energy 47, 11929–11937 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.212
C.-Y. Seo, Z.-L. Zhang, J.-H. Kim, P.S. Lee, J.-Y. Lee, Effect of manganese addition on hydrogen storage performance of vanadium-based BCC hydrogen storage alloys. Met. Mater. Int. 8, 341–346 (2002). https://doi.org/10.1007/BF03186105
X.P. Liu, F. Cuevas, L.J. Jiang, M. Latroche, Z.N. Li et al., Improvement of the hydrogen storage properties of Ti–Cr–V–Fe BCC alloy by Ce addition. J. Alloys Compd. 476, 403–407 (2009). https://doi.org/10.1016/j.jallcom.2008.09.042
X.Y. Chen, R.R. Chen, X. Ding, H.Z. Fang, J.J. Guo et al., Crystal structure and hydrogen storage properties of Ti–V–Mn alloys. Int. J. Hydrog. Energy 43, 6210–6218 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.009
X.Y. Chen, R.R. Chen, X. Ding, S. Wang, Y.Q. Su et al., Activation and de/hydriding behavior in Ti23V40Mn37 alloy by Hf and Hf/Cr substitutions. Int. J. Hydrog. Energy 45, 6813–6822 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.194
X.Y. Chen, R.R. Chen, X. Ding, X.Z. Li, H.S. Ding et al., Substitution effect of Hf on hydrogen storage capacity and cycling durability of Ti23V40Mn37 metal hydride alloys. Int. J. Hydrog. Energy 43, 19567–19574 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.203
L. Luo, Y. Li, T. Zhai, F. Hu, Z. Zhao et al., Microstructure and hydrogen storage properties of V48Fe12Ti15-xCr25Alx (x=0, 1) alloys. Int. J. Hydrog. Energy 44, 25188–25198 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.172
J. Mi, X. Liu, Y. Li, L. Jiang, Z. Li et al., Effect of cerium content on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe85Cex (x=0–1.0) alloys. J. Rare Earths 27, 154–158 (2009). https://doi.org/10.1016/S1002-0721(08)60211-2
B.K. Singh, S.-W. Cho, K.S. Bartwal, Effect on structure and hydrogen storage characteristics of composite alloys Ti0.32Cr0.43V0.25 with LaNi5 and rare-earth elements La, Ce, Y. J. Alloys Compd. 478, 785–788 (2009). https://doi.org/10.1016/j.jallcom.2008.12.011
C.L. Wu, Y.G. Yan, Y.G. Chen, M.D. Tao, X. Zheng, Effect of rare earth (RE) elements on V-based hydrogen storage alloys. Int. J. Hydrog. Energy 33, 93–97 (2008). https://doi.org/10.1016/j.ijhydene.2007.09.002
Y. Yan, Y. Chen, H. Liang, X. Zhou, C. Wu et al., Effect of Ce on the structure and hydrogen storage properties of V55Ti22.5Cr16.1Fe6.4. J. Alloys Compd. 429, 301–305 (2007). https://doi.org/10.1016/j.jallcom.2006.04.057
K. Shashikala, S. Banerjee, A. Kumar, M.R. Pai, C.G.S. Pillai, Improvement of hydrogen storage properties of TiCrV alloy by Zr substitution for Ti. Int. J. Hydrog. Energy 34, 6684–6689 (2009). https://doi.org/10.1016/j.ijhydene.2009.06.065
S. Basak, K. Shashikala, S.K. Kulshreshtha, Hydrogen absorption characteristics of Zr substituted Ti0.85VFe0.15 alloy. Int. J. Hydrog. Energy 33, 350–355 (2008). https://doi.org/10.1016/j.ijhydene.2007.07.023
A. Kamble, P. Sharma, J. Huot, Effect of addition of Zr, Ni, and Zr-Ni alloy on the hydrogen absorption of Body Centred Cubic 52Ti–12V–36Cr alloy. Int. J. Hydrog. Energy 43, 7424–7429 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.106
