Hydrogen Production via Hydrolysis and Alcoholysis of Light Metal-Based Materials: A Review
Corresponding Author: Zongwen Liu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 134
Abstract
As an environmentally friendly and high-density energy carrier, hydrogen has been recognized as one of the ideal alternatives for fossil fuels. One of the major challenges faced by “hydrogen economy” is the development of efficient, low-cost, safe and selective hydrogen generation from chemical storage materials. In this review, we summarize the recent advances in hydrogen production via hydrolysis and alcoholysis of light-metal-based materials, such as borohydrides, Mg-based and Al-based materials, and the highly efficient regeneration of borohydrides. Unfortunately, most of these hydrolysable materials are still plagued by sluggish kinetics and low hydrogen yield. While a number of strategies including catalysis, alloying, solution modification, and ball milling have been developed to overcome these drawbacks, the high costs required for the “one-pass” utilization of hydrolysis/alcoholysis systems have ultimately made these techniques almost impossible for practical large-scale applications. Therefore, it is imperative to develop low-cost material systems based on abundant resources and effective recycling technologies of spent fuels for efficient transport, production and storage of hydrogen in a fuel cell-based hydrogen economy.
Highlights:
1 An overview of the recent advances in hydrogen production from light metal-based materials is presented, including hydrolysis of Mg-based alloys and hydrides, hydrolysis of Al-based alloys and hydrides and (catalyzed) hydrolysis/alcoholysis of borohydrides.
2 Hydrogen production and storage in a close loop are achieved via hydrolysis and regeneration of borohydrides, demonstrating a promising step toward the large-scale application of chemical hydrogen storage materials in a fuel cell-based hydrogen economy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Winsche, K.C. Hoffman, F. Salzano, Hydrogen: its future role in the nation’s energy economy. Science 180(4093), 1325–1332 (1973). https://doi.org/10.1126/science.180.4093.1325
- X.N. Huang, T. Gao, X.L. Pan, D. Wei, C.J. Lv et al., A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. J. Power Sources 229, 133–140 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.016
- S. Ahmed, M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrog. Energy 26(4), 291–301 (2001). https://doi.org/10.1016/S0360-3199(00)00097-5
- X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang et al., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources 165(2), 739–756 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.012
- L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature 414(6861), 353–358 (2001). https://doi.org/10.1038/35104634
- A.E. Lutz, R.S. Larson, J.O. Keller, Thermodynamic comparison of fuel cells to the Carnot cycle. Int. J. Hydrog. Energy 27(10), 1103–1111 (2002). https://doi.org/10.1016/S0360-3199(02)00016-2
- M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Hydrogen storage in metal-organic frameworks. Chem. Rev. 112(2), 782–835 (2012). https://doi.org/10.1021/cr200274s
- U. Eberle, M. Felderhoff, F. Schuth, Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48(36), 6608–6630 (2009). https://doi.org/10.1002/anie.200806293
- R. Jain, A. Jain, S. Agarwal, N. Lalla, V. Ganesan et al., Hydrogenation behaviour of Ce-based AB5 intermetallic compounds. J. Alloy Compd. 440(1–2), 84–88 (2007). https://doi.org/10.1016/j.jallcom.2006.08.326
- A.W.C. van den Berg, C.O. Areán, Materials for hydrogenstorage: current research trends and perspectives. Chem. Commun. 6, 668–681 (2008). https://doi.org/10.1039/B712576N
- N.T. Stetson, Hydrogen storage program area: plenary presentation (US Department of Energy, 2017).
- A. Yamashita, M. Kondo, S. Goto, N. Ogami, Development of high-pressure hydrogen storage system for the Toyota “Mirai.” SAE Technical Paper Series (2015). https://doi.org/10.4271/2015-01-1169
- M. Aziz, A.T. Wijayanta, A.B.D. Nandiyanto, Ammonia as effective hydrogen storage: a review on production, storage and utilization. Energies 13(12), 3062 (2020). https://doi.org/10.3390/en13123062
- M. Felderhoff, C. Weidenthaler, R. von Helmolt, U. Eberle, Hydrogen storage: the remaining scientific and technological challenges. Phys. Chem. Chem. Phys. 9(21), 2643–2653 (2007). https://doi.org/10.1039/b701563c
- K. Wang, Z. Pan, X. Yu, Metal B-N-H hydrogen-storage compound: Development and perspectives. J. Alloys Compound. 794, 303–324 (2019). https://doi.org/10.1016/j.jallcom.2019.04.240
- N.Z.A.K. Khafidz, Z. Yaakob, K.L. Lim, S.N. Timmiati, The kinetics of lightweight solid-state hydrogen storage materials: A review. Int. J. Hydrog. Energy 41(30), 13131–13151 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.169
- A.T. Wijayanta, T. Oda, C.W. Purnomo, T. Kashiwagi, M. Aziz, Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review. Int. J. Hydrog. Energy 44(29), 15026–15044 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.112
- S. Kumar, A. Jain, T. Ichikawa, Y. Kojima, G.K. Dey, Development of vanadium based hydrogen storage material: A review. Renew. Sust. Energ. Rev. 72, 791–800 (2017). https://doi.org/10.1016/j.rser.2017.01.063
- A. Jain, R. Jain, S. Agarwal, V. Ganesan, N. Lalla et al., Synthesis, characterization and hydrogenation of ZrFe2-xNix (x= 0.2, 0.4, 0.6, 0.8) alloys. Int. J. Hydrog. Energy 32(16), 3965–3971 (2007). https://doi.org/10.1016/j.ijhydene.2007.05.001
- I. Jain, P. Jain, A. Jain, Novel hydrogen storage materials: a review of lightweight complex hydrides. J. Alloy Compd. 503(2), 303–339 (2010). https://doi.org/10.1016/j.jallcom.2010.04.250
- A. Jain, E. Kawasako, H. Miyaoka, T. Ma, S. Isobe et al., Destabilization of LiH by Li insertion into Ge. J. Phys. Chem. C 117(11), 5650–5657 (2013). https://doi.org/10.1021/jp400133t
- T. Zhang, S. Isobe, A. Jain, Y. Wang, S. Yamaguchi et al., Enhancement of hydrogen desorption kinetics in magnesium hydride by doping with lithium metatitanate. J. Alloy Compd. 711, 400–405 (2017). https://doi.org/10.1016/j.jallcom.2017.03.361
- V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov et al., Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrog. Energy 44(15), 7809–7859 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.212
- M. Jangir, A. Jain, S. Agarwal, T. Zhang, S. Kumar et al., The enhanced de/re-hydrogenation performance of MgH2 with TiH2 additive. Int. J. Energ. Res. 42(3), 1139–1147 (2018). https://doi.org/10.1002/er.3911
- S. Kumar, A. Jain, H. Miyaoka, T. Ichikawa, Y. Kojima, Catalytic effect of bis (cyclopentadienyl) nickel II on the improvement of the hydrogenation-dehydrogenation of Mg-MgH2 system. Int. J. Hydrog. Energy 42(27), 17178–17183 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.090
- C.W. Hamilton, R.T. Baker, A. Staubitz, I. Manners, B-N compounds for chemical hydrogen storage. Chem. Soc. Rev. 38(1), 279–293 (2009). https://doi.org/10.1039/B800312M
