Chalcogenide Ovonic Threshold Switching Selector
Corresponding Author: Min Zhu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 81
Abstract
Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames, a feat unattainable with Flash or DRAM. Intel Optane, commonly referred to as three-dimensional phase change memory, stands out as one of the most promising candidates. The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch (OTS). The OTS device, which employs chalcogenide film, has thereby gathered increased attention in recent years. In this paper, we begin by providing a brief introduction to the discovery process of the OTS phenomenon. Subsequently, we summarize the key electrical parameters of OTS devices and delve into recent explorations of OTS materials, which are categorized as Se-based, Te-based, and S-based material systems. Furthermore, we discuss various models for the OTS switching mechanism, including field-induced nucleation model, as well as several carrier injection models. Additionally, we review the progress and innovations in OTS mechanism research. Finally, we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications, such as self-selecting memory and neuromorphic computing.
Highlights:
1 The development history and key milestones of ovonic threshold switch (OTS) materials were comprehensively summarized. Combined with the latest advancements of OTS research, the mainstream OTS material systems were systematically introduced.
2 A thorough overview of the prevailing viewpoints regarding the OTS switching mechanisms was presented.
3 Recent progress in OTS devices for applications in 3D memory, self-selecting memory, and neuromorphic computing was summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Reinsel, J. Gantz, J. Rydning, Data Age 2025: The Digitization of the World: From Edge to Core (International Data Corporation (IDC), 2018). https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.
- G.W. Burr, R.S. Shenoy, K. Virwani, P. Narayanan, A. Padilla et al., Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B 32(4), 040802 (2014). https://doi.org/10.1116/1.4889999
- Q. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x
- R. Calarco, F. Arciprete, Keep it simple and switch to pure tellurium. Science 374, 1321 (2021). https://doi.org/10.1126/science.abm7316
- M. Si, H.-Y. Cheng, T. Ando, G. Hu, P.D. Ye, Overview and outlook of emerging non-volatile memories. MRS Bull. 46, 946–958 (2021). https://doi.org/10.1557/s43577-021-00204-2
- G. Servalli, A 45nm generation Phase Change Memory technology. in 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore, MD, USA. 1–4 (2009). https://doi.org/10.1109/IEDM.2009.5424409
- G.W. Burr, K. Virwani, R.S. Shenoy, A. Padilla, M. BrightSky et al., Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield. in 2012 Symposium on VLSI Technology (VLSIT). Honolulu, HI, USA. 41–42 (2012). https://doi.org/10.1109/VLSIT.2012.6242451
- K.L. Chopra, Current-controlled negative resistance in thin niobium oxide films. Proc. IEEE 51, 941–942 (1963). https://doi.org/10.1109/PROC.1963.2339
- S. Kumar, J.P. Strachan, R.S. Williams, Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017). https://doi.org/10.1038/nature23307
- R. Midya, Z. Wang, J. Zhang, S.E. Savel’ev, C. Li et al., Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29, 1604457 (2017). https://doi.org/10.1002/adma.201604457
- D. Kau, S. Tang, I.V. Karpov, R. Dodge, B. Klehn et al., A stackable cross point phase change memory. in 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore, MD, USA. 1–4 (2009). https://doi.org/10.1109/IEDM.2009.5424263
- A. Fazio, Advanced technology and systems of cross point memory. in 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 24.1.1–24.1.4 (2020). https://doi.org/10.1109/IEDM13553.2020.9371976
- W.R. Northover, A.D. Pearson, US Patent 3117013 (1964).
- R.H. Dennard, US Patent 3387286 (1967).
- S.R. Ovshinsky, US Patent 3271591 (1966).
- S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968). https://doi.org/10.1103/physrevlett.21.1450
- D.L. Nelson, Ovonic device applications. J. Non Cryst. Solids 2, 528–539 (1970). https://doi.org/10.1016/0022-3093(70)90166-3
- N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991). https://doi.org/10.1063/1.348620
- M. Zhu, K. Ren, L. Liu, S. Lv, X. Miao et al., Direct observation of partial disorder and zipperlike transition in crystalline phase change materials. Phys. Rev. Mater. 3, 033603 (2019). https://doi.org/10.1103/physrevmaterials.3.033603
- H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Completely erasable phase change optical disk. Jpn. J. Appl. Phys. 31, 461 (1992). https://doi.org/10.1143/jjap.31.461
- M. Zhu, W. Song, P.M. Konze, T. Li, B. Gault et al., Direct atomic insight into the role of dopants in phase-change materials. Nat. Commun. 10, 3525 (2019). https://doi.org/10.1038/s41467-019-11506-0
- E.J. Evans, J.H. Helbers, S.R. Ovshinsky, Reversible conductivity transformations in chalcogenide alloy films. J. Non Cryst. Solids 2, 334–346 (1970). https://doi.org/10.1016/0022-3093(70)90149-3
- S. Lai, T. Lowrey, OUM—A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. in International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224). Washington, DC, USA. 36.5.1–36.5.4 (2001). https://doi.org/10.1109/IEDM.2001.979636
- M. Gill, T. Lowrey, J. Park, Ovonic unified memory—a high-performance nonvolatile memory technology for stand-alone memory and embedded applications. in 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315). San Francisco, CA, USA. 202–459 (2002). https://doi.org/10.1109/ISSCC.2002.993006
- F. Bedeschi, C. Resta, O. Khouri, B. E., L. Costa et al., An 8Mb demonstrator for high-density 1.8V Phase-Change Memories. in 2004 Symposium on VLSI Circuits. Digest of Technical Papers. Honolulu, HI, USA. 442–445 (2004). https://doi.org/10.1109/VLSIC.2004.1346644
- M.J. Kang, T.J. Park, Y.W. Kwon, D.H. Ahn, Y.S. Kang et al., PRAM cell technology and characterization in 20 nm node size. in 2011 International Electron Devices Meeting. Washington, DC, USA. 3.1.1–3.1.4 (2011). https://doi.org/10.1109/IEDM.2011.6131478
- J.H. Oh, J.H. Park, Y.S. Lim, H.S. Lim, Y.T. Oh et al., Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology. in 2006 International Electron Devices Meeting. San Francisco, CA, USA. 1–4 (2006). https://doi.org/10.1109/IEDM.2006.346905
- M. Zhu, K. Ren, Z. Song, Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull. 44, 715–720 (2019). https://doi.org/10.1557/mrs.2019.206
- Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang et al., A 20nm 1.8 V 8 Gb PRAM with 40MB/s program bandwidth. in 2012 IEEE International Solid-State Circuits Conference. San Francisco, CA, USA. 46–48 (2012). https://doi.org/10.1109/ISSCC.2012.6176872
- J. Park, J. Yoo, J. Song, C. Sung, H. Hwang, Hybrid selector with excellent selectivity and fast switching speed for X-point memory array. IEEE Electron Device Lett. 39, 1171–1174 (2018). https://doi.org/10.1109/LED.2018.2845878
- A. Verdy, G. Navarro, V. Sousa, P. Noe, M. Bernard et al., Improved electrical performance thanks to Sb and N doping in Se-rich GeSe-based OTS selector devices. in 2017 IEEE International Memory Workshop (IMW). Monterey, CA, USA. 1–4 (2017). https://doi.org/10.1109/IMW.2017.7939088
- N.S. Avasarala, B. Govoreanu, K. Opsomer, W. Devulder, S. Clima et al., Doped GeSe materials for selector applications. in 2017 47th European Solid-State Device Research Conference (ESSDERC). Leuven, Belgium. 168–171 (2017). https://doi.org/10.1109/ESSDERC.2017.8066618
- H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu et al., Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012). https://doi.org/10.1109/JPROC.2012.2190369
- E. Ambrosi, C.-H. Wu, H.-Y. Lee, C.-M. Lee, C.-F. Hsu et al., Reliable low voltage selector device technology based on robust SiNGeCTe arsenic-free chalcogenide. IEEE Electron Device Lett. 43, 1673–1676 (2022). https://doi.org/10.1109/LED.2022.3203146
- C.H. Wu, C.M. Lee, Y.S. Chen, H.Y. Lee, E. Ambrosi et al., Low-voltage (~ 1.3V), arsenic free threshold type selector with ultra high endurance (> 1011) for high density 1S1R memory array. in 2021 Symposium on VLSI Technology. Kyoto, Japan. 1–2 (2021). https://ieeexplore.ieee.org/document/9508722
- L. Wang, J. Wen, Z. Liu, J. Chen, H. Tong et al., Thermally stable and high-speed Ge-Te based ovonic threshold switching selector with a Ge intercalated structure. IEEE Electron Device Lett. 44, 1096–1099 (2023). https://doi.org/10.1109/LED.2023.3272884
- L. Wang, Z. Liu, Z. Zhang, J. Chen, J. Wen et al., A refresh operation method for solving thermal stability issues and improving endurance of ovonic threshold switching selectors. J. Mater. Chem. C 11, 5411–5421 (2023). https://doi.org/10.1039/D3TC00448A
- N.S. Avasarala, G.L. Donadio, T. Witters, K. Opsomer, B. Govoreanu et al., Half-threshold bias Ioff reduction down to nA range of thermally and electrically stable high-performance integrated OTS selector, obtained by Se enrichment and N-doping of thin GeSe layers. in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 209–210 (2018). https://doi.org/10.1109/VLSIT.2018.8510680
- S.-D. Kim, H.-W. Ahn, S.Y. Shin, D.S. Jeong, S.H. Son et al., Effect of Ge concentration in GexSe1-x chalcogenide glass on the electronic structures and the characteristics of ovonic threshold switching (OTS) devices. ECS Solid State Lett. 2, Q75–Q77 (2013). https://doi.org/10.1149/2.001310ssl
- S. Jia, N. Shi, J. Shen, R. Wu, Q. Liu et al., Valence band structure of chalcogenide obtained by X-ray photoelectron spectroscopy and etching technique. Phys. Status Solidi B 258(7), 2100038 (2021). https://doi.org/10.1002/pssb.202100038
- M. Xu, M. Xu, X. Miao, Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration. InfoMat 4, e12315 (2022). https://doi.org/10.1002/inf2.12315
- A. Verdy, G. Navarro, M. Bernard, S. Chevalliez, N. Castellani et al., Carbon electrode for Ge-Se-Sb based OTS selector for ultra low leakage current and outstanding endurance. in 2018 IEEE International Reliability Physics Symposium (IRPS). 6D.4–1–6D.4–6 (2018). https://doi.org/10.1109/IRPS.2018.8353635
- X. Li, Z. Yuan, S. Lv, S. Song, Z. Song, Extended endurance performance and reduced threshold voltage by doping Si in GeSe-based ovonic threshold switching selectors. Thin Solid Films 734, 138837 (2021). https://doi.org/10.1016/j.tsf.2021.138837
- E.P. O’Reilly, J. Robertson, M.J. Kelly, The structure of amorphous GeSe and GeTe. Solid State Commun. 38, 565–568 (1981). https://doi.org/10.1016/0038-1098(81)90941-8