J.-H. Yoo, G. Shim, S.-W. Cho, C.-N. Park, Effects of desorption temperature and substitution of Fe for Cr on the hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy. Int. J. Hydrog. Energy 32, 2977–2981 (2007). https://doi.org/10.1016/j.ijhydene.2007.01.012
T. Mouri, H. Iba, Hydrogen-absorbing alloys with a large capacity for a new energy carrier. Mater. Sci. Eng. A 329, 346–350 (2002). https://doi.org/10.1016/S0921-5093(01)01597-0
Z. Huang, F. Cuevas, X. Liu, L. Jiang, S. Wang et al., Effects of Si addition on the microstructure and the hydrogen storage properties of Ti2.65V45Fe8.5Cr20Ce0.5 BCC solid solution alloys. Int. J. Hydrog. Energy 34, 9385–9392 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.055
J. Mi, X. Guo, X. Liu, L. Jiang, Z. Li et al., Effect of Al on microstructures and hydrogen storage properties of Ti2.65Cr20(V0.45Fe0.085)100–xAlxCe0.5 alloy. J. Alloys Compd. 485, 324–327 (2009). https://doi.org/10.1016/j.jallcom.2009.05.096
Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao et al., Effect of Al on hydrogen storage properties of V30Ti35Cr25Fe10 alloy. J. Alloys Compd. 426, 253–255 (2006). https://doi.org/10.1016/j.jallcom.2005.12.122
J.-H. Yoo, G. Shim, J.-S. Yoon, S.-W. Cho, Effects of substituting Al for Cr in the Ti0.32Cr0.43V0.25 alloy on its microstructure and hydrogen storage properties. Int. J. Hydrog. Energy 34, 1463–1467 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.102
U. Ulmer, K. Asano, T. Bergfeldt, V.S.K. Chakravadhanula, R. Dittmeyer et al., Effect of oxygen on the microstructure and hydrogen storage properties of V–Ti–Cr–Fe quaternary solid solutions. Int. J. Hydrog. Energy 39, 20000–20008 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.152
S. Selvaraj, A. Jain, S. Kumar, T. Zhang, S. Isobe et al., Study of cyclic performance of V–Ti–Cr alloys employed for hydrogen compressor. Int. J. Hydrog. Energy 43, 2881–2889 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.159
A. Martínez, D.S. dos Santos, Influence of the substitution of V by Nb in the structure and properties of hydrogen absorption/desorption of TiCr1.1V0.9 alloy. J. Alloys Compd. 536, S231–S235 (2012). https://doi.org/10.1016/j.jallcom.2011.11.092
B.H. Silva, C. Zlotea, G. Vaughan, Y. Champion, W.J. Botta et al., Hydrogen absorption/desorption reactions of the (TiVNb)85Cr15 multicomponent alloy. J. Alloys Compd. 901, 163620 (2022). https://doi.org/10.1016/j.jallcom.2022.163620
S. Yang, F. Yang, C. Wu, Y. Chen, Y. Mao et al., Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40−xZrx (0≤x≤2) alloys. J. Alloys Compd. 663, 460–465 (2016). https://doi.org/10.1016/j.jallcom.2015.12.125
T. Kuriiwa, T. Tamura, T. Amemiya, T. Fuda, A. Kamegawa et al., New V-based alloys with high Protium absorption and desorption capacity. J. Alloys Compd. 293, 433–436 (1999). https://doi.org/10.1016/S0925-8388(99)00325-4
Q. Zeng, F. Wang, Z. Li, M. Rong, J. Wang et al., Influence of Zr addition on the microstructure and hydrogenation kinetics of Ti50-xV25Cr25Zrx (x = 0, 5, 7, and 9) alloys. Materials 17, 1366 (2024). https://doi.org/10.3390/ma17061366
S. Zhang, X. Ding, R. Chen, J. Zhang, Y. Su et al., Modification of nano-eutectic structure and the relation on hydrogen storage properties: a novel Ti–V–Zr medium entropy alloy. Int. J. Hydrog. Energy 47, 34533–34544 (2022). https://doi.org/10.1016/j.ijhydene.2022.08.039