- S. Liu, J. Liu, X. Liu, J. Shang, L. Xu et al., Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021). https://doi.org/10.1038/s41565-020-00818-8
- S. Kumar, U. Jain, A. Jain, H. Miyaoka, T. Ichikawa et al., Development of MgLiB based advanced material for onboard hydrogen storage solution. Int. J. Hydrog. Energy 42(7), 3963–3970 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.061
- A. Borgschulte, E. Callini, B. Probst, A. Jain, S. Kato et al., Impurity gas analysis of the decomposition of complex hydrides. J. Phys. Chem. C 115(34), 17220–17226 (2011). https://doi.org/10.1021/jp205566q
- H. Miyaoka, H. Miyaoka, T. Ichikawa, Y. Kojima, Highly purified hydrogen production from ammonia for PEM fuel cell. Int. J. Hydrog. Energy 43(31), 14486–14492 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.065
- K. Eom, E. Cho, H. Kwon, Feasibility of on-board hydrogen production from hydrolysis of Al-Fe alloy for PEMFCs. Int. J. Hydrog. Energy 36(19), 12338–12342 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.099
- C. Lang, Y. Jia, X. Yao, Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Mater. 26, 290–312 (2020). https://doi.org/10.1016/j.ensm.2020.01.010
- C. Wang, D. Astruc, Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem. Soc. Rev. 50, 3437–3484 (2021). https://doi.org/10.1039/D0CS00515K
- S. Selvaraj, A. Jain, S. Kumar, T. Zhang, S. Isobe et al., Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor. Int. J. Hydrog. Energy 43(5), 2881–2889 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.159
- M.H. Grosjean, M. Zidoune, J.Y. Huot, L. Roue, Hydrogen generation via alcoholysis reaction using ball-milled Mg-based materials. Int. J. Hydrog. Energy 31(9), 1159–1163 (2006). https://doi.org/10.1016/j.ijhydene.2005.10.001
- M. Wang, L. Ouyang, C. Peng, X. Zhu, W. Zhu et al., Synthesis and hydrolysis of NaZn(BH4)3 and its ammoniates. J. Mater. Chem. A 5(32), 17012–17020 (2017). https://doi.org/10.1039/C7TA05082H
- D.-W. Zhuang, H.-B. Dai, P. Wang, Hydrogen generation from solvolysis of sodium borohydride in ethylene glycol–water mixtures over a wide range of temperature. RSC Adv. 3(45), 23810 (2013). https://doi.org/10.1039/c3ra43136c
- M. Ma, L. Ouyang, J. Liu, H. Wang, H. Shao et al., Air-stable hydrogen generation materials and enhanced hydrolysis performance of MgH2-LiNH2 composites. J. Power Sources 359, 427–434 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.087
- S. Kumar, A. Jain, H. Miyaoka, T. Ichikawa, Y. Kojima, Study on the thermal decomposition of NaBH4 catalyzed by ZrCl4. Int. J. Hydrog. Energy 42(35), 22432–22437 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.060
- S. Kumar, A. Singh, K. Nakajima, A. Jain, H. Miyaoka et al., Improved hydrogen release from magnesium borohydride by ZrCl4 additive. Int. J. Hydrog. Energy 42(35), 22342–22347 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.090
- A. Borgschulte, A. Jain, A.J. Ramirez-Cuesta, P. Martelli, A. Remhof et al., Mobility and dynamics in the complex hydrides LiAlH4 and LiBH4. Faraday Discuss 151, 213–230 (2011). https://doi.org/10.1039/c0fd00011f
- V. Kong, Development of hydrogen storage for fuel cellgenerators. i: Hydrogen generation using hydrolysishydrides. Int. J. Hydrog. Energy 24(7), 665–675 (1999). https://doi.org/10.1016/S0360-3199(98)00113-X
- M. Nie, Y. Zou, Y. Huang, J. Wang, Ni–Fe–B catalysts for NaBH4 hydrolysis. Int. J. Hydrog. Energy 37(2), 1568–1576 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.006
- B. Chen, S.J. Chen, H.A. Bandal, R. Appiah-Ntiamoah, A.R. Jadhav et al., Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis. Int. J. Hydrog. Energy 43(19), 9296–9306 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.193
- P. Krishnan, T.H. Yang, W.Y. Lee, C.S. Kim, PtRu-LiCoO2 - an efficient catalyst for hydrogen generation from sodium borohydride solutions. J. Power Sources 143(1–2), 17–23 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.007
- U.B. Demirci, F. Garin, Kinetics of Ru-promoted sulphated zirconia catalysed hydrogen generation by hydrolysis of sodium tetrahydroborate. J. Mol. Catal. A Chem. 279(1), 57–62 (2008). https://doi.org/10.1016/j.molcata.2007.09.025
- H. Inokawa, H. Driss, F. Trovela, H. Miyaoka, T. Ichikawa et al., Catalytic hydrolysis of sodium borohydride on Co catalysts. Int. J. Energ. Res. 40(15), 2078–2090 (2016). https://doi.org/10.1002/er.3582
- A.K. Figen, Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co-B, Ni-B, Cu-B) under different hydrolysis conditions. Int. J. Hydrog. Energy 38(22), 9186–9197 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.081
- H.J. Tian, Q.J. Guo, D.Y. Xu, Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. J. Power Sources 195(8), 2136–2142 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.006
- F. Li, Q. Li, H. Kim, CoB/open-CNTs catalysts for hydrogen generation from alkaline NaBH4 solution. Chem. Eng. J. 210, 316–324 (2012). https://doi.org/10.1016/j.cej.2012.08.102
- Y.S. Wei, W. Meng, Y. Wang, Y.X. Gao, K.Z. Qi, K. Zhang, Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co-Ni-B catalysts. Int. J. Hydrog. Energy 42(9), 6072–6079 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.134
- Y.C. Lu, M.S. Chen, Y.W. Chen, Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2. Int. J. Hydrog. Energy 37(5), 4254–4258 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.105
- E. Marreroalfonso, J. Gray, T. Davis, M. Matthews, Hydrolysis of sodium borohydride with steam. Int. J. Hydrog. Energy 32(18), 4717–4722 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.066
- A.F. Baye, M.W. Abebe, R. Appiah-Ntiamoah, H. Kim, Engineered iron-carbon-cobalt (Fe3O4@C-Co) core-shell composite with synergistic catalytic properties towards hydrogen generation via NaBH4 hydrolysis. J. Colloid Interf. Sci. 543, 273–284 (2019). https://doi.org/10.1016/j.jcis.2019.02.065
- K. Holbrook, P. Twist, Hydrolysis of the borohydride ion catalysed by metal–boron alloys. J. Chem. Soci. A: Inorg. Phys. Theor. (1971). https://doi.org/10.1039/J19710000890
- N. Patel, R. Fernandes, A. Miotello, Promoting effect of transition metal-doped Co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution. J. Catal. 271(2), 315–324 (2010). https://doi.org/10.1016/j.jcat.2010.02.014
- U.B. Demirci, About the Technological Readiness of the H-2 Generation by Hydrolysis of B(-N)-H Compounds. Energy Technol-Ger 6(3), 470–486 (2018). https://doi.org/10.1002/ente.201700486
- H.A. Bandal, A.R. Jadhav, H. Kim, Cobalt impregnated magnetite-multiwalled carbon nanotube nanocomposite as magnetically separable efficient catalyst for hydrogen generation by NaBH4 hydrolysis. J. Alloy. Compd. 699, 1057–1067 (2017). https://doi.org/10.1016/j.jallcom.2016.12.428
- F. Li, E.E. Arthur, D. La, Q.M. Li, H. Kim, Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride). Energy 71, 32–39 (2014). https://doi.org/10.1016/j.energy.2014.03.130
- G.R.M. Tomboc, A.H. Tamboli, H. Kim, Synthesis of Co3O4 macrocubes catalyst using novel chitosan/urea template for hydrogen generation from sodium borohydride. Energy 121, 238–245 (2017). https://doi.org/10.1016/j.energy.2017.01.027