- G.I. Kim, J. Shirafuji, Time of flight measurement of carrier mobility in GexSe1-x glasses. Jpn. J. Appl. Phys. 17, 1789–1794 (1978). https://doi.org/10.1143/jjap.17.1789
- T.T. Nang, M. Okuda, T. Matsushita, S. Yokota, A. Suzuki, Electrical and optical properties of GexSe1-x amorphous thin films. Jpn. J. Appl. Phys. 15, 849–853 (1976). https://doi.org/10.1143/jjap.15.849
- O. Uemura, Y. Sagara, T. Satow, The amorphous structure of the Ge-Se system. Phys. Stat. Sol. 26(1), 99–103 (1974). https://doi.org/10.1002/pssa.2210260108
- S.Y. Shin, J.M. Choi, J. Seo, H.W. Ahn, Y.G. Choi et al., The effect of doping Sb on the electronic structure and the device characteristics of Ovonic Threshold Switches based on Ge-Se. Sci. Rep. 4, 7099 (2014). https://doi.org/10.1038/srep07099
- J. Keukelier, K. Opsomer, W. Devulder, S. Clima, L. Goux et al., Tuning of the thermal stability and ovonic threshold switching properties of GeSe with metallic and non-metallic alloying elements. J. Appl. Phys. 130(16), 165103 (2021). https://doi.org/10.1063/5.0055861
- H.Y. Cheng, W.C. Chien, I.T. Kuo, C.W. Yeh, L. Gignac et al., Ultra-high endurance and low IOFF selector based on AsSeGe chalcogenides for wide memory window 3D stackable crosspoint memory. in 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 37.3.1–37.3.4 (2018). https://doi.org/10.1109/IEDM.2018.8614580
- H.Y. Cheng, W.C. Chien, I.T. Kuo, E.K. Lai, Y. Zhu et al., An ultra high endurance and thermally stable selector based on TeAsGeSiSe chalcogenides compatible with BEOL IC Integration for cross-point PCM. in 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 2.2.1–2.2.4 (2017). https://doi.org/10.1109/IEDM.2017.8268310
- H.Y. Cheng, W.C. Chien, I.T. Kuo, C.H. Yang, Y.C. Chou et al., Optimizing AsSeGe chalcogenides by dopants for extremely low IOFF, high endurance and low Vth drift 3D crosspoint memory. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.6.1–28.6.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720704
- S. Jun, S. Seo, S. Park, T.H. Kim, M. Lee et al., Amorphous Ge-Se-S chalcogenide alloys via post plasma sulfurization of atomic layer deposition GeSe for ovonic threshold switch applications. J. Alloys Compd. 947, 169514 (2023). https://doi.org/10.1016/j.jallcom.2023.169514
- B. Govoreanu, G.L. Donadio, K. Opsomer, W. Devulder, V.V. Afanas’ev et al., Thermally stable integrated Se-based OTS selectors with > 20 MA/cm2 current drive, > 3.103 half-bias nonlinearity, tunable threshold voltage and excellent endurance. in 2017 Symposium on VLSI Technology. Kyoto, Japan. T92–T93 (2017). https://doi.org/10.23919/VLSIT.2017.7998207
- W.-C. Chien, C.-W. Yeh, R.L. Bruce, H.-Y. Cheng, I.T. Kuo et al., A study on OTS-PCM pillar cell for 3-D stackable memory. IEEE Trans. Electron Devices 65, 5172–5179 (2018). https://doi.org/10.1109/TED.2018.2871197
- M. Chen, K.A. Rubin, R.W. Barton, Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502–504 (1986). https://doi.org/10.1063/1.97617
- A. Deneuville, J.P. Keradec, P. Gerard, A. Mini, DC electrical, optical and photoelectrical properties of GexTe1−x amorphous thin films. Solid State Commun. 14, 341–346 (1974). https://doi.org/10.1016/0038-1098(74)90914-4
- B. Kramer, K. Maschke, L.D. Laude, Electronic spectra of trigonal and disordered phases of tellurium and selenium. I. Theory. Phys. Rev. B 8, 5781–5793 (1973). https://doi.org/10.1103/physrevb.8.5781
- F.A. Blum, B.C. Deaton, Properties of the group VI B elements under pressure. II. semiconductor-to-metal transition of tellurium. Phys. Rev. 137, A1410–A1417 (1965). https://doi.org/10.1103/physrev.137.a1410
- J. Shen, S. Jia, N. Shi, Q. Ge, T. Gotoh et al., Elemental electrical switch enabling phase segregation-free operation. Science 374, 1390–1394 (2021). https://doi.org/10.1126/science.abi6332
- C. Kim, N. Hur, J. Yang, S. Oh, J. Yeo et al., Atomic layer deposition route to scalable, electronic-grade van der waals Te thin films. ACS Nano 17, 15776–15786 (2023). https://doi.org/10.1021/acsnano.3c03559
- Y. Koo, H. Hwang, Zn1-xTex ovonic threshold switching device performance and its correlation to material parameters. Sci. Rep. 8, 11822 (2018). https://doi.org/10.1038/s41598-018-30207-0
- S. Lee, J. Lee, S. Kim, D. Lee, D. Lee et al., Mg-Te OTS selector with low ioff (<100pA), Fast Switching Speed (τd = 7 ns), and high thermal stability (400 ℃/30 min) for X-point memory applications. in 2021 Symposium on VLSI Technology. Kyoto, Japan. 1–2 (2021). https://ieeexplore.ieee.org/document/9508648
- M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, M. Wuttig, Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl. Phys. Lett. 100(14), 143505 (2012). https://doi.org/10.1063/1.3700743
- A. Velea, K. Opsomer, W. Devulder, J. Dumortier, J. Fan et al., Te-based chalcogenide materials for selector applications. Sci. Rep. 7, 8103 (2017). https://doi.org/10.1038/s41598-017-08251-z
- S. Jia, H. Li, T. Gotoh, C. Longeaud, B. Zhang et al., Ultrahigh drive current and large selectivity in GeS selector. Nat. Commun. 11, 4636 (2020). https://doi.org/10.1038/s41467-020-18382-z
- M. Anbarasu, S. Asokan, Low electric field, easily reversible electrical set and reset processes in a Ge15Te83Si2 glass for phase change memory applications. J. Appl. Phys. 109(8), 084517 (2011). https://doi.org/10.1063/1.3574659
- C. Mihai, F. Sava, I.D. Simandan, A.C. Galca, I. Burducea et al., Structural and optical properties of amorphous Si-Ge-Te thin films prepared by combinatorial sputtering. Sci. Rep. 11, 11755 (2021). https://doi.org/10.1038/s41598-021-91138-x
- L. Wang, W. Cai, D. He, Q. Lin, D. Wan et al., Performance improvement of GeTex-based ovonic threshold switching selector by C doping. IEEE Electron Device Lett. 42, 688–691 (2021). https://doi.org/10.1109/LED.2021.3064857
- E. Ambrosi, C.H. Wu, H.Y. Lee, P.C. Chang, C.F. Hsu et al., Low variability high endurance and low voltage arsenic-free selectors based on GeCTe. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.5.1–28.5.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720628
- E. Ambrosi, C.H. Wu, H.Y. Lee, C.F. Hsu, C.M. Lee et al., Engineering defects in pristine amorphous chalcogenides for forming-free low voltage selectors. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 18.7.1–18.7.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019553
- D. Garbin, W. Devulder, R. Degraeve, G.L. Donadio, S. Clima et al., Composition optimization and device understanding of Si-Ge-As-Te ovonic threshold switch selector with excellent endurance. in 2019 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 35.1.1–35.1.4 (2019). https://doi.org/10.1109/IEDM19573.2019.8993547
- M.-J. Lee, D. Lee, H. Kim, H.-S. Choi, J.-B. Park et al., Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays. in 2012 International Electron Devices Meeting. San Francisco, CA, USA. 2.6.1–2.6.3 (2012). https://doi.org/10.1109/IEDM.2012.6478966
- O. Kazuhiro and H. Kanagawa, US Patent 20160336378A (2015).
- Y. Koo, K. Baek, H. Hwang, Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications. in 2016 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 1–2 (2016).
- J. Yoo, Y. Koo, S.A. Chekol, J. Park, J. Song et al., Te-based binary OTS selectors with excellent selectivity (> 105), endurance (> 108) and thermal stability (> 450 ℃). in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 207–208 (2018). https://doi.org/10.1109/VLSIT.2018.8510681
- S.A. Chekol, J. Yoo, J. Park, J. Song, C. Sung et al., A C-Te-based binary OTS device exhibiting excellent performance and high thermal stability for selector application. Nanotechnology 29, 345202 (2018). https://doi.org/10.1088/1361-6528/aac9f5
- J. Yoo, D. Lee, J. Park, J. Song, H. Hwang, Steep slope field-effect transistors with B-Te-based ovonic threshold switch device. IEEE J. Electron Devices Soc. 6, 821–824 (2018). https://doi.org/10.1109/JEDS.2018.2856853
- T. Kim, D. Lee, J. Kim, H. Sohn, Firing voltage reduction in thermally annealed Ge–As–Te thin film with ovonic threshold switching. J. Vac. Sci. Technol. B 38(3), 032213 (2020). https://doi.org/10.1116/1.5144736
- M.J. Lee, D. Lee, S.H. Cho, J.H. Hur, S.M. Lee et al., A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat. Commun. 4, 2629 (2013). https://doi.org/10.1038/ncomms3629
- E. Zhu, Y. Liu, X. Sun, G. Yin, Q. Jiao et al., Correlation between thermo-mechanical properties and network structure in GexS100–x chalcogenide glasses. J. Non Cryst. Solids X 1, 100015 (2019). https://doi.org/10.1016/j.nocx.2019.100015
- C.A. Mead, Energy gap in sulphur. Phys. Lett. 11, 212–213 (1964). https://doi.org/10.1016/0031-9163(64)90410-x
- J. Málek, L. Tichý, J. Klikorka, Crystallization kinetics of GexS1−x glasses. J. Therm. Anal. 33, 667–672 (1988). https://doi.org/10.1007/BF02138571
- K. Tanaka, Y. Kasanuki, A. Odajima, Physical properties and photoinduced changes of amorphous Ge–S films. Thin Solid Films 117, 251–260 (1984). https://doi.org/10.1016/0040-6090(84)90355-9
- Z. Černošek, E. Černošková, M. Frumar, K. Swiatek, A non-dangling bond model of paramagnetic defects in Ge-S glasses. Phys. Status Solidi B 192(1), 181–192 (1995). https://doi.org/10.1002/pssb.2221920121
- D.D. Vaughn 2nd., R.J. Patel, M.A. Hickner, R.E. Schaak, Single-crystal colloidal nanosheets of GeS and GeSe. J. Am. Chem. Soc. 132, 15170–15172 (2010). https://doi.org/10.1021/ja107520b
- A. Bytchkov, G.J. Cuello, S. Kohara, C.J. Benmore, D.L. Price et al., Unraveling the atomic structure of Ge-rich sulfide glasses. Phys. Chem. Chem. Phys. 15, 8487–8494 (2013). https://doi.org/10.1039/c3cp50536g
- S. Chakraborty, P. Boolchand, Topological origin of fragility, network adaptation, and rigidity and stress transitions in especially homogenized nonstoichiometric binary GexS100–x glasses. J. Phys. Chem. B 118, 2249–2263 (2014). https://doi.org/10.1021/jp411823j
- A. Bouzid, S. Le Roux, G. Ori, M. Boero, C. Massobrio, Origin of structural analogies and differences between the atomic structures of GeSe4 and GeS4 glasses: a first principles study. J. Chem. Phys. 143, 034504 (2015). https://doi.org/10.1063/1.4926830
- H. Kan, Electronic structure of amorphous germanium sulphides. J. Non Cryst. Solids 312–314, 566–569 (2002). https://doi.org/10.1016/s0022-3093(02)01781-7
- D. Foix, H. Martinez, A. Pradel, M. Ribes, D. Gonbeau, XPS valence band spectra and theoretical calculations for investigations on thiogermanate and thiosilicate glasses. Chem. Phys. 323, 606–616 (2006). https://doi.org/10.1016/j.chemphys.2005.10.037
- R.R. Romanyuk, Charge carrier transfer in amorphous (GeS)1-xBix films. Chem. Met. Alloys 6, 200–204 (2013). https://doi.org/10.30970/cma6.0272