B. Liu, X. Chen, L. Shang, Q. Tao, R. Chen, Crucial role of ZrxNiy addition during hydrogen absorption/desorption of Ti37V40Mn23 alloy. J. Alloys Compd. 997, 174840 (2024). https://doi.org/10.1016/j.jallcom.2024.174840
A. Kamble, P. Sharma, J. Huot, Effect of the addition of 4 wt% Zr to BCC solid solution Ti52V12Cr36 at melting/milling on hydrogen sorption properties. Front. Mater. 8, 821126 (2022). https://doi.org/10.3389/fmats.2021.821126
H. Kwon, J. Kim, S.-W. Cho, J.-H. Yoo, K.-M. Roh et al., The effect of Sc addition on the hydrogen storage capacity of Ti0.32Cr0.43V0.25 alloy. Int. J. Hydrog. Energy 39, 10600–10605 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.011
J. Zhu, L. Ma, F. Liang, L. Wang, Effect of Sc substitution on hydrogen storage properties of Ti–V–Cr–Mn alloys. Int. J. Hydrog. Energy 40, 6860–6865 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.149
L. Luo, H. Han, D. Feng, W. Lv, L. Chen et al., Nanocrystalline high entropy alloys with ultrafast kinetics and high storage capacity for large-scale room-temperature-applicable hydrogen storage. Renewables 2, 138–149 (2024). https://doi.org/10.31635/renewables.024.202300049
X. Zhang, H. Xiao, X. He, R. Tang, W. Zhou et al., Impacts of Y dopants on the microstructure and cyclic stability of TiCrVFeMo alloys. Int. J. Hydrog. Energy 61, 1220–1229 (2024). https://doi.org/10.1016/j.ijhydene.2024.02.330
F. Liang, N. Ding, W. Liu, H. Yan, L. Wang, Superior reversible hydrogen storage capacity of V-based solid solution alloy above atmospheric pressure with yttrium substitution. Mater. Lett. 297, 129945 (2021). https://doi.org/10.1016/j.matlet.2021.129945
M. de Brito Ferraz, W.J. Botta, G. Zepon, Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25V10Zn15 high entropy alloy. Int. J. Hydrog. Energy 47, 22881–22892 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.098
R.-R. Jeng, S.-L. Lee, C.-W. Hsu, Y.-P. Wu, J.-C. Lin, Effects of the addition of Pd on the hydrogen absorption–desorption characteristics of Ti33V33Cr34 alloys. J. Alloys Compd. 464, 467–471 (2008). https://doi.org/10.1016/j.jallcom.2007.10.010
X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, Improvement of activation performance of the quenched Ti–V-based BCC phase alloys. J. Alloys Compd. 386, 258–260 (2005). https://doi.org/10.1016/j.jallcom.2004.05.014
L. Luo, F. Yang, Y. Li, L. Li, Y. Li, Investigation of the microstructure and hydrogen storage behavior of V48Fe12Ti15+xCr25-x (x=0, 5, 10, 15) alloys. Int. J. Hydrog. Energy 47, 9653–9671 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.058
P. Pei, X. Song, M. Zhao, P. Zhang, G. Chen, Influences of V content on hydrogen storage properties in low vanadium Ti–V–Cr alloy. Rare Met. Mater. Eng. 37, 1419–1423 (2008). https://doi.org/10.1016/S1875-5372(09)60039-4
S.-W. Cho, C.-S. Han, C.-N. Park, E. Akiba, The hydrogen storage characteristics of Ti–Cr–V alloys. J. Alloys Compd. 288, 294–298 (1999). https://doi.org/10.1016/S0925-8388(99)00096-1
K. Goshome, N. Endo, T. Maeda, Evaluation of the pressure dependence of the cycle durability and thermodynamics of a metal hydride compressor composed of ternary V40 and V70TiCr. Int. J. Hydrog. Energy 46, 9479–9487 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.101
