Ta-Doped Sb2Te Allows Ultrafast Phase-Change Memory with Excellent High-Temperature Operation Characteristics
Corresponding Author: Zhitang Song
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 33
Abstract
Phase-change memory (PCM) has considerable promise for new applications based on von Neumann and emerging neuromorphic computing systems. However, a key challenge in harnessing the advantages of PCM devices is achieving high-speed operation of these devices at elevated temperatures, which is critical for the efficient processing and reliable storage of data at full capacity. Herein, we report a novel PCM device based on Ta-doped antimony telluride (Sb2Te), which exhibits both high-speed characteristics and excellent high-temperature characteristics, with an operation speed of 2 ns, endurance of > 106 cycles, and reversible switching at 140 °C. The high coordination number of Ta and the strong bonds between Ta and Sb/Te atoms contribute to the robustness of the amorphous structure, which improves the thermal stability. Furthermore, the small grains in the three-dimensional limit lead to an increased energy efficiency and a reduced risk of layer segregation, reducing the power consumption and improving the long-term endurance. Our findings for this new Ta–Sb2Te material system can facilitate the development of PCMs with improved performance and novel applications.
Highlights:
1 Phase-change memory based on Ta-doped antimony telluride (Sb2Te) exhibits both high-speed characteristics and excellent high-temperature characteristics, allowing improved performance and new applications.
2 The high coordination number of Ta and the strong bonds between Ta and Sb/Te atoms enhance the robustness of the amorphous structure, ensuring good thermal stability.
3 Through the three-dimensional limit, the formation of small grains reduces the power consumption and improves the long-term endurance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Atwood, Phase-change materials for electronic memories. Science 321, 210–211 (2008). https://doi.org/10.1126/science.1160231
- G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan et al., Phase change memory technology. J. Vac. Sci. Technol. B 28, 223 (2010). https://doi.org/10.1116/1.3301579
- Narbeh Derhacobian, Shane C. Hollmer, Nad Gilbert, Michael N. Kozicki, Power and energy perspectives of nonvolatile memory technologies. IEEE 98, 283–298 (2010). https://doi.org/10.1109/JPROC.2009.2035147
- https://www.anandtech.com/show/9541/intel-announces-optane-storagebrand-for-3d-xpoint-products
- H.S. Wong, S. Salahuddin, Memory leads the way to better computing. Nat. Nanotech. 10, 191–194 (2015). https://doi.org/10.1038/nnano.2015.29
- G.W. Burr, R.M. Shelby, C. di Nolfo, J.W. Jang, R.S. Shenoy et al., Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. IEDM (2014). https://doi.org/10.1109/IEDM.2014.7047135
- M. Wuttig, D. Lusebrink, D. Wamwangi, W. Welnic, M. Gillessen et al., The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 6, 122–128 (2007). https://doi.org/10.1038/nmat1807
- S. Raoux, W. Welnic, D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010). https://doi.org/10.1021/cr900040x
- S.B. Eryilmaz, D. Kuzum, R. Jeyasingh, S. Kim, M. BrightSky et al., Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array. Front. Neurosci-Switz 8, 205 (2014). https://doi.org/10.3389/fnins.2014.00205
- D. Kuzum, R.G. Jeyasingh, B. Lee, H.S. Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012). https://doi.org/10.1021/nl201040y
- C.M.N. Scott, W. Fong, H.-S. Philip Wong, Phase-change memory—towards a storage-class memory. IEEE T. Electron Dev. 11, 4374–4385 (2017). https://doi.org/10.1109/TED.2017.2746342
- G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan et al., Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008). https://doi.org/10.1147/rd.524.0449