- Y. Chen, R. Wang, X. Shen, J. Wang, T. Xu, New methods versus old questions: crystallization kinetics of S, Se, and Te. Cryst. Growth Des. 19, 1103–1110 (2019). https://doi.org/10.1021/acs.cgd.8b01608
- M. Kim, Y. Kim, M. Lee, S.M. Hong, H.K. Kim et al., PE-ALD of Ge1−xSx amorphous chalcogenide alloys for OTS applications. J. Mater. Chem. C 9, 6006–6013 (2021). https://doi.org/10.1039/D1TC00650A
- S. Jia, H. Li, Q. Liu, Z. Song, M. Zhu, Scalability of sulfur-based ovonic threshold selectors for 3D stackable memory applications. Phys. Status Solidi RRL 15(6), 2100084 (2021). https://doi.org/10.1002/pssr.202100084
- R. Wu, R. Gu, T. Gotoh, Z. Zhao, Y. Sun et al., The role of arsenic in the operation of sulfur-based electrical threshold switches. Nat. Commun. 14, 6095 (2023). https://doi.org/10.1038/s41467-023-41643-6
- M. Lee, S. Lee, M. Kim, S. Lee, C. Won et al., Ge1–xSx chalcogenide alloys for OTS applications using magnetron sputtering. J. Alloys Compd. 930, 167409 (2023). https://doi.org/10.1016/j.jallcom.2022.167409
- D. Matsubayashi, S. Clima, T. Ravsher, D. Garbin, R. Delhougne et al., OTS physics-based screening for environment-friendly selector materials. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 8.6.1–8.6.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019445
- S. Clima, D. Matsubayashi, T. Ravsher, D. Garbin, R. Delhougne et al., In silico screening for As/Se-free ovonic threshold switching materials. npj Comput. Mater. 9, 96 (2023). https://doi.org/10.1038/s41524-023-01043-2
- R. Wu, S. Jia, T. Gotoh, Q. Luo, Z. Song et al., Screening switching materials with low leakage current and high thermal stability for neuromorphic computing. Adv. Electron. Mater. 8, 2200150 (2022). https://doi.org/10.1002/aelm.202200150
- D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky, Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289–3309 (1980). https://doi.org/10.1063/1.328036
- A. Redaelli, A. Pirovano, A. Benvenuti, A.L. Lacaita, Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103(11), 111101 (2008). https://doi.org/10.1063/1.2931951
- D.M. Kroll, Theory of electrical instabilities of mixed electronic and thermal origin. II. Switching as a nucleation process. Phys. Rev. B 11, 3814–3821 (1975). https://doi.org/10.1103/physrevb.11.3814
- D.M. Kroll, Theory of electrical instabilities of mixed electronic and thermal origin. Phys. Rev. B 9, 1669–1706 (1974). https://doi.org/10.1103/physrevb.9.1669
- V.G. Karpov, Y.A. Kryukov, I.V. Karpov, M. Mitra, Field-induced nucleation in phase change memory. Phys. Rev. B 78, 052201 (2008). https://doi.org/10.1103/physrevb.78.052201
- V.G. Karpov, Y.A. Kryukov, S.D. Savransky, I.V. Karpov, Nucleation switching in phase change memory. Appl. Phys. Lett. 90(12), 123504 (2007). https://doi.org/10.1063/1.2715024
- I.V. Karpov, M. Mitra, D. Kau, G. Spadini, Y.A. Kryukov et al., Fundamental drift of parameters in chalcogenide phase change memory. J. Appl. Phys. 102(12), 124503 (2007). https://doi.org/10.1063/1.2825650
- F. Buscemi, E. Piccinini, L. Vandelli, F. Nardi, A. Padovani et al., A HydroDynamic model for trap-assisted tunneling conduction in ovonic devices. IEEE Trans. Electron Devices 70, 1808–1814 (2023). https://doi.org/10.1109/TED.2023.3242229
- N. Saxena, A. Manivannan, Ultrafast threshold switching dynamics in phase-change materials. Phys. Status Solidi RRL 16(9), 2200101 (2022). https://doi.org/10.1002/pssr.202200101
- M. Nardone, M. Simon, I.V. Karpov, V.G. Karpov, Electrical conduction in chalcogenide glasses of phase change memory. J. Appl. Phys. 112(7), 071101 (2012). https://doi.org/10.1063/1.4738746
- T. Kaplan, D. Adler, Thermal effects in amorphous-semiconductor switching. Appl. Phys. Lett. 19, 418–420 (1971). https://doi.org/10.1063/1.1653754
- T. Kaplan, D. Adler, Electrothermal switching in amorphous semiconductors. J. Non Cryst. Solids 8–10, 538–543 (1972). https://doi.org/10.1016/0022-3093(72)90189-5
- T. Kaplan, D.C. Bullock, D. Adler, D.J. Epstein, Thermally induced negative resistance in Si-doped YIG. Appl. Phys. Lett. 20, 439–441 (1972). https://doi.org/10.1063/1.1654007
- M. Wimmer, M. Salinga, The gradual nature of threshold switching. New J. Phys. 16, 113044 (2014). https://doi.org/10.1088/1367-2630/16/11/113044
- A.E. Owen, J.M. Robertson, Electronic conduction and switching in chalcogenide glasses. IEEE Trans. Electron Devices 20, 105–122 (1973). https://doi.org/10.1109/T-ED.1973.17617
- G.C. Vezzoli, P.J. Walsh, L.W. Doremus, Threshold switching and the on-state in non-crystalline chalcogenide semiconductors. J. Non Cryst. Solids 18, 333–373 (1975). https://doi.org/10.1016/0022-3093(75)90138-6
- P. Fantini, A. Pirovano, D. Ventrice, A. Redaelli, Experimental investigation of transport properties in chalcogenide materials through 1∕f noise measurements. Appl. Phys. Lett. 88(26), 263506 (2006). https://doi.org/10.1063/1.2215621
- D. Ielmini, Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102(5), 054517 (2007). https://doi.org/10.1063/1.2773688
- D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008). https://doi.org/10.1103/physrevb.78.035308
- P. Fantini, N. Polino, A. Ghetti, D. Ielmini, Threshold switching by bipolar avalanche multiplication in ovonic chalcogenide glasses. Adv. Electron. Mater. 9, 2300037 (2023). https://doi.org/10.1002/aelm.202300037
- M. Kastner, D. Adler, H. Fritzsche, Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504–1507 (1976). https://doi.org/10.1103/physrevlett.37.1504
- P.W. Anderson, Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953–955 (1975). https://doi.org/10.1103/physrevlett.34.953
- R.A. Street, N.F. Mott, States in the gap in glassy semiconductors. Phys. Rev. Lett. 35, 1293–1296 (1975). https://doi.org/10.1103/physrevlett.35.1293
- S. Clima, T. Ravsher, D. Garbin, R. Degraeve, A. Fantini et al., Ovonic threshold switch chalcogenides: connecting the first-principles electronic structure to selector device parameters. ACS Appl. Electron. Mater. 5, 461–469 (2023). https://doi.org/10.1021/acsaelm.2c01458
- D. Emin, Current-driven threshold switching of a small polaron semiconductor to a metastable conductor. Phys. Rev. B 74, 035206 (2006). https://doi.org/10.1103/physrevb.74.035206
- J. Luckas, Electronic transport in amorphous phase-change materials (Doctoral dissertation, Paris 11, 2012).
- R. Degraeve, T. Ravsher, S. Kabuyanagi, A. Fantini, S. Clima et al., Modeling and spectroscopy of ovonic threshold switching defects. in 2021 IEEE International Reliability Physics Symposium (IRPS). Monterey, CA, USA. 1–5 (2021). https://doi.org/10.1109/IRPS46558.2021.9405114
- N.F. Mott, Conduction in non-crystalline materials. Philos. Mag. 19, 835–852 (1969). https://doi.org/10.1080/14786436908216338
- S. Clima, D. Garbin, K. Opsomer, N.S. Avasarala, W. Devulder et al., Ovonic threshold-switching GexSey chalcogenide materials: stoichiometry, trap nature, and material relaxation from first principles. Phys. Status Solidi RRL 14(5), 1900672 (2020). https://doi.org/10.1002/pssr.201900672
- S. Clima, D. Garbin, W. Devulder, J. Keukelier, K. Opsomer et al., Material relaxation in chalcogenide OTS SELECTOR materials. Microelectron. Eng. 215, 110996 (2019). https://doi.org/10.1016/j.mee.2019.110996
- S. Clima, B. Govoreanu, K. Opsomer, A. Velea, N.S. Avasarala et al., Atomistic investigation of the electronic structure, thermal properties and conduction defects in Ge-rich GexSe1−x materials for selector applications. in 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 4.1.1–4.1.4 (2017). https://doi.org/10.1109/IEDM.2017.8268323
- M. Luo, M. Wuttig, The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mater. 16, 439–443 (2004). https://doi.org/10.1002/adma.200306077
- H. Li, J. Robertson, Materials selection and mechanism of non-linear conduction in chalcogenide selector devices. Sci. Rep. 9, 1867 (2019). https://doi.org/10.1038/s41598-018-37717-x
- K. Konstantinou, F.C. Mocanu, J. Akola, S.R. Elliott, Electric-field-induced annihilation of localized gap defect states in amorphous phase-change memory materials. Acta Mater. 223, 117465 (2022). https://doi.org/10.1016/j.actamat.2021.117465
- A.V. Kolobov, P. Fons, J. Tominaga, Understanding phase-change memory alloys from a chemical perspective. Sci. Rep. 5, 13698 (2015). https://doi.org/10.1038/srep13698
- P. Noé, A. Verdy, F. d’Acapito, J.-B. Dory, M. Bernard et al., Toward ultimate nonvolatile resistive memories: the mechanism behind ovonic threshold switching revealed. Sci. Adv. 6, eaay2830 (2020). https://doi.org/10.1126/sciadv.aay2830
- J.-Y. Raty, P. Noé, Ovonic threshold switching in Se-rich GexSe1–x glasses from an atomistic point of view: the crucial role of the metavalent bonding mechanism. Phys. Status Solidi RRL 14(5), 2070024 (2020). https://doi.org/10.1002/pssr.202070024
- D. Chandler, J.P. Garrahan, Dynamics on the way to forming glass: bubbles in space-time. Annu. Rev. Phys. Chem. 61, 191–217 (2010). https://doi.org/10.1146/annurev.physchem.040808.090405
- J.-Y. Raty, M. Schumacher, P. Golub, V.L. Deringer, C. Gatti et al., A quantum-mechanical map for bonding and properties in solids. Adv. Mater. 31, e1806280 (2019). https://doi.org/10.1002/adma.201806280
- M. Zhu, O. Cojocaru-Mirédin, A.M. Mio, J. Keutgen, M. Küpers et al., Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding. Adv. Mater. 30, e1706735 (2018). https://doi.org/10.1002/adma.201706735
- K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson et al., Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008). https://doi.org/10.1038/nmat2226
- A. Slassi, L.-S. Medondjio, A. Padovani, F. Tavanti, X. He et al., Device-to-materials pathway for electron traps detection in amorphous GeSe-based selectors. Adv. Electron. Mater. 9, 2201224 (2023). https://doi.org/10.1002/aelm.202201224
- A. Pirovano, A.L. Lacaita, F. Pellizzer, S.A. Kostylev, A. Benvenuti et al., Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices 51, 714–719 (2004). https://doi.org/10.1109/TED.2004.825805
- J.Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello et al., Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015). https://doi.org/10.1038/ncomms8467
- T. Ravsher, R. Degraeve, D. Garbin, A. Fantini, S. Clima et al., Polarity-dependent threshold voltage shift in ovonic threshold switches: challenges and opportunities. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.4.1–28.4.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720649
- G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim et al., Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2017). https://doi.org/10.1080/23746149.2016.1259585
- Jeongdong Choe, Memory Process, Design and Architecture: Today and Tomorrow (TechInsights, 2017).