K. Sakaki, H. Kim, E.H. Majzoub, A. Machida, T. Watanuki et al., Displacement of hydrogen position in di-hydride of V–Ti–Cr solid solution alloys. Acta Mater. 234, 118055 (2022). https://doi.org/10.1016/j.actamat.2022.118055
S.F. Santos, J. Huot, Hydrogen storage in Ti–Mn–(FeV) BCC alloys. J. Alloys Compd. 480, 5–8 (2009). https://doi.org/10.1016/j.jallcom.2008.09.191
F. Ravalison, J. Huot, Hydrogenation thermodynamics of Ti16V60Cr24–xFex alloys (x = 0, 4, 8, 12, 16, 20, 24). Hydrogen 5, 29–38 (2024). https://doi.org/10.3390/hydrogen5010003
J. Matsuda, Y. Nakamura, E. Akiba, Microstructure of Ti–V–Mn BCC alloys before and after hydrogen absorption–desorption. J. Alloys Compd. 509, 4352–4356 (2011). https://doi.org/10.1016/j.jallcom.2011.01.071
Z. Hang, L. Shi, Y. Feng, H. Dong, L. Yang et al., Experimental and theoretical insights into vanadium-based alloys for room temperature hydrogen storage on the example of Ti16Cr22Zr5V55-xFe2Mnx (x=0–3) alloys. J. Alloys Compd. 988, 174315 (2024). https://doi.org/10.1016/j.jallcom.2024.174315
L. Pickering, J. Li, D. Reed, A.I. Bevan, D. Book, Ti–V–Mn based metal hydrides for hydrogen storage. J. Alloys Compd. 580, S233–S237 (2013). https://doi.org/10.1016/j.jallcom.2013.03.208
X. Li, D. Wu, Q. Zhou, R. Tang, F. Xiao et al., Enhanced cyclic durability of low-cost Ti–V–Cr hydrogen storage alloys by elemental alloying. Mater. Chem. Phys. 317, 129132 (2024). https://doi.org/10.1016/j.matchemphys.2024.129132
J.M. Abdul, S.K. Kolawole, G.A. Salawu, Microstructure and hydrogen storage characteristics of rhodium substituted Ti–V–Cr alloys. JOM 73, 4112–4118 (2021). https://doi.org/10.1007/s11837-021-04952-z
Y. Zhu, X. Li, X.-S. Yang, P. Chen, G.C. Tsui et al., Compositionally complex doping for low-V Ti–Cr–V hydrogen storage alloys. Chem. Eng. J. 477, 146970 (2023). https://doi.org/10.1016/j.cej.2023.146970
A. Kamble, P. Sharma, J. Huot, Effect of doping and p size on hydrogen absorption properties of BCC solid solution 52Ti–12V–36Cr. Int. J. Hydrog. Energy 42, 11523–11527 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.137
X.B. Yu, Q. Wan, Z. Wu, B.J. Xia, N.X. Xu, Synergism of nano ZnO for improvement of hydrogen absorption performance of Ti–V-based alloys. J. Mater. Res. 19, 2799–2802 (2004). https://doi.org/10.1557/JMR.2004.0390
M. Balcerzak, J. Ternieden, M. Felderhoff, Synthesis, thermal stability, and hydrogen storage properties of poorly crystalline TiVFeCuNb multi-principal element alloy. J. Alloys Compd. 943, 169142 (2023). https://doi.org/10.1016/j.jallcom.2023.169142
X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chem. A 9, 663–701 (2021). https://doi.org/10.1039/d0ta09601f
X. Ma, X. Ding, R. Chen, X. Chen, Q. Song et al., Study on microstructure and the hydrogen storage behavior of a TiVZrNbFe high-entropy alloy. Intermetallics 157, 107885 (2023). https://doi.org/10.1016/j.intermet.2023.107885
L. Serrano, M. Moussa, J.-Y. Yao, G. Silva, J.-L. Bobet et al., Development of Ti–V–Nb–Cr–Mn high entropy alloys for hydrogen storage. J. Alloys Compd. 945, 169289 (2023). https://doi.org/10.1016/j.jallcom.2023.169289