- K.F. Kao, Y.C. Chu, F.T. Chen, M.J. Tsai, T.S. Chin, Phase-change memory devices operative at 100 & #xB0;C. IEEE Electr. Device L. 31, 872–874 (2010). https://doi.org/10.1109/LED.2010.2050190
- S. Raoux, F. Xiong, M. Wuttig, E. Pop, Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014). https://doi.org/10.1557/mrs.2014.139
- Z. Sun, J. Zhou, Y. Pan, Z. Song, H. Mao et al., Pressure-induced reversible amorphization and an amorphous—amorphous transition in Ge2Sb2Te5 phase-change memory material. Proc. Natl. Am. Sci. 108, 5 (2011). https://doi.org/10.1073/pnas
- T. Morikawa, K. Kurotsuchi, M. Kinoshita, N. Matsuzaki, Y. Matsui et al., Doped In-Ge-Te phase change memory featuring stable operation and good data retention. IEDM (2007). https://doi.org/10.1109/IEDM.2007.4418932
- Y.S. Chu, Y.H. Wang, C.Y. Wang, Y.H. Lee, A.C. Kang et al., Split-gate flash memory for automotive embedded applications. IEEE (2011). https://doi.org/10.1109/IRPS.2011.5784547
- B. Sa, J. Zhou, Z. Sun, J. Tominaga, R. Ahuja, Topological insulating in GeTe/Sb2Te3 phase-change superlattice. Phys. Rev. Lett. 109, 096802 (2012). https://doi.org/10.1103/PhysRevLett.109.096802
- Y. Wang, X. Chen, Y. Cheng, X. Zhou, S. Lv et al., Reset distribution improvement of phase change memory: the impact of pre-programming. IEEE Electr. Device L. 35, 14252091 (2014). https://doi.org/10.1109/LED.2014.2308909
- W.K. Njoroge, H.-W. Wöltgens, M. Wuttig, Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. 20, 230 (2002). https://doi.org/10.1116/1.1430249
- L.V. Pieterson, M.H.R. Lankhorst, M.V. Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Prospects of doped Sb–Te phase-change materials for high-speed recording. Jpn. J. Appl. Phys. 42, 1 (2003). https://doi.org/10.1143/jjap.42.863
- X. Chen, Y. Zheng, M. Zhu, K. Ren, Y. Wang et al., Scandium doping brings speed improvement in Sb2Te alloy for phase change random access memory application. Sci. Rep. UK 8, 6839 (2018). https://doi.org/10.1038/s41598-018-25215-z
- G. Wang, X. Shen, Q. Nie, H. Wang, Y. Lu et al., Improved thermal stability of C-doped Sb2Te films by increasing degree of disorder for memory application. Thin Solid Films 615, 345–350 (2016). https://doi.org/10.1016/j.tsf.2016.07.059
- T. Li, L. Wu, Y. Wang, G. Liu, T. Guo et al., Yttrium-doped Sb2Te as high speed phase-change materials with good thermal stability. Mater. Lett. 247, 60–62 (2019). https://doi.org/10.1016/j.matlet.2019.03.090
- Y. Lu, S. Song, Z. Song, F. Rao, L. Wu et al., Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications. Appl. Phys. Lett. 100, 193114 (2012). https://doi.org/10.1063/1.4711811
- Y. Zheng, Y. Cheng, M. Zhu, X. Ji, Q. Wang et al., A candidate Zr-doped Sb2Te alloy for phase change memory application. Appl. Phys. Lett. 108, 052107 (2016). https://doi.org/10.1063/1.4941418
- Y. Wang, T. Wang, Y. Zheng, G. Liu, T. Li et al., Atomic scale insight into the effects of aluminum doped Sb2Te for phase change memory application. Sci. Rep. 8, 15136 (2018). https://doi.org/10.1038/s41598-018-33421-y
- V.A. Misra, H. Zhong, H. Lazar, Electrical properties of Ru-based alloy gate electrodes for dual metal gate Si-CMOS. IEEE Electr. Device L. 23, 354–356 (2002). https://doi.org/10.1109/led.2002.1004233
- D. Fischera, T. Scherg, J.G. Bauer, H.-J. Schulze, C. Wenzel, Study of Ta–Si–N thin films for use as barrier layer in copper metallizations. Microelectron. Eng. 50, 459–464 (2000). https://doi.org/10.1016/S0167-9317(99)00315-9
- K.B. John, P. Perdew, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- J.-Y. Cho, D. Kim, Y.-J. Park, T.-Y. Yang, Y.-Y. Lee et al., The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics. Acta Mater. 94, 143–151 (2015). https://doi.org/10.1016/j.actamat.2015.04.058
- M. Boniardi, A. Redaelli, C. Cupeta, F. Pellizzer, L. Crespi et al., Optimization metrics for phase change memory (PCM) cell architectures. IEDM 14933685 (2014). https://doi.org/10.1109/IEDM.2014.7047131