- Y.Y. Huang, K.Y. Wang, L. Cui, W.X. Zhu, A.M. Asiri et al., Effective hydrolysis of sodium borohydride driven by self-supported cobalt oxide nanorod array for on-demand hydrogen generation. Catal. Commun. 87, 94–97 (2016). https://doi.org/10.1016/j.catcom.2016.09.012
- M.H. Loghmani, A.F. Shojaei, Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co-La-Zr-B nanoparticle as a novel catalyst. Energy 68, 152–159 (2014). https://doi.org/10.1016/j.energy.2014.02.047
- F. Seven, N. Sahiner, Enhanced catalytic performance in hydrogen generation from NaBH4 hydrolysis by super porous cryogel supported Co and Ni catalysts. J. Power Sources 272, 128–136 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.047
- A.R. Jadhav, H.A. Bandal, H. Kim, NiCo2O4 hollow sphere as an efficient catalyst for hydrogen generation by NaBH4 hydrolysis. Mater. Lett. 198, 50–53 (2017). https://doi.org/10.1016/j.matlet.2017.03.161
- F. Baydaroglu, E. Ozdemir, A. Hasimoglu, An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4. Int. J. Hydrog. Energy 39(3), 1516–1522 (2014). https://doi.org/10.1016/j.ijhydene.2013.04.111
- Y.P. Guo, Z.P. Dong, Z.K. Cui, X.J. Zhang, J.T. Ma, Promoting effect of W doped in electrodeposited Co-P catalysts for hydrogen generation from alkaline NaBH4 solution. Int. J. Hydrog. Energy 37(2), 1577–1583 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.019
- L.N. Wang, Z. Li, P.P. Zhang, G.X. Wang, G.W. Xie, Hydrogen generation from alkaline NaBH4 solution using Co-Ni-Mo-P/gamma-Al2O3 catalysts. Int. J. Hydrog. Energy 41(3), 1468–1476 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.028
- Y. Wang, Y. Shen, K.Z. Qi, Z.Q. Cao, K. Zhang et al., Nanostructured cobalt-phosphorous catalysts for hydrogen generation from hydrolysis of sodium borohydride solution. Renew Energ. 89, 285–294 (2016). https://doi.org/10.1016/j.renene.2015.12.026
- K. Eom, K. Cho, H. Kwon, Effects of electroless deposition conditions on microstructures of cobalt-phosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution. J. Power Sources 180(1), 484–490 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.095
- Y.P. Guo, Q.H. Feng, Z.P. Dong, J.T. Ma, Electrodeposited amorphous Co-P catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. J. Mol. Catal. A-Chem. 378, 273–278 (2013). https://doi.org/10.1016/j.molcata.2013.06.018
- Y. Wang, K.Z. Qi, S.W. Wu, Z.Q. Cao, K. Zhang et al., Preparation, characterization and catalytic sodium borohydride hydrolysis of nanostructured cobalt-phosphorous catalysts. J. Power Sources 284, 130–137 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.013
- Y.C. Zhao, Z. Ning, J.N. Tian, H.W. Wang, X.Y. Liang et al., Hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co-Mo-Pd-B amorphous catalyst with efficient catalytic properties. J. Power Sources 207, 120–126 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.118
- K. Shimoda, K. Doi, T. Nakagawa, Y. Zhang, H. Miyaoka et al., Comparative study of structural changes in NH3BH3, LiNH2BH3, and KNH2BH3 during dehydrogenation process. J. Phys. Chem. C 116(9), 5957–5964 (2012). https://doi.org/10.1021/jp212351f
- P.Z. Li, K. Aranishi, Q. Xu, ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem. Commun. 48(26), 3173–3175 (2012). https://doi.org/10.1039/c2cc17302f
- C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda et al., Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc. 139(33), 11610–11615 (2017). https://doi.org/10.1021/jacs.7b06859
- Z. Li, T. He, L. Liu, W. Chen, M. Zhang et al., Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design. Chem. Sci. 8(1), 781–788 (2017). https://doi.org/10.1039/C6SC02456D
- F. Fu, C. Wang, Q. Wang, A.M. Martinez-Villacorta, A. Escobar, H. Chong et al., Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis. J. Am. Chem. Soc. 140(31), 10034–10042 (2018). https://doi.org/10.1021/jacs.8b06511
- M. Wang, L. Ouyang, M. Zeng, J. Liu, C. Peng et al., Magnesium borohydride hydrolysis with kinetics controlled by ammoniate formation. Int. J. Hydrog. Energy 44(14), 7392–7401 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.209
- M.C. Wang, L.Z. Ouyang, J.W. Liu, H. Wang, M. Zhu, Hydrogen generation from sodium borohydride hydrolysis accelerated by zinc chloride without catalyst: A kinetic study. J. Alloy Compd. 717, 48–54 (2017). https://doi.org/10.1016/j.jallcom.2017.04.274
- T. Zhang, Y. Wang, T. Song, H. Miyaoka, K. Shinzato et al., Ammonia, a switch for controlling high ionic conductivity in lithium borohydride ammoniates. Joule 2(8), 1522–1533 (2018). https://doi.org/10.1016/j.joule.2018.04.015
- M.V. Solovev, O.V. Chashchikhin, P.V. Dorovatovskii, V.N. Khrustalev, A.S. Zyubin et al., Hydrolysis of Mg(BH4)(2) and its coordination compounds as a way to obtain hydrogen. J. Power Sources 377, 93–102 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.090
- J. Chang, H.J. Tian, F.L. Du, Investigation into hydrolysis and alcoholysis of sodium borohydride in ethanol-water solutions in the presence of supported Co-Ce-B catalyst. Int. J. Hydrog. Energy 39(25), 13087–13097 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.150
- V.R. Fernandes, A.M.F.R. Pinto, C.M. Rangel, Hydrogen production from sodium borohydride in methanol-water mixtures. Int. J. Hydrog. Energy 35(18), 9862–9868 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.064
- J.S. Zhang, T.S. Fisher, J.P. Gore, D. Hazra, P.V. Ramachandran, Heat of reaction measurements of sodium borohydride alcoholysis and hydrolysis. Int. J. Hydrog. Energy 31(15), 2292–2298 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.026
- K. Ramya, K.S. Dhathathreyan, J. Sreenivas, S. Kumar, S. Narasimhan, Hydrogen production by alcoholysis of sodium borohydride. Int. J. Energ. Res. 37(14), 1889–1895 (2013). https://doi.org/10.1002/er.3006
- L. Zhu, D. Kim, H. Kim, R.I. Masel, M.A. Shannon, Hydrogen generation from hydrides in millimeter scale reactors for micro proton exchange membrane fuel cell applications. J. Power Sources 185(2), 1334–1339 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.092
- Y. Kojima, Y. Kawai, M. Kimbara, H. Nakanishi, S. Matsumoto, Hydrogen generation by hydrolysis reaction of lithium borohydride. Int. J. Hydrog. Energy 29(12), 1213–1217 (2004). https://doi.org/10.1016/j.ijhydene.2003.12.009
- B. Weng, Z. Wu, Z. Li, H. Yang, H. Leng, Enhanced hydrogen generation by hydrolysis of LiBH4 doped with multiwalled carbon nanotubes for micro proton exchange membrane fuel cell application. J. Power Sources 196(11), 5095–5101 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.080
- B. Weng, Z. Wu, Z. Li, H. Yang, Enhanced hydrogen generation from hydrolysis of LiBH4 with diethyl ether addition for micro proton exchange membrane fuel cell application. J. Power Sources 204, 60–66 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.051
- B. Weng, Z. Wu, Z. Li, H. Yang, H. Leng, Hydrogen generation from noncatalytic hydrolysis of LiBH4/NH3BH3 mixture for fuel cell applications. Int. J. Hydrog. Energy 36(17), 10870–10876 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.009