J. Montero, G. Ek, M. Sahlberg, C. Zlotea, Improving the hydrogen cycling properties by Mg addition in Ti–V–Zr–Nb refractory high entropy alloy. Scr. Mater. 194, 113699 (2021). https://doi.org/10.1016/j.scriptamat.2020.113699
L. Huang, M. Long, W. Liu, S. Li, Effects of Cr on microstructure, mechanical properties and hydrogen desorption behaviors of ZrTiNbMoCr high entropy alloys. Mater. Lett. 293, 129718 (2021). https://doi.org/10.1016/j.matlet.2021.129718
C. Zhang, Y. Wu, L. You, W. Qiu, Y. Zhang et al., Nanoscale phase separation of TiZrNbTa high entropy alloy induced by hydrogen absorption. Scr. Mater. 178, 503–507 (2020). https://doi.org/10.1016/j.scriptamat.2019.12.034
C. Zhang, A. Song, Y. Yuan, Y. Wu, P. Zhang et al., Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy. Int. J. Hydrog. Energy 45, 5367–5374 (2020). https://doi.org/10.1016/j.ijhydene.2019.05.214
H. Shen, J. Hu, P. Li, G. Huang, J. Zhang et al., Compositional dependence of hydrogenation performance of Ti–Zr–Hf–Mo–Nb high-entropy alloys for hydrogen/tritium storage. J. Mater. Sci. Technol. 55, 116–125 (2020). https://doi.org/10.1016/j.jmst.2019.08.060
J. Montero, G. Ek, L. Laversenne, V. Nassif, G. Zepon et al., Hydrogen storage properties of the refractory Ti–V–Zr–Nb–Ta multi-principal element alloy. J. Alloys Compd. 835, 155376 (2020). https://doi.org/10.1016/j.jallcom.2020.155376
C. Zhang, Y. Wu, L. You, X. Cao, Z. Lu et al., Investigation on the activation mechanism of hydrogen absorption in TiZrNbTa high entropy alloy. J. Alloys Compd. 781, 613–620 (2019). https://doi.org/10.1016/j.jallcom.2018.12.120
M.M. Nygård, G. Ek, D. Karlsson, M.H. Sørby, M. Sahlberg et al., Counting electrons—a new approach to tailor the hydrogen sorption properties of high-entropy alloys. Acta Mater. 175, 121–129 (2019). https://doi.org/10.1016/j.actamat.2019.06.002
H.-Z. Hu, H.-Q. Xiao, X.-C. He, W.-H. Zhou, X.-X. Zhang et al., Development of Ti–V–Cr–Mn–Mo–Ce high-entropy alloys for high-density hydrogen storage in water bath environments. Rare Met. 43, 5229–5241 (2024). https://doi.org/10.1007/s12598-024-02618-8
M. Vaidya, K. Guruvidyathri, B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J. Alloys Compd. 774, 856–864 (2019). https://doi.org/10.1016/j.jallcom.2018.09.342
M. Vaidya, G. Mohan Muralikrishna, S.V. Divinski, B.S. Murty, Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Scr. Mater. 157, 81–85 (2018). https://doi.org/10.1016/j.scriptamat.2018.07.040
K. Guruvidyathri, B.S. Murty, J.W. Yeh, K.C. Hari Kumar, Gibbs energy-composition plots as a tool for high-entropy alloy design. J. Alloys Compd. 768, 358–367 (2018). https://doi.org/10.1016/j.jallcom.2018.07.264
C. Chattopadhyay, A. Prasad, B.S. Murty, Phase prediction in high entropy alloys—a kinetic approach. Acta Mater. 153, 214–225 (2018). https://doi.org/10.1016/j.actamat.2018.05.002
K.S. Senkevich, M.M. Serov, O.Z. Umarova, Fabrication of intermetallic titanium alloy based on Ti2AlNb by rapid quenching of melt. Met. Sci. Heat Treat.. Sci. Heat Treat. 59, 463–466 (2017). https://doi.org/10.1007/s11041-017-0172-3