- J. H. Yoon, R. Godse, G. Tressler, H. Hunter, 3D-NAND Scaling & 3D-SCM-Implications to Enterprise Storage. Flash Memory Summit, 2017.
- H.-Y. Cheng, F. Carta, W.-C. Chien, H.-L. Lung, M.J. BrightSky, 3D cross-point phase-change memory for storage-class memory. J. Phys. D Appl. Phys. 52, 473002 (2019). https://doi.org/10.1088/1361-6463/ab39a0
- T. Kim, S. Lee, Evolution of phase-change memory for the storage-class memory and beyond. IEEE Trans. Electron Devices 67, 1394–1406 (2020). https://doi.org/10.1109/ted.2020.2964640
- S. Hong, H. Choi, J. Park, Y. Bae, K. Kim et al., Extremely high performance, high density 20nm self-selecting cross-point memory for Compute Express Link. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, 18.6.1–18.6.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019415
- C.W. Yeh, W.C. Chien, R.L. Bruce, H.Y. Cheng, I.T. Kuo et al., High endurance self-heating OTS-PCM pillar cell for 3D stackable memory. in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 205–206 (2018). https://doi.org/10.1109/VLSIT.2018.8510621
- Y.K. Lee, C. Yoo, W. Kim, J.W. Jeon, C.S. Hwang, Atomic layer deposition of chalcogenides for next-generation phase change memory. J. Mater. Chem. C 9, 3708–3725 (2021). https://doi.org/10.1039/D1TC00186H
- B. Govoreanu, D. Crotti, S. Subhechha, L. Zhang, Y.Y. Chen et al., A-VMCO: a novel forming-free, self-rectifying, analog memory cell with low-current operation, nonfilamentary switching and excellent variability. in 2015 Symposium on VLSI Technology (VLSI Technology). Kyoto, Japan. T132–T133, (2015). https://doi.org/10.1109/VLSIT.2015.7223717
- K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi et al., Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16, 6724–6732 (2016). https://doi.org/10.1021/acs.nanolett.6b01781
- J.H. Yoon, S. Yoo, S.J. Song, K.J. Yoon, D.E. Kwon et al., Uniform self-rectifying resistive switching behavior via preformed conducting paths in a vertical-type Ta2O5/HfO2-x structure with a sub-μm2 cell area. ACS Appl. Mater. Interfaces 8, 18215–18221 (2016). https://doi.org/10.1021/acsami.6b05657
- K. Jeon, J. Kim, J.J. Ryu, S.J. Yoo, C. Song et al., Self-rectifying resistive memory in passive crossbar arrays. Nat. Commun. 12, 2968 (2021). https://doi.org/10.1038/s41467-021-23180-2
- Y.-C. Chen, C.F. Chen, C.T. Chen, J.Y. Yu, S. Wu et al., An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device. in IEEE International Electron Devices Meeting. Washington, DC, USA. 37.4.1–37.4.4 (2003). https://doi.org/10.1109/IEDM.2003.1269425
- J. Yoo, I. Karpov, S. Lee, J. Jung, H.S. Kim et al., Threshold voltage drift in Te-based ovonic threshold switch devices under various operation conditions. IEEE Electron Device Lett. 41, 191–194 (2020). https://doi.org/10.1109/LED.2019.2957860
- Z. Chai, W. Zhang, R. Degraeve, S. Clima, F. Hatem et al., Dependence of switching probability on operation conditions in GexSe1–x ovonic threshold switching selectors. IEEE Electron Device Lett. 40, 1269–1272 (2019). https://doi.org/10.1109/LED.2019.2924270
- S. Kabuyanagi, D. Garbin, A. Fantini, S. Clima, R. Degraeve et al., Understanding of tunable selector performance in Si-Ge-As-Se OTS devices by extended percolation cluster model considering operation scheme and material design. in 2020 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 1–2 (2020). https://doi.org/10.1109/VLSITechnology18217.2020.9265011
- T. Ravsher, D. Garbin, A. Fantini, R. Degraeve, S. Clima et al., Enhanced performance and low-power capability of SiGeAsSe-GeSbTe 1S1R phase-change memory operated in bipolar mode. in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). Honolulu, HI, USA. 312–313 (2022). https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830199
- T. Ravsher, D. Garbin, A. Fantini, R. Degraeve, S. Clima et al., Self-rectifying memory cell based on SiGeAsSe ovonic threshold switch. IEEE Trans. Electron Devices 70, 2276–2281 (2023). https://doi.org/10.1109/TED.2023.3252491
- M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
- T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, E. Eleftheriou, Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016). https://doi.org/10.1038/nnano.2016.70
- M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers et al., Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018). https://doi.org/10.1038/s41928-018-0054-8
- S. Ambrogio, P. Narayanan, H. Tsai, R.M. Shelby, I. Boybat et al., Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018). https://doi.org/10.1038/s41586-018-0180-5
- V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S.R. Nandakumar et al., Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 11, 2473 (2020). https://doi.org/10.1038/s41467-020-16108-9
- D. Kuzum, R.G. Jeyasingh, B. Lee, H.S. Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012). https://doi.org/10.1021/nl201040y
- S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010). https://doi.org/10.1021/nl904092h
- M. Di Ventra, Y.V. Pershin, The parallel approach. Nat. Phys. 9, 200–202 (2013). https://doi.org/10.1038/nphys2566
- Z. Cheng, C. Ríos, W.H.P. Pernice, C.D. Wright, H. Bhaskaran, On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017). https://doi.org/10.1126/sciadv.1700160
- S.B. Eryilmaz, D. Kuzum, S. Yu, H.-S P. Wong, Device and system level design considerations for analog-non-volatile-memory based neuromorphic architectures. in 2015 IEEE International Electron Devices Meeting (IEDM). Washington, DC, USA. 4.1.1–4.1.4 (2015). https://doi.org/10.1109/IEDM.2015.7409622
- K.K. Likharev, Hybrid CMOS/nanoelectronic circuits: opportunities and challenges. J. Nanoelectron. Optoelectron. 3, 203–230 (2008). https://doi.org/10.1166/jno.2008.301
- W. Senn, S. Fusi, Convergence of stochastic learning in perceptrons with binary synapses. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 061907 (2005). https://doi.org/10.1103/PhysRevE.71.061907
- Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
- D. Liang, G. Indiveri, A neuromorphic computational primitive for robust context-dependent decision making and context-dependent stochastic computation. IEEE Trans. Circuits Syst. II Express Briefs 66, 843–847 (2019). https://doi.org/10.1109/TCSII.2019.2907848
- S. Hwang, J.-J. Lee, M.-W. Kwon, M.-H. Baek, T. Jang et al., Analog complementary metal-oxide-semiconductor integrate-and-fire neuron circuit for overflow retaining in hardware spiking neural networks. J. Nanosci. Nanotechnol. 20, 3117–3122 (2020). https://doi.org/10.1166/jnn.2020.17390
- B. Rueckauer, S.-C. Liu, Conversion of analog to spiking neural networks using sparse temporal coding. in 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence, Italy. 1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351295
- H. Lim, H.-W. Ahn, V. Kornijcuk, G. Kim, J.Y. Seok et al., Relaxation oscillator-realized artificial electronic neurons, their responses, and noise. Nanoscale 8, 9629–9640 (2016). https://doi.org/10.1039/C6NR01278G
- W. Yi, K.K. Tsang, S.K. Lam, X. Bai, J.A. Crowell et al., Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 466 (2018). https://doi.org/10.1038/s41467-018-07052-w
- M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013). https://doi.org/10.1038/nmat3510
- X. Zhang, W. Wang, Q. Liu, X. Zhao, J. Wei et al., An artificial neuron based on a threshold switching memristor. IEEE Electron Device Lett. 39, 308–311 (2018). https://doi.org/10.1109/LED.2017.2782752
- D. Lee, M. Kwak, K. Moon, W. Choi, J. Park et al., Various threshold switching devices for integrate and fire neuron applications. Adv. Electron. Mater. 5, 1800866 (2019). https://doi.org/10.1002/aelm.201800866
- M. Lee, S.W. Cho, S.J. Kim, J.Y. Kwak, H. Ju et al., Simple artificial neuron using an ovonic threshold switch featuring spike-frequency adaptation and chaotic activity. Phys. Rev. Appl. 13, 064056 (2020). https://doi.org/10.1103/physrevapplied.13.064056
- C. Zhang, W.B. Ye, K. Zhou, H.-Y. Chen, J.-Q. Yang et al., Artificial sensory nerves: bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29, 1970133 (2019). https://doi.org/10.1002/adfm.201970133
- B.C. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom et al., A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015). https://doi.org/10.1126/science.aaa9306
- X. Zhang, Y. Zhuo, Q. Luo, Z. Wu, R. Midya et al., An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11, 51 (2020). https://doi.org/10.1038/s41467-019-13827-6
- H. Lee, S.W. Cho, S.J. Kim, J. Lee, K.S. Kim et al., Three-terminal ovonic threshold switch (3T-OTS) with tunable threshold voltage for versatile artificial sensory neurons. Nano Lett. 22, 733–739 (2022). https://doi.org/10.1021/acs.nanolett.1c04125
- A. Alaghi, J.P. Hayes, Survey of stochastic computing. ACM Trans. Embed. Comput. Syst. 12(2), 92 (2013). https://doi.org/10.1145/2465787.2465794
- R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions. Science 297, 2026–2030 (2002). https://doi.org/10.1126/science.1074376
- S. Balatti, S. Ambrogio, R. Carboni, V. Milo, Z. Wang et al., Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 63, 2029–2035 (2016). https://doi.org/10.1109/TED.2016.2537792
- M. Le Gallo, T. Tuma, F. Zipoli, A. Sebastian, E. Eleftheriou, Inherent stochasticity in phase-change memory devices. in 2016 46th European Solid-State Device Research Conference (ESSDERC). Lausanne, Switzerland. 373–376 (2016). https://doi.org/10.1109/ESSDERC.2016.7599664
- S. Balatti, S. Ambrogio, Z. Wang, D. Ielmini, True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 214–221 (2015). https://doi.org/10.1109/JETCAS.2015.2426492
- A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, H. Imamura et al., Spin dice: a scalable truly random number generator based on spintronics. Appl. Phys. Express 7, 083001 (2014). https://doi.org/10.7567/apex.7.083001
- Z. Chai, P. Freitas, W. Zhang, J.F. Zhang, J. Marsland, True random number generator based on switching probability of volatile GeXSe1-X ovonic threshold switching selectors. in 2021 IEEE 14th International Conference on ASIC (ASICON). Kunming, China. 1–4 (2021). https://doi.org/10.1109/ASICON52560.2021.9620374
References
D. Reinsel, J. Gantz, J. Rydning, Data Age 2025: The Digitization of the World: From Edge to Core (International Data Corporation (IDC), 2018). https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.