- Y. Kojima, K.-I. Suzuki, Y. Kawai, Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2. J. Power Sources 155(2), 325–328 (2006). https://doi.org/10.1016/j.jpowsour.2005.04.019
- K. Chen, L.Z. Ouyang, H. Wang, J.W. Liu, H.Y. Shao et al., A high-performance hydrogen generation system: Hydrolysis of LiBH4-based materials catalyzed by transition metal chlorides. Renew. Energy 156, 655–664 (2020). https://doi.org/10.1016/j.renene.2020.04.030
- Z.H. Tan, L.Z. Ouyang, J.W. Liu, H. Wang, H.Y. Shao et al., Hydrogen generation by hydrolysis of Mg-Mg2Si composite and enhanced kinetics performance from introducing of MgCl2 and Si. Int. J. Hydrog. Energy 43(5), 2903–2912 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.163
- M. Ma, R. Duan, L. Ouyang, X. Zhu, Z. Chen et al., Hydrogen storage and hydrogen generation properties of CaMg2-based alloys. J. Alloy Compd. 691, 929–935 (2017). https://doi.org/10.1016/j.jallcom.2016.08.307
- I. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: a most promising material. Int. J. Hydrog. Energy 35(10), 5133–5144 (2010). https://doi.org/10.1016/j.ijhydene.2009.08.088
- M. Grosjean, M. Zidoune, L. Roue, J. Huot, Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials. Int. J. Hydrog. Energy 31(1), 109–119 (2006). https://doi.org/10.1016/j.ijhydene.2005.01.001
- J.M. Huang, L.Z. Ouyang, Y.J. Wen, H. Wang, J.W. Liu et al., Improved hydrolysis properties of Mg3RE hydrides alloyed with Ni. Int. J. Hydrog. Energy 39(13), 6813–6818 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.155
- M.H. Huang, L.Z. Ouyang, H. Wang, J.W. Liu, M. Zhu, Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing. Int. J. Hydrog. Energy 40(18), 6145–6150 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.058
- M. Huang, L. Ouyang, J. Ye, J. Liu, X. Yao et al., Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts. J. Mater. Chem. A 5(18), 8566–8575 (2017). https://doi.org/10.1039/C7TA02457F
- M.H. Huang, L.Z. Ouyang, J.W. Liu, H. Wang, H.Y. Shao et al., Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS2 for fuel cell applications. J. Power Sources 365, 273–281 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.097
- O.V. Kravchenko, L.G. Sevastyanova, S.A. Urvanov, B.M. Bulychev, Formation of hydrogen from oxidation of Mg, Mg alloys and mixture with Ni Co, Cu and Fe in aqueous salt solutions. Int. J. Hydrog. Energy 39(11), 5522–5527 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.181
- L.Z. Ouyang, J.M. Huang, C.J. Fang, Q.A. Zhang, D.L. Sun et al., The controllable hydrolysis rate for LaMg12 hydride. Int. J. Hydrog. Energy 37(17), 12358–12364 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.098
- L.Z. Ouyang, J.M. Huang, H. Wang, Y.J. Wen et al., Excellent hydrolysis performances of Mg3RE hydrides. Int. J. Hydrog. Energy 38(7), 2973–2978 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.092
- L.Z. Ouyang, J.M. Huang, C.J. Fang, H. Wang, J.W. Liu et al., The high capacity and controllable hydrolysis rate of Mg3La hydride. J. Alloy Compd. 580, S317–S319 (2013). https://doi.org/10.1016/j.jallcom.2013.03.153
- L.Z. Ouyang, Y.J. Xu, H.W. Dong, L.X. Sun, M. Zhu, Production of hydrogen via hydrolysis of hydrides in Mg-La system. Int. J. Hydrog. Energy 34(24), 9671–9676 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.068
- J.M. Huang, R.M. Duan, L.Z. Ouyang, Y.J. Wen, H. Wang et al., The effect of particle size on hydrolysis properties of Mg3La hydrides. Int. J. Hydrog. Energy 39(25), 13564–13568 (2014). https://doi.org/10.1016/j.ijhydene.2014.04.024
- M.L. Ma, R.M. Duan, L.Z. Ouyang, X.K. Zhu, C.H. Peng et al., Hydrogen generation via hydrolysis of H-CaMg2 and H-CaMg1.9Ni0.1. Int. J. Hydrog. Energy 42(35), 22312–22317 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.159
- M. Ma, K. Chen, J. Jiang, X. Yang, H. Wang et al., Enhanced hydrogen generation performance of CaMg2-based materials by ball milling. Inorg. Chem. Front. 7(4), 918–929 (2020). https://doi.org/10.1039/C9QI01299K
- M.L. Ma, L.L. Yang, L.Z. Ouyang, H.Y. Shao, M. Zhu, Promoting hydrogen generation from the hydrolysis of Mg-Graphite composites by plasma-assisted milling. Energy 167, 1205–1211 (2019). https://doi.org/10.1016/j.energy.2018.11.029
- J. Jiang, L. Ouyang, H. Wang, J. Liu, H. Shao et al., Controllable hydrolysis performance of MgLi alloys and their hydrides. ChemPhysChem 20(10), 1316–1324 (2019). https://doi.org/10.1002/cphc.201900058
- M.L. Ma, K. Chen, L.Z. Ouyang, J. Jiang, F. Liu et al., Kinetically controllable hydrogen generation at low temperatures by the alcoholysis of CaMg2-based materials in tailored solutions. Chemsuschem 13(10), 2709–2718 (2020). https://doi.org/10.1002/cssc.202000089
- J. Chen, H. Fu, Y.F. Xiong, J.R. Xu, J. Zheng et al., MgCl2 promoted hydrolysis of MgH2 nanoparticles for highly efficient H-2 generation. Nano Energy 10, 337–343 (2014). https://doi.org/10.1016/j.nanoen.2014.10.002
- Z.H. Tan, L.Z. Ouyang, J.M. Huang, J.W. Liu, H. Wang et al., Hydrogen generation via hydrolysis of Mg2Si. J. Alloy Compd. 770, 108–115 (2019). https://doi.org/10.1016/j.jallcom.2018.08.122
- Q. Sun, M.S. Zou, X.Y. Guo, R.J. Yang, H.T. Huang et al., A study of hydrogen generation by reaction of an activated Mg-CoCl2 (magnesium-cobalt chloride) composite with pure water for portable applications. Energy 79, 310–314 (2015). https://doi.org/10.1016/j.energy.2014.11.016
- S. Wang, L.X. Sun, F. Xu, C.L. Jiao, J. Zhang et al., Hydrolysis reaction of ball-milled Mg-metal chlorides composite for hydrogen generation for fuel cells. Int. J. Hydrog. Energy 37(8), 6771–6775 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.099
- F. Xiao, Y.P. Guo, R.J. Yang, J.M. Li, Hydrogen generation from hydrolysis of activated magnesium/low-melting-point metals alloys. Int. J. Hydrog. Energy 44(3), 1366–1373 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.165
- S.L. Li, J.M. Song, J.Y. Uan, Mg-Mg2X (X=Cu, Sn) eutectic alloy for the Mg2X nano-lamellar compounds to catalyze hydrolysis reaction for H-2 generation and the recycling of pure X metals from the reaction wastes. J. Alloy Compd. 772, 489–498 (2019). https://doi.org/10.1016/j.jallcom.2018.09.154
- E. Alasmar, I. Aubert, A. Durand, M. Nakhl, M. Zakhour et al., Hydrogen generation from Mg-NdNiMg15 composites by hydrolysis reaction. Int. J. Hydrog. Energy 44(2), 523–530 (2019). https://doi.org/10.1016/j.ijhydene.2018.10.233
- A.S. Awad, E. El-Asmar, T. Tayeh, F. Mauvy, M. Nakhl et al., Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb2O5 and V2O5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell. Energy 95, 175–186 (2016). https://doi.org/10.1016/j.energy.2015.12.004
- P.P. Liu, H.W. Wu, C.L. Wu, Y.G. Chen, Y.M. Xu et al., Microstructure characteristics and hydrolysis mechanism of Mg-Ca alloy hydrides for hydrogen generation. Int. J. Hydrog. Energy 40(10), 3806–3812 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.105