H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao et al., Hydrogen storage properties and thermal stability of V35Ti20Cr45 alloy by heat treatment. Int. J. Hydrog. Energy 39, 14887–14895 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.054
R.-R. Jeng, C.-Y. Chou, S.-L. Lee, Y.-C. Wu, H.-Y. Bor, Effect of Mn, Ti/Cr ratio, and heat treatment on hydrogen storage properties of TI–V–CR–MN alloys. J. Chin. Inst. Eng. 34, 601–608 (2011). https://doi.org/10.1080/02533839.2011.577595
S.-W. Cho, C.-S. Han, C.-N. Park, E. Akiba, Hydrogen storage characteristics of Ti–Zr–Cr–V alloys. J. Alloys Compd. 289, 244–250 (1999). https://doi.org/10.1016/S0925-8388(99)00162-0
M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, Ti–V–Cr b.c.c. alloys with high protium content. J. Alloys Compd. 330, 511–516 (2002). https://doi.org/10.1016/S0925-8388(01)01647-4
L. Luo, X. Bian, W.-Y. Wu, Z.-M. Yuan, Y.-Z. Li et al., Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy. J. Iron. Steel Res. Int. 27, 217–227 (2020). https://doi.org/10.1007/s42243-019-00337-4
V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, V.I. Bondarchuk, G.S. Mogylnyy, Hydrogenation process in multiphase alloys of Ti–Zr–Mn–V system on the example of Ti42.75Zr27Mn20.25V10 alloy. Int. J. Hydrog. Energy 46, 8040–8047 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.283
Y. Munekata, K. Washio, T. Suda, N. Hashimoto, S. Ohnuki et al., Role of annealing for improving hydrogen storage properties of Ti–Cr–V alloy. MRS Online Proc. Libr. 971, 721 (2011). https://doi.org/10.1557/PROC-0971-Z07-21
B. Liu, X. Chen, S. Zhang, X. Ding, R. Chen, Formation of eutectic and hydrogen absorption/desorption behavior of heat-treated Ti19Hf4V40Mn35Cr2 alloys. Intermetallics 152, 107752 (2023). https://doi.org/10.1016/j.intermet.2022.107752
C. Yang, Q. Wang, M. Wang, Y. Wang, R. Du et al., Effect of V content on hydrogen storage properties and cyclic durability of V–Ti–Cr–Fe alloys. Int. J. Hydrog. Energy 48, 26870–26880 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.307
L. Luo, C. Wu, S. Yang, J. Zhou, Y. Chen et al., Decaying behaviors of V40(TiCr)51Fe8Mn hydrogen storage alloys with different p sizes. J. Alloys Compd. 645, S178–S183 (2015). https://doi.org/10.1016/j.jallcom.2014.12.261
H. Kwon, J.-H. Yoo, K.-M. Roh, C.-Y. Suh, W.-B. Kim et al., Effect of p size and microstructure on the hydrogen storage property in a V–Ti–Cr solid solution system. J. Alloys Compd. 535, 87–90 (2012). https://doi.org/10.1016/j.jallcom.2012.04.078
H. Kim, K. Sakaki, H. Ogawa, Y. Nakamura, J. Nakamura et al., Origin of degradation in the reversible hydrogen storage capacity of V1–xTix alloys from the atomic pair distribution function analysis. J. Phys. Chem. C 117, 26543–26550 (2013). https://doi.org/10.1021/jp408766r
C. Wu, Q. Wang, Y. Mao, L. Huang, Y. Chen et al., Relationship between lattice defects and phase transformation in hydrogenation/dehydrogenation process of the V60Ti25Cr3Fe12 alloy. Int. J. Hydrog. Energy 44, 9368–9377 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.097
K. Ikeda, S. Sashida, T. Otomo, H. Ohshita, T. Honda et al., Local structural changes in V–Ti–Cr alloy hydrides with hydrogen absorption/desorption cycling. Int. J. Hydrog. Energy 51, 79–87 (2024). https://doi.org/10.1016/j.ijhydene.2023.10.318