- K.-F. Kao, C.-M. Lee, M.-J. Chen, M.-J. Tsai, T.-S. Chin, Ga2Te3Sb5-a candidate for fast and ultralong retention phase-change memory. Adv. Mater. 21, 1695–1699 (2009). https://doi.org/10.1002/adma.200800423
- L. Waldecker, T.A. Miller, M. Rude, R. Bertoni, J. Osmond et al., Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 14, 991–995 (2015). https://doi.org/10.1038/nmat4359
- Y. Kim, X. Chen, Z. Wang, J. Shi, I. Miotkowski et al., Temperature dependence of raman-active optical phonons in Bi2Se3 and Sb2Te3. Appl. Phys. Lett. 100, 071907 (2012). https://doi.org/10.1063/1.3685465
- P.M. Amirtharaj, F.H. Pollak, Raman scattering study of the properties and removal of excess Te on CdTe surfaces. Appl. Phys. Lett. 45, 789 (1984). https://doi.org/10.1063/1.95367
- S. Guo, L. Xu, J. Zhang, Z. Hu, T. Li et al., Enhanced crystallization behaviors of Silicon-doped Sb2Te films: optical evidences. Sci. Rep. 6, 33639 (2016). https://doi.org/10.1038/srep33639
- M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007). https://doi.org/10.1038/nmat2009
References
G. Atwood, Phase-change materials for electronic memories. Science 321, 210–211 (2008). https://doi.org/10.1126/science.1160231
G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan et al., Phase change memory technology. J. Vac. Sci. Technol. B 28, 223 (2010). https://doi.org/10.1116/1.3301579
Narbeh Derhacobian, Shane C. Hollmer, Nad Gilbert, Michael N. Kozicki, Power and energy perspectives of nonvolatile memory technologies. IEEE 98, 283–298 (2010). https://doi.org/10.1109/JPROC.2009.2035147
https://www.anandtech.com/show/9541/intel-announces-optane-storagebrand-for-3d-xpoint-products
H.S. Wong, S. Salahuddin, Memory leads the way to better computing. Nat. Nanotech. 10, 191–194 (2015). https://doi.org/10.1038/nnano.2015.29
G.W. Burr, R.M. Shelby, C. di Nolfo, J.W. Jang, R.S. Shenoy et al., Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. IEDM (2014). https://doi.org/10.1109/IEDM.2014.7047135
M. Wuttig, D. Lusebrink, D. Wamwangi, W. Welnic, M. Gillessen et al., The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 6, 122–128 (2007). https://doi.org/10.1038/nmat1807
S. Raoux, W. Welnic, D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010). https://doi.org/10.1021/cr900040x
S.B. Eryilmaz, D. Kuzum, R. Jeyasingh, S. Kim, M. BrightSky et al., Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array. Front. Neurosci-Switz 8, 205 (2014). https://doi.org/10.3389/fnins.2014.00205
D. Kuzum, R.G. Jeyasingh, B. Lee, H.S. Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012). https://doi.org/10.1021/nl201040y
C.M.N. Scott, W. Fong, H.-S. Philip Wong, Phase-change memory—towards a storage-class memory. IEEE T. Electron Dev. 11, 4374–4385 (2017). https://doi.org/10.1109/TED.2017.2746342
G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan et al., Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008). https://doi.org/10.1147/rd.524.0449
K.F. Kao, Y.C. Chu, F.T. Chen, M.J. Tsai, T.S. Chin, Phase-change memory devices operative at 100 & #xB0;C. IEEE Electr. Device L. 31, 872–874 (2010). https://doi.org/10.1109/LED.2010.2050190
S. Raoux, F. Xiong, M. Wuttig, E. Pop, Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014). https://doi.org/10.1557/mrs.2014.139
Z. Sun, J. Zhou, Y. Pan, Z. Song, H. Mao et al., Pressure-induced reversible amorphization and an amorphous—amorphous transition in Ge2Sb2Te5 phase-change memory material. Proc. Natl. Am. Sci. 108, 5 (2011). https://doi.org/10.1073/pnas
T. Morikawa, K. Kurotsuchi, M. Kinoshita, N. Matsuzaki, Y. Matsui et al., Doped In-Ge-Te phase change memory featuring stable operation and good data retention. IEDM (2007). https://doi.org/10.1109/IEDM.2007.4418932
Y.S. Chu, Y.H. Wang, C.Y. Wang, Y.H. Lee, A.C. Kang et al., Split-gate flash memory for automotive embedded applications. IEEE (2011). https://doi.org/10.1109/IRPS.2011.5784547