- Y.A. Liu, X.H. Wang, Z.H. Dong, H.Z. Liu, S.Q. Li et al., Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3. Energy 53, 147–152 (2013). https://doi.org/10.1016/j.energy.2013.01.073
- X. Hou, Y. Wang, K. Hou, L. Yang, H. Shi et al., Outstanding hydrogen production properties of surface catalysts promoted Mg–Ni–Ce composites at room temperature in simulated seawater. J. Mater. Sci. 55(30), 14922–14937 (2020). https://doi.org/10.1007/s10853-020-05065-9
- X. Hou, Y. Wang, Y. Yang, R. Hu, G. Yang et al., Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys. Energy 188, 116081 (2019). https://doi.org/10.1016/j.energy.2019.116081
- X.J. Hou, Y. Wang, Y.L. Yang, R. Hu, G. Yang et al., Enhanced hydrogen generation behaviors and hydrolysis thermodynamics of as-cast Mg-Ni-Ce magnesium-rich alloys in simulate seawater. Int. J. Hydrog. Energy 44(44), 24086–24097 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.148
- X. Hou, Y. Wang, R. Hu, H. Shi, L. Feng et al., Catalytic effect of EG and MoS2 on hydrolysis hydrogen generation behavior of high-energy ball-milled Mg-10wt.%Ni alloys in NaCl solution—A powerful strategy for superior hydrogen generation performance. Int. J. Energy Res. 43(14), 8426–8438 (2019). https://doi.org/10.1002/er.4840
- X. Hou, H. Shi, L. Yang, L. Feng, G. Suo et al., Comparative investigation on feasible hydrolysis H2 production behavior of commercial Mg-M (M = Ni, Ce, and La) binary alloys modified by high-energy ball milling—Feasible modification strategy for Mg-based hydrogen producing alloys. Int. J. Energy Res. 44(14), 11956–11972 (2020). https://doi.org/10.1002/er.5843
- K. Hou, X. Ye, X. Hou, Y. Wang, L. Yang et al., Rapid catalytic hydrolysis performance of Mg alloy enhanced by MoS2 auxiliary mass transfer. J. Mater. Sci. 56(7), 4810–4829 (2020). https://doi.org/10.1007/s10853-020-05552-z
- Y. Nakagawa, C.-H. Lee, K. Matsui, K. Kousaka, S. Isobe et al., Doping effect of Nb species on hydrogen desorption properties of AlH3. J. Alloy Compd. 734, 55–59 (2018). https://doi.org/10.1016/j.jallcom.2017.10.273
- Q.F. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110(1), 1–10 (2002). https://doi.org/10.1016/S0378-7753(01)01014-X
- J.S. Bryan, F.B. Krasne, Presynaptic inhibition: the mechanism of protection from habituation of the crayfish lateral giant fibre escape response. J. Physiol. 271(2), 369–390 (1977). https://doi.org/10.1113/jphysiol.1977.sp012005
- K. Uehara, H. Takeshita, H. Kotaka, Hydrogen gas generation in the wet cutting of aluminum and its alloys. J. Mater. Process Tech. 127(2), 174–177 (2002). https://doi.org/10.1016/S0924-0136(02)00121-8
- Z.Y. Deng, J.M.F. Ferreira, Y. Sakka, Hydrogen-generation materials for portable applications. J. Am. Ceram. Soc. 91(12), 3825–3834 (2008). https://doi.org/10.1111/j.1551-2916.2008.02800.x
- H.Z. Wang, D.Y.C. Leung, M.K.H. Leung, M. Ni, A review on hydrogen production using aluminum and aluminum alloys. Renew. Sust. Energ. Rev. 13(4), 845–853 (2009). https://doi.org/10.1016/j.rser.2008.02.009
- H.B. Dai, G.L. Ma, H.J. Xia, P. Wang, Reaction of aluminium with alkaline sodium stannate solution as a controlled source of hydrogen. Energy Environ. Sci. 4(6), 2206–2212 (2011). https://doi.org/10.1039/c1ee00014d
- G.-L. Ma, H.-B. Dai, D.-W. Zhuang, H.-J. Xia, P. Wang, Controlled hydrogen generation by reaction of aluminum/sodium hydroxide/sodium stannate solid mixture with water. Int. J. Hydrog. Energy 37(7), 5811–5816 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.157
- F. Habashi, A short history of hydrometallurgy. Hydrometallurgy 79(1–2), 15–22 (2005). https://doi.org/10.1016/j.hydromet.2004.01.008
- J.P. Murray, Aluminum production using high-temperature solar process heat. Sol. Energy 66(2), 133–142 (1999). https://doi.org/10.1016/S0038-092X(99)00011-0
- M.Q. Fan, F. Xu, L.X. Sun, Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int. J. Hydrog. Energy 32(14), 2809–2815 (2007). https://doi.org/10.1016/j.ijhydene.2006.12.020
- M.Q. Fan, L.X. Sun, F. Xu, Hydrogen production for micro-fuel-cell from activated Al-Sn-Zn-X (X: hydride or halide) mixture in water. Renew. Energy 36(2), 519–524 (2011). https://doi.org/10.1016/j.renene.2010.07.006
- Y.A. Liu, X.H. Wang, H.Z. Liu, Z.H. Dong, S.Q. Li et al., Effect of salts addition on the hydrogen generation of Al-LiH composite elaborated by ball milling. Energy 89, 907–913 (2015). https://doi.org/10.1016/j.energy.2015.06.043
- Y.Y. Jia, J. Shen, H.X. Meng, Y.M. Dong, Y.J. Chai et al., Hydrogen generation using a ball-milled Al/Ni/NaCl mixture. J. Alloy Compd. 588, 259–264 (2014). https://doi.org/10.1016/j.jallcom.2013.11.058
- M.Q. Fan, F. Xu, L.X. Sun, Hydrogen generation by hydrolysis reaction of ball-milled Al-Bi alloys. Energy Fuel 21(4), 2294–2298 (2007). https://doi.org/10.1021/ef0700127
- X.N. Huang, C.J. Lv, Y.X. Huang, S. Liu, C. Wang et al., Effects of amalgam on hydrogen generation by hydrolysis of aluminum with water. Int. J. Hydrog. Energy 36(23), 15119–15124 (2011). https://doi.org/10.1016/j.ijhydene.2011.08.073
- O.V. Kravchenko, K.N. Semenenko, B.M. Bulychev, K.B. Kalmykov, Activation of aluminum metal and its reaction with water. J. Alloy Compd. 397(1–2), 58–62 (2005). https://doi.org/10.1016/j.jallcom.2004.11.065
- A.V. Parmuzina, O.V. Kravchenko, Activation of aluminium metal to evolve hydrogen from water. Int. J. Hydrog. Energy 33(12), 3073–3076 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.025
- M.Q. Fan, L.X. Sun, F. Xu, Feasibility study of hydrogen production for micro fuel cell from activated Al-In mixture in water. Energy 35(3), 1333–1337 (2010). https://doi.org/10.1016/j.energy.2009.11.016
- M.J. Baniamerian, S.E. Moradi, Al-Ga doped nanostructured carbon as a novel material for hydrogen production in water. J. Alloy Compd. 509(21), 6307–6310 (2011). https://doi.org/10.1016/j.jallcom.2011.03.069
- J.T. Ziebarth, J.M. Woodall, R.A. Kramer, G. Choi, Liquid phase-enabled reaction of Al-Ga and Al-Ga-In-Sn alloys with water. Int. J. Hydrog. Energy 36(9), 5271–5279 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.127
- W. Wang, D.M. Chen, K. Yang, Investigation on microstructure and hydrogen generation performance of Al-rich alloys. Int. J. Hydrog. Energy 35(21), 12011–12019 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.089
- T.P. Huang, Q. Gao, D. Liu, S.N. Xu, C.B. Guo et al., Preparation of Al-Ga-In-Sn-Bi quinary alloy and its hydrogen production via water splitting. Int. J. Hydrog. Energy 40(5), 2354–2362 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.034
- H.S. Nam, D.J. Srolovitz, Effect of material properties on liquid metal embrittlement in the Al-Ga system. Acta Mater. 57(5), 1546–1553 (2009). https://doi.org/10.1016/j.actamat.2008.11.041
- W. Wang, W. Chen, X.M. Zhao, D.M. Chen, K. Yang, Effect of composition on the reactivity of Al-rich alloys with water. Int. J. Hydrog. Energy 37(24), 18672–18678 (2012). https://doi.org/10.1016/j.ijhydene.2012.09.164
- S.-C. Tan, H. Gui, X.-H. Yang, B. Yuan, S.-H. Zhan et al., Comparative study on activation of aluminum with four liquid metals to generate hydrogen in alkaline solution. Int. J. Hydrog. Energy 41(48), 22663–22667 (2016). https://doi.org/10.1016/j.ijhydene.2016.10.090