U. Ulmer, D. Oertel, T. Diemant, C. Bonatto Minella, T. Bergfeldt et al., Performance improvement of V–Fe–Cr–Ti solid state hydrogen storage materials in impure hydrogen gas. ACS Appl. Mater. Interfaces 10, 1662–1671 (2018). https://doi.org/10.1021/acsami.7b13541
Q. Xie, M. Jiang, H. Kong, Q. Huang, C. Wu et al., Enhanced air-poisoning resistance in vanadium-based hydrogen storage alloy by addition of Si. Prog. Nat. Sci. Mater. Int. 34, 648–653 (2024). https://doi.org/10.1016/j.pnsc.2024.05.010
S. Suwarno, J.K. Solberg, B. Krogh, S. Raaen, V.A. Yartys, High temperature hydrogenation of Ti–V alloys: the effect of cycling and carbon monoxide on the bulk and surface properties. Int. J. Hydrog. Energy 41, 1699–1710 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.077
H.C. Lin, K.M. Lin, K.C. Wu, H.H. Hsiung, H.K. Tsai, Cyclic hydrogen absorption–desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int. J. Hydrog. Energy 32, 4966–4972 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.057
Z. Wu, C. Yang, Y. Yan, Y. Wang, X. Tang et al., Effect of dehydrogenation depth on cyclic hydrogen desorption properties of V40Ti2.55Cr2.65Fe8 alloy. J. Alloys Compd. 955, 170036 (2023). https://doi.org/10.1016/j.jallcom.2023.170036
M. Tsukahara, K. Takahashi, A. Isomura, T. Sakai, Influence of oxygen on hydrogen storage and electrode properties for micro-designed V-based battery alloys. J. Alloys Compd. 265, 257–263 (1998). https://doi.org/10.1016/S0925-8388(97)00286-7
T. Huang, Z. Wu, B. Xia, J. Chen, X. Yu et al., TiCr1.2(V–Fe)0.6: a novel hydrogen storage alloy with high capacity. Sci. Technol. Adv. Mater. 4, 491–494 (2003). https://doi.org/10.1016/j.stam.2003.12.001
U. Ulmer, K. Asano, A. Patyk, H. Enoki, Y. Nakamura et al., Cost reduction possibilities of vanadium-based solid solutions—microstructural, thermodynamic, cyclic and environmental effects of ferrovanadium substitution. J. Alloys Compd. 648, 1024–1030 (2015). https://doi.org/10.1016/j.jallcom.2015.07.110
Y. Nakamura, J. Nakamura, K. Sakaki, K. Asano, E. Akiba, Hydrogenation properties of Ti–V–Mn alloys with a BCC structure containing high and low oxygen concentrations. J. Alloys Compd. 509, 1841–1847 (2011). https://doi.org/10.1016/j.jallcom.2010.10.059
T. Dou, Z. Wu, J. Mao, N. Xu, Application of commercial ferrovanadium to reduce cost of Ti–V-based BCC phase hydrogen storage alloys. Mater. Sci. Eng. A 476, 34–38 (2008). https://doi.org/10.1016/j.msea.2007.04.080
T. Bibienne, C. Gosselin, J.-L. Bobet, J. Huot, Replacement of vanadium by ferrovanadium in a Ti-based body centred cubic (BCC) alloy: towards a low-cost hydrogen storage material. Appl. Sci. 8, 1151 (2018). https://doi.org/10.3390/app8071151
J. Mi, X. Liu, Z. Li, L. Jiang, Z. Huang et al., Effects of Si and Ce on the microstructure and hydrogen storage property of Ti26.5Cr20V45Fe85Ce0.5 alloy. Sci. China Ser. E Technol. Sci. 52, 256–259 (2009). https://doi.org/10.1007/s11431-009-0026-3
A. Bishnoi, P. Sharma, Effect of industrial grade raw materials and its associated impurities on first hydrogenation of BCC solid solution alloys. Int. J. Hydrog. Energy 56, 471–483 (2024). https://doi.org/10.1016/j.ijhydene.2023.12.134