G.W. Burr, R.S. Shenoy, K. Virwani, P. Narayanan, A. Padilla et al., Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B 32(4), 040802 (2014). https://doi.org/10.1116/1.4889999
Q. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x
R. Calarco, F. Arciprete, Keep it simple and switch to pure tellurium. Science 374, 1321 (2021). https://doi.org/10.1126/science.abm7316
M. Si, H.-Y. Cheng, T. Ando, G. Hu, P.D. Ye, Overview and outlook of emerging non-volatile memories. MRS Bull. 46, 946–958 (2021). https://doi.org/10.1557/s43577-021-00204-2
G. Servalli, A 45nm generation Phase Change Memory technology. in 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore, MD, USA. 1–4 (2009). https://doi.org/10.1109/IEDM.2009.5424409
G.W. Burr, K. Virwani, R.S. Shenoy, A. Padilla, M. BrightSky et al., Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield. in 2012 Symposium on VLSI Technology (VLSIT). Honolulu, HI, USA. 41–42 (2012). https://doi.org/10.1109/VLSIT.2012.6242451
K.L. Chopra, Current-controlled negative resistance in thin niobium oxide films. Proc. IEEE 51, 941–942 (1963). https://doi.org/10.1109/PROC.1963.2339
S. Kumar, J.P. Strachan, R.S. Williams, Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017). https://doi.org/10.1038/nature23307
R. Midya, Z. Wang, J. Zhang, S.E. Savel’ev, C. Li et al., Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29, 1604457 (2017). https://doi.org/10.1002/adma.201604457
D. Kau, S. Tang, I.V. Karpov, R. Dodge, B. Klehn et al., A stackable cross point phase change memory. in 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore, MD, USA. 1–4 (2009). https://doi.org/10.1109/IEDM.2009.5424263
A. Fazio, Advanced technology and systems of cross point memory. in 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 24.1.1–24.1.4 (2020). https://doi.org/10.1109/IEDM13553.2020.9371976
W.R. Northover, A.D. Pearson, US Patent 3117013 (1964).
R.H. Dennard, US Patent 3387286 (1967).
S.R. Ovshinsky, US Patent 3271591 (1966).
S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968). https://doi.org/10.1103/physrevlett.21.1450
D.L. Nelson, Ovonic device applications. J. Non Cryst. Solids 2, 528–539 (1970). https://doi.org/10.1016/0022-3093(70)90166-3
N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991). https://doi.org/10.1063/1.348620
M. Zhu, K. Ren, L. Liu, S. Lv, X. Miao et al., Direct observation of partial disorder and zipperlike transition in crystalline phase change materials. Phys. Rev. Mater. 3, 033603 (2019). https://doi.org/10.1103/physrevmaterials.3.033603
H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Completely erasable phase change optical disk. Jpn. J. Appl. Phys. 31, 461 (1992). https://doi.org/10.1143/jjap.31.461
M. Zhu, W. Song, P.M. Konze, T. Li, B. Gault et al., Direct atomic insight into the role of dopants in phase-change materials. Nat. Commun. 10, 3525 (2019). https://doi.org/10.1038/s41467-019-11506-0
E.J. Evans, J.H. Helbers, S.R. Ovshinsky, Reversible conductivity transformations in chalcogenide alloy films. J. Non Cryst. Solids 2, 334–346 (1970). https://doi.org/10.1016/0022-3093(70)90149-3
S. Lai, T. Lowrey, OUM—A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. in International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224). Washington, DC, USA. 36.5.1–36.5.4 (2001). https://doi.org/10.1109/IEDM.2001.979636
M. Gill, T. Lowrey, J. Park, Ovonic unified memory—a high-performance nonvolatile memory technology for stand-alone memory and embedded applications. in 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315). San Francisco, CA, USA. 202–459 (2002). https://doi.org/10.1109/ISSCC.2002.993006
F. Bedeschi, C. Resta, O. Khouri, B. E., L. Costa et al., An 8Mb demonstrator for high-density 1.8V Phase-Change Memories. in 2004 Symposium on VLSI Circuits. Digest of Technical Papers. Honolulu, HI, USA. 442–445 (2004). https://doi.org/10.1109/VLSIC.2004.1346644
M.J. Kang, T.J. Park, Y.W. Kwon, D.H. Ahn, Y.S. Kang et al., PRAM cell technology and characterization in 20 nm node size. in 2011 International Electron Devices Meeting. Washington, DC, USA. 3.1.1–3.1.4 (2011). https://doi.org/10.1109/IEDM.2011.6131478
J.H. Oh, J.H. Park, Y.S. Lim, H.S. Lim, Y.T. Oh et al., Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology. in 2006 International Electron Devices Meeting. San Francisco, CA, USA. 1–4 (2006). https://doi.org/10.1109/IEDM.2006.346905
M. Zhu, K. Ren, Z. Song, Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull. 44, 715–720 (2019). https://doi.org/10.1557/mrs.2019.206
Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang et al., A 20nm 1.8 V 8 Gb PRAM with 40MB/s program bandwidth. in 2012 IEEE International Solid-State Circuits Conference. San Francisco, CA, USA. 46–48 (2012). https://doi.org/10.1109/ISSCC.2012.6176872
J. Park, J. Yoo, J. Song, C. Sung, H. Hwang, Hybrid selector with excellent selectivity and fast switching speed for X-point memory array. IEEE Electron Device Lett. 39, 1171–1174 (2018). https://doi.org/10.1109/LED.2018.2845878
A. Verdy, G. Navarro, V. Sousa, P. Noe, M. Bernard et al., Improved electrical performance thanks to Sb and N doping in Se-rich GeSe-based OTS selector devices. in 2017 IEEE International Memory Workshop (IMW). Monterey, CA, USA. 1–4 (2017). https://doi.org/10.1109/IMW.2017.7939088
N.S. Avasarala, B. Govoreanu, K. Opsomer, W. Devulder, S. Clima et al., Doped GeSe materials for selector applications. in 2017 47th European Solid-State Device Research Conference (ESSDERC). Leuven, Belgium. 168–171 (2017). https://doi.org/10.1109/ESSDERC.2017.8066618
H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu et al., Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012). https://doi.org/10.1109/JPROC.2012.2190369
E. Ambrosi, C.-H. Wu, H.-Y. Lee, C.-M. Lee, C.-F. Hsu et al., Reliable low voltage selector device technology based on robust SiNGeCTe arsenic-free chalcogenide. IEEE Electron Device Lett. 43, 1673–1676 (2022). https://doi.org/10.1109/LED.2022.3203146
C.H. Wu, C.M. Lee, Y.S. Chen, H.Y. Lee, E. Ambrosi et al., Low-voltage (~ 1.3V), arsenic free threshold type selector with ultra high endurance (> 1011) for high density 1S1R memory array. in 2021 Symposium on VLSI Technology. Kyoto, Japan. 1–2 (2021). https://ieeexplore.ieee.org/document/9508722
L. Wang, J. Wen, Z. Liu, J. Chen, H. Tong et al., Thermally stable and high-speed Ge-Te based ovonic threshold switching selector with a Ge intercalated structure. IEEE Electron Device Lett. 44, 1096–1099 (2023). https://doi.org/10.1109/LED.2023.3272884
L. Wang, Z. Liu, Z. Zhang, J. Chen, J. Wen et al., A refresh operation method for solving thermal stability issues and improving endurance of ovonic threshold switching selectors. J. Mater. Chem. C 11, 5411–5421 (2023). https://doi.org/10.1039/D3TC00448A
N.S. Avasarala, G.L. Donadio, T. Witters, K. Opsomer, B. Govoreanu et al., Half-threshold bias Ioff reduction down to nA range of thermally and electrically stable high-performance integrated OTS selector, obtained by Se enrichment and N-doping of thin GeSe layers. in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 209–210 (2018). https://doi.org/10.1109/VLSIT.2018.8510680
S.-D. Kim, H.-W. Ahn, S.Y. Shin, D.S. Jeong, S.H. Son et al., Effect of Ge concentration in GexSe1-x chalcogenide glass on the electronic structures and the characteristics of ovonic threshold switching (OTS) devices. ECS Solid State Lett. 2, Q75–Q77 (2013). https://doi.org/10.1149/2.001310ssl
S. Jia, N. Shi, J. Shen, R. Wu, Q. Liu et al., Valence band structure of chalcogenide obtained by X-ray photoelectron spectroscopy and etching technique. Phys. Status Solidi B 258(7), 2100038 (2021). https://doi.org/10.1002/pssb.202100038
M. Xu, M. Xu, X. Miao, Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration. InfoMat 4, e12315 (2022). https://doi.org/10.1002/inf2.12315
A. Verdy, G. Navarro, M. Bernard, S. Chevalliez, N. Castellani et al., Carbon electrode for Ge-Se-Sb based OTS selector for ultra low leakage current and outstanding endurance. in 2018 IEEE International Reliability Physics Symposium (IRPS). 6D.4–1–6D.4–6 (2018). https://doi.org/10.1109/IRPS.2018.8353635
X. Li, Z. Yuan, S. Lv, S. Song, Z. Song, Extended endurance performance and reduced threshold voltage by doping Si in GeSe-based ovonic threshold switching selectors. Thin Solid Films 734, 138837 (2021). https://doi.org/10.1016/j.tsf.2021.138837
E.P. O’Reilly, J. Robertson, M.J. Kelly, The structure of amorphous GeSe and GeTe. Solid State Commun. 38, 565–568 (1981). https://doi.org/10.1016/0038-1098(81)90941-8
G.I. Kim, J. Shirafuji, Time of flight measurement of carrier mobility in GexSe1-x glasses. Jpn. J. Appl. Phys. 17, 1789–1794 (1978). https://doi.org/10.1143/jjap.17.1789
T.T. Nang, M. Okuda, T. Matsushita, S. Yokota, A. Suzuki, Electrical and optical properties of GexSe1-x amorphous thin films. Jpn. J. Appl. Phys. 15, 849–853 (1976). https://doi.org/10.1143/jjap.15.849
O. Uemura, Y. Sagara, T. Satow, The amorphous structure of the Ge-Se system. Phys. Stat. Sol. 26(1), 99–103 (1974). https://doi.org/10.1002/pssa.2210260108
S.Y. Shin, J.M. Choi, J. Seo, H.W. Ahn, Y.G. Choi et al., The effect of doping Sb on the electronic structure and the device characteristics of Ovonic Threshold Switches based on Ge-Se. Sci. Rep. 4, 7099 (2014). https://doi.org/10.1038/srep07099
J. Keukelier, K. Opsomer, W. Devulder, S. Clima, L. Goux et al., Tuning of the thermal stability and ovonic threshold switching properties of GeSe with metallic and non-metallic alloying elements. J. Appl. Phys. 130(16), 165103 (2021). https://doi.org/10.1063/5.0055861
H.Y. Cheng, W.C. Chien, I.T. Kuo, C.W. Yeh, L. Gignac et al., Ultra-high endurance and low IOFF selector based on AsSeGe chalcogenides for wide memory window 3D stackable crosspoint memory. in 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 37.3.1–37.3.4 (2018). https://doi.org/10.1109/IEDM.2018.8614580