B. Sa, J. Zhou, Z. Sun, J. Tominaga, R. Ahuja, Topological insulating in GeTe/Sb2Te3 phase-change superlattice. Phys. Rev. Lett. 109, 096802 (2012). https://doi.org/10.1103/PhysRevLett.109.096802
Y. Wang, X. Chen, Y. Cheng, X. Zhou, S. Lv et al., Reset distribution improvement of phase change memory: the impact of pre-programming. IEEE Electr. Device L. 35, 14252091 (2014). https://doi.org/10.1109/LED.2014.2308909
W.K. Njoroge, H.-W. Wöltgens, M. Wuttig, Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. 20, 230 (2002). https://doi.org/10.1116/1.1430249
L.V. Pieterson, M.H.R. Lankhorst, M.V. Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Prospects of doped Sb–Te phase-change materials for high-speed recording. Jpn. J. Appl. Phys. 42, 1 (2003). https://doi.org/10.1143/jjap.42.863
X. Chen, Y. Zheng, M. Zhu, K. Ren, Y. Wang et al., Scandium doping brings speed improvement in Sb2Te alloy for phase change random access memory application. Sci. Rep. UK 8, 6839 (2018). https://doi.org/10.1038/s41598-018-25215-z
G. Wang, X. Shen, Q. Nie, H. Wang, Y. Lu et al., Improved thermal stability of C-doped Sb2Te films by increasing degree of disorder for memory application. Thin Solid Films 615, 345–350 (2016). https://doi.org/10.1016/j.tsf.2016.07.059
T. Li, L. Wu, Y. Wang, G. Liu, T. Guo et al., Yttrium-doped Sb2Te as high speed phase-change materials with good thermal stability. Mater. Lett. 247, 60–62 (2019). https://doi.org/10.1016/j.matlet.2019.03.090
Y. Lu, S. Song, Z. Song, F. Rao, L. Wu et al., Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications. Appl. Phys. Lett. 100, 193114 (2012). https://doi.org/10.1063/1.4711811
Y. Zheng, Y. Cheng, M. Zhu, X. Ji, Q. Wang et al., A candidate Zr-doped Sb2Te alloy for phase change memory application. Appl. Phys. Lett. 108, 052107 (2016). https://doi.org/10.1063/1.4941418
Y. Wang, T. Wang, Y. Zheng, G. Liu, T. Li et al., Atomic scale insight into the effects of aluminum doped Sb2Te for phase change memory application. Sci. Rep. 8, 15136 (2018). https://doi.org/10.1038/s41598-018-33421-y
V.A. Misra, H. Zhong, H. Lazar, Electrical properties of Ru-based alloy gate electrodes for dual metal gate Si-CMOS. IEEE Electr. Device L. 23, 354–356 (2002). https://doi.org/10.1109/led.2002.1004233
D. Fischera, T. Scherg, J.G. Bauer, H.-J. Schulze, C. Wenzel, Study of Ta–Si–N thin films for use as barrier layer in copper metallizations. Microelectron. Eng. 50, 459–464 (2000). https://doi.org/10.1016/S0167-9317(99)00315-9
K.B. John, P. Perdew, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
J.-Y. Cho, D. Kim, Y.-J. Park, T.-Y. Yang, Y.-Y. Lee et al., The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics. Acta Mater. 94, 143–151 (2015). https://doi.org/10.1016/j.actamat.2015.04.058
M. Boniardi, A. Redaelli, C. Cupeta, F. Pellizzer, L. Crespi et al., Optimization metrics for phase change memory (PCM) cell architectures. IEDM 14933685 (2014). https://doi.org/10.1109/IEDM.2014.7047131
K.-F. Kao, C.-M. Lee, M.-J. Chen, M.-J. Tsai, T.-S. Chin, Ga2Te3Sb5-a candidate for fast and ultralong retention phase-change memory. Adv. Mater. 21, 1695–1699 (2009). https://doi.org/10.1002/adma.200800423
L. Waldecker, T.A. Miller, M. Rude, R. Bertoni, J. Osmond et al., Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 14, 991–995 (2015). https://doi.org/10.1038/nmat4359
Y. Kim, X. Chen, Z. Wang, J. Shi, I. Miotkowski et al., Temperature dependence of raman-active optical phonons in Bi2Se3 and Sb2Te3. Appl. Phys. Lett. 100, 071907 (2012). https://doi.org/10.1063/1.3685465
P.M. Amirtharaj, F.H. Pollak, Raman scattering study of the properties and removal of excess Te on CdTe surfaces. Appl. Phys. Lett. 45, 789 (1984). https://doi.org/10.1063/1.95367
S. Guo, L. Xu, J. Zhang, Z. Hu, T. Li et al., Enhanced crystallization behaviors of Silicon-doped Sb2Te films: optical evidences. Sci. Rep. 6, 33639 (2016). https://doi.org/10.1038/srep33639
M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007). https://doi.org/10.1038/nmat2009