- H.H. Wang, Y. Chang, S.J. Dong, Z.F. Lei, Q.B. Zhu et al., Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and its mechanism. Int. J. Hydrog. Energy 38(3), 1236–1243 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.034
- D.X. Qiao, Y.P. Lu, Z.Y. Tang, X.S. Fan, T.M. Wang et al., The superior hydrogen-generation performance of multi-component Al alloys by the hydrolysis reaction. Int. J. Hydrog. Energy 44(7), 3527–3537 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.124
- W. Yang, T. Zhang, J. Zhou, W. Shi, J. Liu et al., Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction. Energy 88, 537–543 (2015). https://doi.org/10.1016/j.energy.2015.05.069
- Y. Liu, X. Wang, H. Liu, Z. Dong, S. Li et al., Effect of salts addition on the hydrogen generation of Al–LiH composite elaborated by ball milling. Energy 89, 907–913 (2015). https://doi.org/10.1016/j.energy.2015.06.043
- Y. Jia, J. Shen, H. Meng, Y. Dong, Y. Chai et al., Hydrogen generation using a ball-milled Al/Ni/NaCl mixture. J. Alloy. Compd. 588, 259–264 (2014). https://doi.org/10.1016/j.jallcom.2013.11.058
- M.-Q. Fan, F. Xu, L.-X. Sun, Hydrogen generation by hydrolysis reaction of ball-milled Al−Bi alloys. Energy Fuels 21(4), 2294–2298 (2007). https://doi.org/10.1021/ef0700127
- M.-Q. Fan, L.-X. Sun, F. Xu, Feasibility study of hydrogen production for micro fuel cell from activated Al–In mixture in water. Energy 35(3), 1333–1337 (2010). https://doi.org/10.1016/j.energy.2009.11.016
- M.J. Baniamerian, S.E. Moradi, Al–Ga doped nanostructured carbon as a novel material for hydrogen production in water. J. Alloy. Compd. 509(21), 6307–6310 (2011). https://doi.org/10.1016/j.jallcom.2011.03.069
- J.T. Ziebarth, J.M. Woodall, R.A. Kramer, G. Choi, Liquid phase-enabled reaction of Al–Ga and Al–Ga–In–Sn alloys with water. Int. J. Hydrog. Energy 36(9), 5271–5279 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.127
- C. Wang, C. Qiu, H. Wei, H. Zou, K. Lin et al., Mild hydrogen production from the hydrolysis of Al–Bi–Zn composite powder. Int. J. Hydrog. Energy 46(14), 9314–9323 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.104
- M. Su, H. Hu, J. Gan, W. Ye, W. Zhang et al., Thermodynamics, kinetics and reaction mechanism of hydrogen production from a novel Al alloy/NaCl/g-C3N4 composite by low temperature hydrolysis. Energy 218, 119489 (2021). https://doi.org/10.1016/j.energy.2020.119489
- S. Liu, M.Q. Fan, D. Chen, C.J. Lv, The effect of composition design on the hydrolysis reaction of Al−Li−Sn alloy and water. Energy Sour. Part A: Recov. Util. Environ. Eff. 37(4), 356–364 (2015). https://doi.org/10.1080/15567036.2011.580325
- Y. Liu, X. Liu, X. Chen, S. Yang, C. Wang, Hydrogen generation from hydrolysis of activated Al-Bi, Al-Sn powders prepared by gas atomization method. Int. J. Hydrog. Energy 42(16), 10943–10951 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.205
- S.P. du Preez, D.G. Bessarabov, Hydrogen generation of mechanochemically activated Al Bi In composites. Int. J. Hydrog. Energy 42(26), 16589–16602 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.211
- B.D. Du, W. Wang, W. Chen, D.M. Chen, K. Yang, Grain refinement and Al-water reactivity of Al Ga In Sn alloys. Int. J. Hydrog. Energy 42(34), 21586–21596 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.105
- F. Zhang, K. Edalati, M. Arita, Z. Horita, Fast hydrolysis and hydrogen generation on Al-Bi alloys and Al-Bi-C composites synthesized by high-pressure torsion. Int. J. Hydrog. Energy 42(49), 29121–29130 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.057
- F. Xu, X. Zhang, L. Sun, F. Yu, P. Li et al., Hydrogen generation of a novel Al NaMgH3 composite reaction with water. Int. J. Hydrog. Energy 42(52), 30535–30542 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.161
- C. Zhao, F. Xu, L. Sun, J. Chen, X. Guo et al., A novel Al BiOCl composite for hydrogen generation from water. Int. J. Hydrog. Energy 44(13), 6655–6662 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.165
- Z. Liu, H. Zhao, L. Han, W. Cui, L. Zhou et al., Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis. Biotechnol. Bioeng. 116(8), 1833–1843 (2019). https://doi.org/10.1002/bit.26983
- X. Guan, Z. Zhou, P. Luo, F. Wu, S. Dong, Hydrogen generation from the reaction of Al-based composites activated by low-melting-point metals/oxides/salts with water. Energy 188, 116107 (2019). https://doi.org/10.1016/j.energy.2019.116107
- D. Liu, Q. Gao, Q. An, H. Wang, J. Wei et al., Experimental study on Zn-doped Al-rich alloys for fast on-board hydrogen production. Curr. Comput.-Aided Drug Des. 10(3), 167 (2020). https://doi.org/10.3390/cryst10030167
- T. He, W. Chen, W. Wang, F. Ren, H.-R. Stock, Effect of different Cu contents on the microstructure and hydrogen production of Al–Cu-Ga-In-Sn alloys for dissolvable materials. J. Alloy. Compd. 821, 153489 (2020). https://doi.org/10.1016/j.jallcom.2019.153489
- T. He, W. Chen, W. Wang, S. Du, S. Deng, Microstructure and hydrogen production of the rapidly solidified Al–Mg-Ga-In-Sn alloy. J. Alloy. Compd. 827, 154290 (2020). https://doi.org/10.1016/j.jallcom.2020.154290
- K. Naseem, H. Zhong, H. Wang, L. Ouyang, M. Zhu, Promoting Al hydrolysis via MgH2 and NaOH addition. J. Alloy. Compd. 831, 154793 (2020). https://doi.org/10.1016/j.jallcom.2020.154793
- S. Prabu, H.-W. Wang, Enhanced hydrogen generation from graphite-mixed aluminum hydroxides catalyzed Al/water reaction. Int. J. Hydrog. Energy 45(58), 33419–33429 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.036
- J. Guo, Z. Su, J. Tian, J. Deng, T. Fu et al., Enhanced hydrogen generation from Al-water reaction mediated by metal salts. Int. J. Hydrog. Energy 46(5), 3453–3463 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.220
- H. Zhong, H. Wang, J.W. Liu, D.L. Sun, F. Fang et al., Enhanced hydrolysis properties and energy efficiency of MgH2-base hydrides. J. Alloy. Compd. 680, 419–426 (2016). https://doi.org/10.1016/j.jallcom.2016.04.148
- R. Xiao, J. Chen, K. Fu, X. Zheng, T. Wang et al., Hydrolysis batteries: generating electrical energy during hydrogen absorption. Angew. Chem. Int. Ed. 57(8), 2219–2223 (2018). https://doi.org/10.1002/anie.201711666
- L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang et al., Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv. Energy Mater. 7(19), 1700299 (2017). https://doi.org/10.1002/aenm.201700299
- H. Zhong, L.Z. Ouyang, J.S. Ye, J.W. Liu, H. Wang et al., An one-step approach towards hydrogen production and storage through regeneration of NaBH4. Energy Storage Mater. 7, 222–228 (2017). https://doi.org/10.1016/j.ensm.2017.03.001
- H.I. Schlesinger, H.C. Brown, B. Abraham, A. Bond, N. Davidson et al., New developments in the chemistry of diborane and the borohydrides. I. General Summary. J. Am. Chem. Soc. 75(1), 186–190 (1953). https://doi.org/10.1021/ja01097a049
- S. Friedrich, L. Konrad, Production of Alkali Metal Borohydrides. Google Patents: 1965.