H.Y. Cheng, W.C. Chien, I.T. Kuo, E.K. Lai, Y. Zhu et al., An ultra high endurance and thermally stable selector based on TeAsGeSiSe chalcogenides compatible with BEOL IC Integration for cross-point PCM. in 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 2.2.1–2.2.4 (2017). https://doi.org/10.1109/IEDM.2017.8268310
H.Y. Cheng, W.C. Chien, I.T. Kuo, C.H. Yang, Y.C. Chou et al., Optimizing AsSeGe chalcogenides by dopants for extremely low IOFF, high endurance and low Vth drift 3D crosspoint memory. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.6.1–28.6.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720704
S. Jun, S. Seo, S. Park, T.H. Kim, M. Lee et al., Amorphous Ge-Se-S chalcogenide alloys via post plasma sulfurization of atomic layer deposition GeSe for ovonic threshold switch applications. J. Alloys Compd. 947, 169514 (2023). https://doi.org/10.1016/j.jallcom.2023.169514
B. Govoreanu, G.L. Donadio, K. Opsomer, W. Devulder, V.V. Afanas’ev et al., Thermally stable integrated Se-based OTS selectors with > 20 MA/cm2 current drive, > 3.103 half-bias nonlinearity, tunable threshold voltage and excellent endurance. in 2017 Symposium on VLSI Technology. Kyoto, Japan. T92–T93 (2017). https://doi.org/10.23919/VLSIT.2017.7998207
W.-C. Chien, C.-W. Yeh, R.L. Bruce, H.-Y. Cheng, I.T. Kuo et al., A study on OTS-PCM pillar cell for 3-D stackable memory. IEEE Trans. Electron Devices 65, 5172–5179 (2018). https://doi.org/10.1109/TED.2018.2871197
M. Chen, K.A. Rubin, R.W. Barton, Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502–504 (1986). https://doi.org/10.1063/1.97617
A. Deneuville, J.P. Keradec, P. Gerard, A. Mini, DC electrical, optical and photoelectrical properties of GexTe1−x amorphous thin films. Solid State Commun. 14, 341–346 (1974). https://doi.org/10.1016/0038-1098(74)90914-4
B. Kramer, K. Maschke, L.D. Laude, Electronic spectra of trigonal and disordered phases of tellurium and selenium. I. Theory. Phys. Rev. B 8, 5781–5793 (1973). https://doi.org/10.1103/physrevb.8.5781
F.A. Blum, B.C. Deaton, Properties of the group VI B elements under pressure. II. semiconductor-to-metal transition of tellurium. Phys. Rev. 137, A1410–A1417 (1965). https://doi.org/10.1103/physrev.137.a1410
J. Shen, S. Jia, N. Shi, Q. Ge, T. Gotoh et al., Elemental electrical switch enabling phase segregation-free operation. Science 374, 1390–1394 (2021). https://doi.org/10.1126/science.abi6332
C. Kim, N. Hur, J. Yang, S. Oh, J. Yeo et al., Atomic layer deposition route to scalable, electronic-grade van der waals Te thin films. ACS Nano 17, 15776–15786 (2023). https://doi.org/10.1021/acsnano.3c03559
Y. Koo, H. Hwang, Zn1-xTex ovonic threshold switching device performance and its correlation to material parameters. Sci. Rep. 8, 11822 (2018). https://doi.org/10.1038/s41598-018-30207-0
S. Lee, J. Lee, S. Kim, D. Lee, D. Lee et al., Mg-Te OTS selector with low ioff (<100pA), Fast Switching Speed (τd = 7 ns), and high thermal stability (400 ℃/30 min) for X-point memory applications. in 2021 Symposium on VLSI Technology. Kyoto, Japan. 1–2 (2021). https://ieeexplore.ieee.org/document/9508648
M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, M. Wuttig, Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl. Phys. Lett. 100(14), 143505 (2012). https://doi.org/10.1063/1.3700743
A. Velea, K. Opsomer, W. Devulder, J. Dumortier, J. Fan et al., Te-based chalcogenide materials for selector applications. Sci. Rep. 7, 8103 (2017). https://doi.org/10.1038/s41598-017-08251-z
S. Jia, H. Li, T. Gotoh, C. Longeaud, B. Zhang et al., Ultrahigh drive current and large selectivity in GeS selector. Nat. Commun. 11, 4636 (2020). https://doi.org/10.1038/s41467-020-18382-z
M. Anbarasu, S. Asokan, Low electric field, easily reversible electrical set and reset processes in a Ge15Te83Si2 glass for phase change memory applications. J. Appl. Phys. 109(8), 084517 (2011). https://doi.org/10.1063/1.3574659
C. Mihai, F. Sava, I.D. Simandan, A.C. Galca, I. Burducea et al., Structural and optical properties of amorphous Si-Ge-Te thin films prepared by combinatorial sputtering. Sci. Rep. 11, 11755 (2021). https://doi.org/10.1038/s41598-021-91138-x
L. Wang, W. Cai, D. He, Q. Lin, D. Wan et al., Performance improvement of GeTex-based ovonic threshold switching selector by C doping. IEEE Electron Device Lett. 42, 688–691 (2021). https://doi.org/10.1109/LED.2021.3064857
E. Ambrosi, C.H. Wu, H.Y. Lee, P.C. Chang, C.F. Hsu et al., Low variability high endurance and low voltage arsenic-free selectors based on GeCTe. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.5.1–28.5.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720628
E. Ambrosi, C.H. Wu, H.Y. Lee, C.F. Hsu, C.M. Lee et al., Engineering defects in pristine amorphous chalcogenides for forming-free low voltage selectors. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 18.7.1–18.7.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019553
D. Garbin, W. Devulder, R. Degraeve, G.L. Donadio, S. Clima et al., Composition optimization and device understanding of Si-Ge-As-Te ovonic threshold switch selector with excellent endurance. in 2019 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 35.1.1–35.1.4 (2019). https://doi.org/10.1109/IEDM19573.2019.8993547
M.-J. Lee, D. Lee, H. Kim, H.-S. Choi, J.-B. Park et al., Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays. in 2012 International Electron Devices Meeting. San Francisco, CA, USA. 2.6.1–2.6.3 (2012). https://doi.org/10.1109/IEDM.2012.6478966
O. Kazuhiro and H. Kanagawa, US Patent 20160336378A (2015).
Y. Koo, K. Baek, H. Hwang, Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications. in 2016 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 1–2 (2016).
J. Yoo, Y. Koo, S.A. Chekol, J. Park, J. Song et al., Te-based binary OTS selectors with excellent selectivity (> 105), endurance (> 108) and thermal stability (> 450 ℃). in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 207–208 (2018). https://doi.org/10.1109/VLSIT.2018.8510681
S.A. Chekol, J. Yoo, J. Park, J. Song, C. Sung et al., A C-Te-based binary OTS device exhibiting excellent performance and high thermal stability for selector application. Nanotechnology 29, 345202 (2018). https://doi.org/10.1088/1361-6528/aac9f5
J. Yoo, D. Lee, J. Park, J. Song, H. Hwang, Steep slope field-effect transistors with B-Te-based ovonic threshold switch device. IEEE J. Electron Devices Soc. 6, 821–824 (2018). https://doi.org/10.1109/JEDS.2018.2856853
T. Kim, D. Lee, J. Kim, H. Sohn, Firing voltage reduction in thermally annealed Ge–As–Te thin film with ovonic threshold switching. J. Vac. Sci. Technol. B 38(3), 032213 (2020). https://doi.org/10.1116/1.5144736
M.J. Lee, D. Lee, S.H. Cho, J.H. Hur, S.M. Lee et al., A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat. Commun. 4, 2629 (2013). https://doi.org/10.1038/ncomms3629
E. Zhu, Y. Liu, X. Sun, G. Yin, Q. Jiao et al., Correlation between thermo-mechanical properties and network structure in GexS100–x chalcogenide glasses. J. Non Cryst. Solids X 1, 100015 (2019). https://doi.org/10.1016/j.nocx.2019.100015
C.A. Mead, Energy gap in sulphur. Phys. Lett. 11, 212–213 (1964). https://doi.org/10.1016/0031-9163(64)90410-x
J. Málek, L. Tichý, J. Klikorka, Crystallization kinetics of GexS1−x glasses. J. Therm. Anal. 33, 667–672 (1988). https://doi.org/10.1007/BF02138571
K. Tanaka, Y. Kasanuki, A. Odajima, Physical properties and photoinduced changes of amorphous Ge–S films. Thin Solid Films 117, 251–260 (1984). https://doi.org/10.1016/0040-6090(84)90355-9
Z. Černošek, E. Černošková, M. Frumar, K. Swiatek, A non-dangling bond model of paramagnetic defects in Ge-S glasses. Phys. Status Solidi B 192(1), 181–192 (1995). https://doi.org/10.1002/pssb.2221920121
D.D. Vaughn 2nd., R.J. Patel, M.A. Hickner, R.E. Schaak, Single-crystal colloidal nanosheets of GeS and GeSe. J. Am. Chem. Soc. 132, 15170–15172 (2010). https://doi.org/10.1021/ja107520b
A. Bytchkov, G.J. Cuello, S. Kohara, C.J. Benmore, D.L. Price et al., Unraveling the atomic structure of Ge-rich sulfide glasses. Phys. Chem. Chem. Phys. 15, 8487–8494 (2013). https://doi.org/10.1039/c3cp50536g
S. Chakraborty, P. Boolchand, Topological origin of fragility, network adaptation, and rigidity and stress transitions in especially homogenized nonstoichiometric binary GexS100–x glasses. J. Phys. Chem. B 118, 2249–2263 (2014). https://doi.org/10.1021/jp411823j
A. Bouzid, S. Le Roux, G. Ori, M. Boero, C. Massobrio, Origin of structural analogies and differences between the atomic structures of GeSe4 and GeS4 glasses: a first principles study. J. Chem. Phys. 143, 034504 (2015). https://doi.org/10.1063/1.4926830
H. Kan, Electronic structure of amorphous germanium sulphides. J. Non Cryst. Solids 312–314, 566–569 (2002). https://doi.org/10.1016/s0022-3093(02)01781-7
D. Foix, H. Martinez, A. Pradel, M. Ribes, D. Gonbeau, XPS valence band spectra and theoretical calculations for investigations on thiogermanate and thiosilicate glasses. Chem. Phys. 323, 606–616 (2006). https://doi.org/10.1016/j.chemphys.2005.10.037
R.R. Romanyuk, Charge carrier transfer in amorphous (GeS)1-xBix films. Chem. Met. Alloys 6, 200–204 (2013). https://doi.org/10.30970/cma6.0272
Y. Chen, R. Wang, X. Shen, J. Wang, T. Xu, New methods versus old questions: crystallization kinetics of S, Se, and Te. Cryst. Growth Des. 19, 1103–1110 (2019). https://doi.org/10.1021/acs.cgd.8b01608
M. Kim, Y. Kim, M. Lee, S.M. Hong, H.K. Kim et al., PE-ALD of Ge1−xSx amorphous chalcogenide alloys for OTS applications. J. Mater. Chem. C 9, 6006–6013 (2021). https://doi.org/10.1039/D1TC00650A
S. Jia, H. Li, Q. Liu, Z. Song, M. Zhu, Scalability of sulfur-based ovonic threshold selectors for 3D stackable memory applications. Phys. Status Solidi RRL 15(6), 2100084 (2021). https://doi.org/10.1002/pssr.202100084
R. Wu, R. Gu, T. Gotoh, Z. Zhao, Y. Sun et al., The role of arsenic in the operation of sulfur-based electrical threshold switches. Nat. Commun. 14, 6095 (2023). https://doi.org/10.1038/s41467-023-41643-6
M. Lee, S. Lee, M. Kim, S. Lee, C. Won et al., Ge1–xSx chalcogenide alloys for OTS applications using magnetron sputtering. J. Alloys Compd. 930, 167409 (2023). https://doi.org/10.1016/j.jallcom.2022.167409
D. Matsubayashi, S. Clima, T. Ravsher, D. Garbin, R. Delhougne et al., OTS physics-based screening for environment-friendly selector materials. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 8.6.1–8.6.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019445
S. Clima, D. Matsubayashi, T. Ravsher, D. Garbin, R. Delhougne et al., In silico screening for As/Se-free ovonic threshold switching materials. npj Comput. Mater. 9, 96 (2023). https://doi.org/10.1038/s41524-023-01043-2
R. Wu, S. Jia, T. Gotoh, Q. Luo, Z. Song et al., Screening switching materials with low leakage current and high thermal stability for neuromorphic computing. Adv. Electron. Mater. 8, 2200150 (2022). https://doi.org/10.1002/aelm.202200150
D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky, Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289–3309 (1980). https://doi.org/10.1063/1.328036
A. Redaelli, A. Pirovano, A. Benvenuti, A.L. Lacaita, Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103(11), 111101 (2008). https://doi.org/10.1063/1.2931951
D.M. Kroll, Theory of electrical instabilities of mixed electronic and thermal origin. II. Switching as a nucleation process. Phys. Rev. B 11, 3814–3821 (1975). https://doi.org/10.1103/physrevb.11.3814
D.M. Kroll, Theory of electrical instabilities of mixed electronic and thermal origin. Phys. Rev. B 9, 1669–1706 (1974). https://doi.org/10.1103/physrevb.9.1669
V.G. Karpov, Y.A. Kryukov, I.V. Karpov, M. Mitra, Field-induced nucleation in phase change memory. Phys. Rev. B 78, 052201 (2008). https://doi.org/10.1103/physrevb.78.052201
V.G. Karpov, Y.A. Kryukov, S.D. Savransky, I.V. Karpov, Nucleation switching in phase change memory. Appl. Phys. Lett. 90(12), 123504 (2007). https://doi.org/10.1063/1.2715024
I.V. Karpov, M. Mitra, D. Kau, G. Spadini, Y.A. Kryukov et al., Fundamental drift of parameters in chalcogenide phase change memory. J. Appl. Phys. 102(12), 124503 (2007). https://doi.org/10.1063/1.2825650
F. Buscemi, E. Piccinini, L. Vandelli, F. Nardi, A. Padovani et al., A HydroDynamic model for trap-assisted tunneling conduction in ovonic devices. IEEE Trans. Electron Devices 70, 1808–1814 (2023). https://doi.org/10.1109/TED.2023.3242229
N. Saxena, A. Manivannan, Ultrafast threshold switching dynamics in phase-change materials. Phys. Status Solidi RRL 16(9), 2200101 (2022). https://doi.org/10.1002/pssr.202200101
M. Nardone, M. Simon, I.V. Karpov, V.G. Karpov, Electrical conduction in chalcogenide glasses of phase change memory. J. Appl. Phys. 112(7), 071101 (2012). https://doi.org/10.1063/1.4738746
T. Kaplan, D. Adler, Thermal effects in amorphous-semiconductor switching. Appl. Phys. Lett. 19, 418–420 (1971). https://doi.org/10.1063/1.1653754
T. Kaplan, D. Adler, Electrothermal switching in amorphous semiconductors. J. Non Cryst. Solids 8–10, 538–543 (1972). https://doi.org/10.1016/0022-3093(72)90189-5
T. Kaplan, D.C. Bullock, D. Adler, D.J. Epstein, Thermally induced negative resistance in Si-doped YIG. Appl. Phys. Lett. 20, 439–441 (1972). https://doi.org/10.1063/1.1654007
M. Wimmer, M. Salinga, The gradual nature of threshold switching. New J. Phys. 16, 113044 (2014). https://doi.org/10.1088/1367-2630/16/11/113044
A.E. Owen, J.M. Robertson, Electronic conduction and switching in chalcogenide glasses. IEEE Trans. Electron Devices 20, 105–122 (1973). https://doi.org/10.1109/T-ED.1973.17617
G.C. Vezzoli, P.J. Walsh, L.W. Doremus, Threshold switching and the on-state in non-crystalline chalcogenide semiconductors. J. Non Cryst. Solids 18, 333–373 (1975). https://doi.org/10.1016/0022-3093(75)90138-6
P. Fantini, A. Pirovano, D. Ventrice, A. Redaelli, Experimental investigation of transport properties in chalcogenide materials through 1∕f noise measurements. Appl. Phys. Lett. 88(26), 263506 (2006). https://doi.org/10.1063/1.2215621
D. Ielmini, Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102(5), 054517 (2007). https://doi.org/10.1063/1.2773688
D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008). https://doi.org/10.1103/physrevb.78.035308
P. Fantini, N. Polino, A. Ghetti, D. Ielmini, Threshold switching by bipolar avalanche multiplication in ovonic chalcogenide glasses. Adv. Electron. Mater. 9, 2300037 (2023). https://doi.org/10.1002/aelm.202300037
M. Kastner, D. Adler, H. Fritzsche, Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504–1507 (1976). https://doi.org/10.1103/physrevlett.37.1504
P.W. Anderson, Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953–955 (1975). https://doi.org/10.1103/physrevlett.34.953
R.A. Street, N.F. Mott, States in the gap in glassy semiconductors. Phys. Rev. Lett. 35, 1293–1296 (1975). https://doi.org/10.1103/physrevlett.35.1293
S. Clima, T. Ravsher, D. Garbin, R. Degraeve, A. Fantini et al., Ovonic threshold switch chalcogenides: connecting the first-principles electronic structure to selector device parameters. ACS Appl. Electron. Mater. 5, 461–469 (2023). https://doi.org/10.1021/acsaelm.2c01458
D. Emin, Current-driven threshold switching of a small polaron semiconductor to a metastable conductor. Phys. Rev. B 74, 035206 (2006). https://doi.org/10.1103/physrevb.74.035206
J. Luckas, Electronic transport in amorphous phase-change materials (Doctoral dissertation, Paris 11, 2012).
R. Degraeve, T. Ravsher, S. Kabuyanagi, A. Fantini, S. Clima et al., Modeling and spectroscopy of ovonic threshold switching defects. in 2021 IEEE International Reliability Physics Symposium (IRPS). Monterey, CA, USA. 1–5 (2021). https://doi.org/10.1109/IRPS46558.2021.9405114
N.F. Mott, Conduction in non-crystalline materials. Philos. Mag. 19, 835–852 (1969). https://doi.org/10.1080/14786436908216338
S. Clima, D. Garbin, K. Opsomer, N.S. Avasarala, W. Devulder et al., Ovonic threshold-switching GexSey chalcogenide materials: stoichiometry, trap nature, and material relaxation from first principles. Phys. Status Solidi RRL 14(5), 1900672 (2020). https://doi.org/10.1002/pssr.201900672
S. Clima, D. Garbin, W. Devulder, J. Keukelier, K. Opsomer et al., Material relaxation in chalcogenide OTS SELECTOR materials. Microelectron. Eng. 215, 110996 (2019). https://doi.org/10.1016/j.mee.2019.110996
S. Clima, B. Govoreanu, K. Opsomer, A. Velea, N.S. Avasarala et al., Atomistic investigation of the electronic structure, thermal properties and conduction defects in Ge-rich GexSe1−x materials for selector applications. in 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 4.1.1–4.1.4 (2017). https://doi.org/10.1109/IEDM.2017.8268323
M. Luo, M. Wuttig, The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mater. 16, 439–443 (2004). https://doi.org/10.1002/adma.200306077
H. Li, J. Robertson, Materials selection and mechanism of non-linear conduction in chalcogenide selector devices. Sci. Rep. 9, 1867 (2019). https://doi.org/10.1038/s41598-018-37717-x
K. Konstantinou, F.C. Mocanu, J. Akola, S.R. Elliott, Electric-field-induced annihilation of localized gap defect states in amorphous phase-change memory materials. Acta Mater. 223, 117465 (2022). https://doi.org/10.1016/j.actamat.2021.117465
A.V. Kolobov, P. Fons, J. Tominaga, Understanding phase-change memory alloys from a chemical perspective. Sci. Rep. 5, 13698 (2015). https://doi.org/10.1038/srep13698
P. Noé, A. Verdy, F. d’Acapito, J.-B. Dory, M. Bernard et al., Toward ultimate nonvolatile resistive memories: the mechanism behind ovonic threshold switching revealed. Sci. Adv. 6, eaay2830 (2020). https://doi.org/10.1126/sciadv.aay2830
J.-Y. Raty, P. Noé, Ovonic threshold switching in Se-rich GexSe1–x glasses from an atomistic point of view: the crucial role of the metavalent bonding mechanism. Phys. Status Solidi RRL 14(5), 2070024 (2020). https://doi.org/10.1002/pssr.202070024
D. Chandler, J.P. Garrahan, Dynamics on the way to forming glass: bubbles in space-time. Annu. Rev. Phys. Chem. 61, 191–217 (2010). https://doi.org/10.1146/annurev.physchem.040808.090405
J.-Y. Raty, M. Schumacher, P. Golub, V.L. Deringer, C. Gatti et al., A quantum-mechanical map for bonding and properties in solids. Adv. Mater. 31, e1806280 (2019). https://doi.org/10.1002/adma.201806280
M. Zhu, O. Cojocaru-Mirédin, A.M. Mio, J. Keutgen, M. Küpers et al., Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding. Adv. Mater. 30, e1706735 (2018). https://doi.org/10.1002/adma.201706735
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson et al., Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008). https://doi.org/10.1038/nmat2226
A. Slassi, L.-S. Medondjio, A. Padovani, F. Tavanti, X. He et al., Device-to-materials pathway for electron traps detection in amorphous GeSe-based selectors. Adv. Electron. Mater. 9, 2201224 (2023). https://doi.org/10.1002/aelm.202201224
A. Pirovano, A.L. Lacaita, F. Pellizzer, S.A. Kostylev, A. Benvenuti et al., Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices 51, 714–719 (2004). https://doi.org/10.1109/TED.2004.825805
J.Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello et al., Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015). https://doi.org/10.1038/ncomms8467
T. Ravsher, R. Degraeve, D. Garbin, A. Fantini, S. Clima et al., Polarity-dependent threshold voltage shift in ovonic threshold switches: challenges and opportunities. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.4.1–28.4.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720649
G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim et al., Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2017). https://doi.org/10.1080/23746149.2016.1259585
Jeongdong Choe, Memory Process, Design and Architecture: Today and Tomorrow (TechInsights, 2017).