- Z.P. Li, N. Morigazaki, B.H. Liu, S. Suda, Preparation of sodium borohydride by the reaction of MgH2 with dehydrated borax through ball milling at room temperature. J. Alloy. Compd. 349(1–2), 232–236 (2003). https://doi.org/10.1016/S0925-8388(02)00872-1
- Ç. Çakanyildirim, M. Gürü, The production of NaBH4 from its elements by mechano-chemical reaction and usage in hydrogen recycle. Energy Sour. Part A: Recov. Util. Environ. Eff. 33(20), 1912–1920 (2011). https://doi.org/10.1080/15567030903503175
- M. Bilen, M. Gürü, Ç. Çakanyıldırım, Role of NaCl in NaBH4 production and its hydrolysis. Energy Convers. Manag. 72, 134–140 (2013). https://doi.org/10.1016/j.enconman.2012.08.031
- S. Garroni, C.B. Minella, D. Pottmaier, C. Pistidda, C. Milanese et al., Mechanochemical synthesis of NaBH4 starting from NaH–MgB2 reactive hydride composite system. Int. J. Hydrog. Energy 38(5), 2363–2369 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.136
- Y. Kojima, T. Haga, Recycling process of sodium metaborate to sodium borohydride. Int. J. Hydrog. Energy 28(9), 989–993 (2003). https://doi.org/10.1016/S0360-3199(02)00173-8
- C.-L. Hsueh, C.-H. Liu, B.-H. Chen, C.-Y. Chen, Y.-C. Kuo et al., Regeneration of spent-NaBH4 back to NaBH4 by using high-energy ball milling. Int. J. Hydrog. Energy 34(4), 1717–1725 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.036
- L. Kong, X. Cui, H. Jin, J. Wu, H. Du et al., Mechanochemical synthesis of sodium borohydride by recycling sodium metaborate. Energy Fuel 23(10), 5049–5054 (2009). https://doi.org/10.1021/ef900619y
- Ç. Çakanyıldırım, M. Gürü, Processing of NaBH4 from NaBO2 with MgH2 by ball milling and usage as hydrogen carrier. Renew. Energy 35(9), 1895–1899 (2010). https://doi.org/10.1016/j.renene.2010.01.001
- M. Felderhoff, L. Ouyang, M. Zhu, H.Z. Zhong, H. Shao et al., Realizing Facile Regeneration of spent NaBH4 with Mg-Al Alloy. J. Mater. Chem. A 7, 10723–10728 (2019). https://doi.org/10.1039/c9ta00769e
- W. Chen, L.Z. Ouyang, J.W. Liu, X.D. Yao, H. Wang et al., Hydrolysis and regeneration of sodium borohydride (NaBH4) – A combination of hydrogen production and storage. J. Power Sources 359, 400–407 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.075
- Y.Y. Zhu, L.Z. Ouyang, H. Zhong, J.W. Liu, H. Wang et al., Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem. Int. Ed. 59(22), 8623–8629 (2020). https://doi.org/10.1002/anie.201915988
- Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Efficient synthesis of sodium borohydride: balancing reducing agents with intrinsic hydrogen source in hydrated borax. ACS Sustain. Chem. Eng. 8(35), 13449–13458 (2020). https://doi.org/10.1021/acssuschemeng.0c04354
- L. Ouyang, H. Zhong, H.-W. Li, M. Zhu, A recycling hydrogen supply system of NaBH4 based on a facile regeneration process: A review. Inorganics 6(1), 10 (2018). https://doi.org/10.3390/inorganics6010010
- M. Bilen, O. Yilmaz, M. Guru, Synthesis of LiBH4 from LiBO2 as hydrogen carrier and its catalytic dehydrogenation. Int. J. Hydrog. Energy 40(44), 15213–15217 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.085
- M. Touboul, E. Bétourné, Dehydration process of lithium borates. Solid State Ion. 84(3), 189–197 (1996). https://doi.org/10.1016/0167-2738(96)00027-6
- K. Chen, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Converting H+ from coordinated water into H- enables super facile synthesis of LiBH4. Green Chem. 21(16), 4380–4387 (2019). https://doi.org/10.1039/C9GC01897B
- M. Bilen, M. Gürü, Ç. Çakanyildirim, Conversion of KCl into KBH4 by mechano-chemical reaction and its catalytic decomposition. J. Electron. Mater. 46(7), 4126–4132 (2017). https://doi.org/10.1007/s11664-017-5340-0
References
W. Winsche, K.C. Hoffman, F. Salzano, Hydrogen: its future role in the nation’s energy economy. Science 180(4093), 1325–1332 (1973). https://doi.org/10.1126/science.180.4093.1325
X.N. Huang, T. Gao, X.L. Pan, D. Wei, C.J. Lv et al., A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. J. Power Sources 229, 133–140 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.016
S. Ahmed, M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrog. Energy 26(4), 291–301 (2001). https://doi.org/10.1016/S0360-3199(00)00097-5
X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang et al., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources 165(2), 739–756 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.012
L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature 414(6861), 353–358 (2001). https://doi.org/10.1038/35104634
A.E. Lutz, R.S. Larson, J.O. Keller, Thermodynamic comparison of fuel cells to the Carnot cycle. Int. J. Hydrog. Energy 27(10), 1103–1111 (2002). https://doi.org/10.1016/S0360-3199(02)00016-2
M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Hydrogen storage in metal-organic frameworks. Chem. Rev. 112(2), 782–835 (2012). https://doi.org/10.1021/cr200274s
U. Eberle, M. Felderhoff, F. Schuth, Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48(36), 6608–6630 (2009). https://doi.org/10.1002/anie.200806293
R. Jain, A. Jain, S. Agarwal, N. Lalla, V. Ganesan et al., Hydrogenation behaviour of Ce-based AB5 intermetallic compounds. J. Alloy Compd. 440(1–2), 84–88 (2007). https://doi.org/10.1016/j.jallcom.2006.08.326
A.W.C. van den Berg, C.O. Areán, Materials for hydrogenstorage: current research trends and perspectives. Chem. Commun. 6, 668–681 (2008). https://doi.org/10.1039/B712576N
N.T. Stetson, Hydrogen storage program area: plenary presentation (US Department of Energy, 2017).