J. H. Yoon, R. Godse, G. Tressler, H. Hunter, 3D-NAND Scaling & 3D-SCM-Implications to Enterprise Storage. Flash Memory Summit, 2017.
H.-Y. Cheng, F. Carta, W.-C. Chien, H.-L. Lung, M.J. BrightSky, 3D cross-point phase-change memory for storage-class memory. J. Phys. D Appl. Phys. 52, 473002 (2019). https://doi.org/10.1088/1361-6463/ab39a0
T. Kim, S. Lee, Evolution of phase-change memory for the storage-class memory and beyond. IEEE Trans. Electron Devices 67, 1394–1406 (2020). https://doi.org/10.1109/ted.2020.2964640
S. Hong, H. Choi, J. Park, Y. Bae, K. Kim et al., Extremely high performance, high density 20nm self-selecting cross-point memory for Compute Express Link. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, 18.6.1–18.6.4 (2022). https://doi.org/10.1109/IEDM45625.2022.10019415
C.W. Yeh, W.C. Chien, R.L. Bruce, H.Y. Cheng, I.T. Kuo et al., High endurance self-heating OTS-PCM pillar cell for 3D stackable memory. in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 205–206 (2018). https://doi.org/10.1109/VLSIT.2018.8510621
Y.K. Lee, C. Yoo, W. Kim, J.W. Jeon, C.S. Hwang, Atomic layer deposition of chalcogenides for next-generation phase change memory. J. Mater. Chem. C 9, 3708–3725 (2021). https://doi.org/10.1039/D1TC00186H
B. Govoreanu, D. Crotti, S. Subhechha, L. Zhang, Y.Y. Chen et al., A-VMCO: a novel forming-free, self-rectifying, analog memory cell with low-current operation, nonfilamentary switching and excellent variability. in 2015 Symposium on VLSI Technology (VLSI Technology). Kyoto, Japan. T132–T133, (2015). https://doi.org/10.1109/VLSIT.2015.7223717
K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi et al., Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16, 6724–6732 (2016). https://doi.org/10.1021/acs.nanolett.6b01781
J.H. Yoon, S. Yoo, S.J. Song, K.J. Yoon, D.E. Kwon et al., Uniform self-rectifying resistive switching behavior via preformed conducting paths in a vertical-type Ta2O5/HfO2-x structure with a sub-μm2 cell area. ACS Appl. Mater. Interfaces 8, 18215–18221 (2016). https://doi.org/10.1021/acsami.6b05657
K. Jeon, J. Kim, J.J. Ryu, S.J. Yoo, C. Song et al., Self-rectifying resistive memory in passive crossbar arrays. Nat. Commun. 12, 2968 (2021). https://doi.org/10.1038/s41467-021-23180-2
Y.-C. Chen, C.F. Chen, C.T. Chen, J.Y. Yu, S. Wu et al., An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device. in IEEE International Electron Devices Meeting. Washington, DC, USA. 37.4.1–37.4.4 (2003). https://doi.org/10.1109/IEDM.2003.1269425
J. Yoo, I. Karpov, S. Lee, J. Jung, H.S. Kim et al., Threshold voltage drift in Te-based ovonic threshold switch devices under various operation conditions. IEEE Electron Device Lett. 41, 191–194 (2020). https://doi.org/10.1109/LED.2019.2957860
Z. Chai, W. Zhang, R. Degraeve, S. Clima, F. Hatem et al., Dependence of switching probability on operation conditions in GexSe1–x ovonic threshold switching selectors. IEEE Electron Device Lett. 40, 1269–1272 (2019). https://doi.org/10.1109/LED.2019.2924270
S. Kabuyanagi, D. Garbin, A. Fantini, S. Clima, R. Degraeve et al., Understanding of tunable selector performance in Si-Ge-As-Se OTS devices by extended percolation cluster model considering operation scheme and material design. in 2020 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 1–2 (2020). https://doi.org/10.1109/VLSITechnology18217.2020.9265011
T. Ravsher, D. Garbin, A. Fantini, R. Degraeve, S. Clima et al., Enhanced performance and low-power capability of SiGeAsSe-GeSbTe 1S1R phase-change memory operated in bipolar mode. in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). Honolulu, HI, USA. 312–313 (2022). https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830199
T. Ravsher, D. Garbin, A. Fantini, R. Degraeve, S. Clima et al., Self-rectifying memory cell based on SiGeAsSe ovonic threshold switch. IEEE Trans. Electron Devices 70, 2276–2281 (2023). https://doi.org/10.1109/TED.2023.3252491
M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, E. Eleftheriou, Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016). https://doi.org/10.1038/nnano.2016.70
M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers et al., Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018). https://doi.org/10.1038/s41928-018-0054-8
S. Ambrogio, P. Narayanan, H. Tsai, R.M. Shelby, I. Boybat et al., Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018). https://doi.org/10.1038/s41586-018-0180-5
V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S.R. Nandakumar et al., Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 11, 2473 (2020). https://doi.org/10.1038/s41467-020-16108-9
D. Kuzum, R.G. Jeyasingh, B. Lee, H.S. Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012). https://doi.org/10.1021/nl201040y
S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010). https://doi.org/10.1021/nl904092h
M. Di Ventra, Y.V. Pershin, The parallel approach. Nat. Phys. 9, 200–202 (2013). https://doi.org/10.1038/nphys2566
Z. Cheng, C. Ríos, W.H.P. Pernice, C.D. Wright, H. Bhaskaran, On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017). https://doi.org/10.1126/sciadv.1700160
S.B. Eryilmaz, D. Kuzum, S. Yu, H.-S P. Wong, Device and system level design considerations for analog-non-volatile-memory based neuromorphic architectures. in 2015 IEEE International Electron Devices Meeting (IEDM). Washington, DC, USA. 4.1.1–4.1.4 (2015). https://doi.org/10.1109/IEDM.2015.7409622
K.K. Likharev, Hybrid CMOS/nanoelectronic circuits: opportunities and challenges. J. Nanoelectron. Optoelectron. 3, 203–230 (2008). https://doi.org/10.1166/jno.2008.301
W. Senn, S. Fusi, Convergence of stochastic learning in perceptrons with binary synapses. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 061907 (2005). https://doi.org/10.1103/PhysRevE.71.061907
Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
D. Liang, G. Indiveri, A neuromorphic computational primitive for robust context-dependent decision making and context-dependent stochastic computation. IEEE Trans. Circuits Syst. II Express Briefs 66, 843–847 (2019). https://doi.org/10.1109/TCSII.2019.2907848
S. Hwang, J.-J. Lee, M.-W. Kwon, M.-H. Baek, T. Jang et al., Analog complementary metal-oxide-semiconductor integrate-and-fire neuron circuit for overflow retaining in hardware spiking neural networks. J. Nanosci. Nanotechnol. 20, 3117–3122 (2020). https://doi.org/10.1166/jnn.2020.17390
B. Rueckauer, S.-C. Liu, Conversion of analog to spiking neural networks using sparse temporal coding. in 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence, Italy. 1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351295
H. Lim, H.-W. Ahn, V. Kornijcuk, G. Kim, J.Y. Seok et al., Relaxation oscillator-realized artificial electronic neurons, their responses, and noise. Nanoscale 8, 9629–9640 (2016). https://doi.org/10.1039/C6NR01278G
W. Yi, K.K. Tsang, S.K. Lam, X. Bai, J.A. Crowell et al., Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 466 (2018). https://doi.org/10.1038/s41467-018-07052-w
M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013). https://doi.org/10.1038/nmat3510
X. Zhang, W. Wang, Q. Liu, X. Zhao, J. Wei et al., An artificial neuron based on a threshold switching memristor. IEEE Electron Device Lett. 39, 308–311 (2018). https://doi.org/10.1109/LED.2017.2782752
D. Lee, M. Kwak, K. Moon, W. Choi, J. Park et al., Various threshold switching devices for integrate and fire neuron applications. Adv. Electron. Mater. 5, 1800866 (2019). https://doi.org/10.1002/aelm.201800866
M. Lee, S.W. Cho, S.J. Kim, J.Y. Kwak, H. Ju et al., Simple artificial neuron using an ovonic threshold switch featuring spike-frequency adaptation and chaotic activity. Phys. Rev. Appl. 13, 064056 (2020). https://doi.org/10.1103/physrevapplied.13.064056
C. Zhang, W.B. Ye, K. Zhou, H.-Y. Chen, J.-Q. Yang et al., Artificial sensory nerves: bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29, 1970133 (2019). https://doi.org/10.1002/adfm.201970133
B.C. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom et al., A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015). https://doi.org/10.1126/science.aaa9306
X. Zhang, Y. Zhuo, Q. Luo, Z. Wu, R. Midya et al., An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11, 51 (2020). https://doi.org/10.1038/s41467-019-13827-6
H. Lee, S.W. Cho, S.J. Kim, J. Lee, K.S. Kim et al., Three-terminal ovonic threshold switch (3T-OTS) with tunable threshold voltage for versatile artificial sensory neurons. Nano Lett. 22, 733–739 (2022). https://doi.org/10.1021/acs.nanolett.1c04125
A. Alaghi, J.P. Hayes, Survey of stochastic computing. ACM Trans. Embed. Comput. Syst. 12(2), 92 (2013). https://doi.org/10.1145/2465787.2465794
R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions. Science 297, 2026–2030 (2002). https://doi.org/10.1126/science.1074376
S. Balatti, S. Ambrogio, R. Carboni, V. Milo, Z. Wang et al., Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 63, 2029–2035 (2016). https://doi.org/10.1109/TED.2016.2537792
M. Le Gallo, T. Tuma, F. Zipoli, A. Sebastian, E. Eleftheriou, Inherent stochasticity in phase-change memory devices. in 2016 46th European Solid-State Device Research Conference (ESSDERC). Lausanne, Switzerland. 373–376 (2016). https://doi.org/10.1109/ESSDERC.2016.7599664
S. Balatti, S. Ambrogio, Z. Wang, D. Ielmini, True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 214–221 (2015). https://doi.org/10.1109/JETCAS.2015.2426492
A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, H. Imamura et al., Spin dice: a scalable truly random number generator based on spintronics. Appl. Phys. Express 7, 083001 (2014). https://doi.org/10.7567/apex.7.083001
Z. Chai, P. Freitas, W. Zhang, J.F. Zhang, J. Marsland, True random number generator based on switching probability of volatile GeXSe1-X ovonic threshold switching selectors. in 2021 IEEE 14th International Conference on ASIC (ASICON). Kunming, China. 1–4 (2021). https://doi.org/10.1109/ASICON52560.2021.9620374