A. Yamashita, M. Kondo, S. Goto, N. Ogami, Development of high-pressure hydrogen storage system for the Toyota “Mirai.” SAE Technical Paper Series (2015). https://doi.org/10.4271/2015-01-1169
M. Aziz, A.T. Wijayanta, A.B.D. Nandiyanto, Ammonia as effective hydrogen storage: a review on production, storage and utilization. Energies 13(12), 3062 (2020). https://doi.org/10.3390/en13123062
M. Felderhoff, C. Weidenthaler, R. von Helmolt, U. Eberle, Hydrogen storage: the remaining scientific and technological challenges. Phys. Chem. Chem. Phys. 9(21), 2643–2653 (2007). https://doi.org/10.1039/b701563c
K. Wang, Z. Pan, X. Yu, Metal B-N-H hydrogen-storage compound: Development and perspectives. J. Alloys Compound. 794, 303–324 (2019). https://doi.org/10.1016/j.jallcom.2019.04.240
N.Z.A.K. Khafidz, Z. Yaakob, K.L. Lim, S.N. Timmiati, The kinetics of lightweight solid-state hydrogen storage materials: A review. Int. J. Hydrog. Energy 41(30), 13131–13151 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.169
A.T. Wijayanta, T. Oda, C.W. Purnomo, T. Kashiwagi, M. Aziz, Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review. Int. J. Hydrog. Energy 44(29), 15026–15044 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.112
S. Kumar, A. Jain, T. Ichikawa, Y. Kojima, G.K. Dey, Development of vanadium based hydrogen storage material: A review. Renew. Sust. Energ. Rev. 72, 791–800 (2017). https://doi.org/10.1016/j.rser.2017.01.063
A. Jain, R. Jain, S. Agarwal, V. Ganesan, N. Lalla et al., Synthesis, characterization and hydrogenation of ZrFe2-xNix (x= 0.2, 0.4, 0.6, 0.8) alloys. Int. J. Hydrog. Energy 32(16), 3965–3971 (2007). https://doi.org/10.1016/j.ijhydene.2007.05.001
I. Jain, P. Jain, A. Jain, Novel hydrogen storage materials: a review of lightweight complex hydrides. J. Alloy Compd. 503(2), 303–339 (2010). https://doi.org/10.1016/j.jallcom.2010.04.250
A. Jain, E. Kawasako, H. Miyaoka, T. Ma, S. Isobe et al., Destabilization of LiH by Li insertion into Ge. J. Phys. Chem. C 117(11), 5650–5657 (2013). https://doi.org/10.1021/jp400133t
T. Zhang, S. Isobe, A. Jain, Y. Wang, S. Yamaguchi et al., Enhancement of hydrogen desorption kinetics in magnesium hydride by doping with lithium metatitanate. J. Alloy Compd. 711, 400–405 (2017). https://doi.org/10.1016/j.jallcom.2017.03.361
V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov et al., Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrog. Energy 44(15), 7809–7859 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.212
M. Jangir, A. Jain, S. Agarwal, T. Zhang, S. Kumar et al., The enhanced de/re-hydrogenation performance of MgH2 with TiH2 additive. Int. J. Energ. Res. 42(3), 1139–1147 (2018). https://doi.org/10.1002/er.3911
S. Kumar, A. Jain, H. Miyaoka, T. Ichikawa, Y. Kojima, Catalytic effect of bis (cyclopentadienyl) nickel II on the improvement of the hydrogenation-dehydrogenation of Mg-MgH2 system. Int. J. Hydrog. Energy 42(27), 17178–17183 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.090
C.W. Hamilton, R.T. Baker, A. Staubitz, I. Manners, B-N compounds for chemical hydrogen storage. Chem. Soc. Rev. 38(1), 279–293 (2009). https://doi.org/10.1039/B800312M
S. Liu, J. Liu, X. Liu, J. Shang, L. Xu et al., Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021). https://doi.org/10.1038/s41565-020-00818-8
S. Kumar, U. Jain, A. Jain, H. Miyaoka, T. Ichikawa et al., Development of MgLiB based advanced material for onboard hydrogen storage solution. Int. J. Hydrog. Energy 42(7), 3963–3970 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.061
A. Borgschulte, E. Callini, B. Probst, A. Jain, S. Kato et al., Impurity gas analysis of the decomposition of complex hydrides. J. Phys. Chem. C 115(34), 17220–17226 (2011). https://doi.org/10.1021/jp205566q
H. Miyaoka, H. Miyaoka, T. Ichikawa, Y. Kojima, Highly purified hydrogen production from ammonia for PEM fuel cell. Int. J. Hydrog. Energy 43(31), 14486–14492 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.065
K. Eom, E. Cho, H. Kwon, Feasibility of on-board hydrogen production from hydrolysis of Al-Fe alloy for PEMFCs. Int. J. Hydrog. Energy 36(19), 12338–12342 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.099
C. Lang, Y. Jia, X. Yao, Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Mater. 26, 290–312 (2020). https://doi.org/10.1016/j.ensm.2020.01.010
C. Wang, D. Astruc, Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem. Soc. Rev. 50, 3437–3484 (2021). https://doi.org/10.1039/D0CS00515K
S. Selvaraj, A. Jain, S. Kumar, T. Zhang, S. Isobe et al., Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor. Int. J. Hydrog. Energy 43(5), 2881–2889 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.159
M.H. Grosjean, M. Zidoune, J.Y. Huot, L. Roue, Hydrogen generation via alcoholysis reaction using ball-milled Mg-based materials. Int. J. Hydrog. Energy 31(9), 1159–1163 (2006). https://doi.org/10.1016/j.ijhydene.2005.10.001
M. Wang, L. Ouyang, C. Peng, X. Zhu, W. Zhu et al., Synthesis and hydrolysis of NaZn(BH4)3 and its ammoniates. J. Mater. Chem. A 5(32), 17012–17020 (2017). https://doi.org/10.1039/C7TA05082H
D.-W. Zhuang, H.-B. Dai, P. Wang, Hydrogen generation from solvolysis of sodium borohydride in ethylene glycol–water mixtures over a wide range of temperature. RSC Adv. 3(45), 23810 (2013). https://doi.org/10.1039/c3ra43136c
M. Ma, L. Ouyang, J. Liu, H. Wang, H. Shao et al., Air-stable hydrogen generation materials and enhanced hydrolysis performance of MgH2-LiNH2 composites. J. Power Sources 359, 427–434 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.087
S. Kumar, A. Jain, H. Miyaoka, T. Ichikawa, Y. Kojima, Study on the thermal decomposition of NaBH4 catalyzed by ZrCl4. Int. J. Hydrog. Energy 42(35), 22432–22437 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.060
S. Kumar, A. Singh, K. Nakajima, A. Jain, H. Miyaoka et al., Improved hydrogen release from magnesium borohydride by ZrCl4 additive. Int. J. Hydrog. Energy 42(35), 22342–22347 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.090
A. Borgschulte, A. Jain, A.J. Ramirez-Cuesta, P. Martelli, A. Remhof et al., Mobility and dynamics in the complex hydrides LiAlH4 and LiBH4. Faraday Discuss 151, 213–230 (2011). https://doi.org/10.1039/c0fd00011f
V. Kong, Development of hydrogen storage for fuel cellgenerators. i: Hydrogen generation using hydrolysishydrides. Int. J. Hydrog. Energy 24(7), 665–675 (1999). https://doi.org/10.1016/S0360-3199(98)00113-X
M. Nie, Y. Zou, Y. Huang, J. Wang, Ni–Fe–B catalysts for NaBH4 hydrolysis. Int. J. Hydrog. Energy 37(2), 1568–1576 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.006
B. Chen, S.J. Chen, H.A. Bandal, R. Appiah-Ntiamoah, A.R. Jadhav et al., Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis. Int. J. Hydrog. Energy 43(19), 9296–9306 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.193
P. Krishnan, T.H. Yang, W.Y. Lee, C.S. Kim, PtRu-LiCoO2 - an efficient catalyst for hydrogen generation from sodium borohydride solutions. J. Power Sources 143(1–2), 17–23 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.007
U.B. Demirci, F. Garin, Kinetics of Ru-promoted sulphated zirconia catalysed hydrogen generation by hydrolysis of sodium tetrahydroborate. J. Mol. Catal. A Chem. 279(1), 57–62 (2008). https://doi.org/10.1016/j.molcata.2007.09.025
H. Inokawa, H. Driss, F. Trovela, H. Miyaoka, T. Ichikawa et al., Catalytic hydrolysis of sodium borohydride on Co catalysts. Int. J. Energ. Res. 40(15), 2078–2090 (2016). https://doi.org/10.1002/er.3582
A.K. Figen, Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co-B, Ni-B, Cu-B) under different hydrolysis conditions. Int. J. Hydrog. Energy 38(22), 9186–9197 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.081
H.J. Tian, Q.J. Guo, D.Y. Xu, Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. J. Power Sources 195(8), 2136–2142 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.006
F. Li, Q. Li, H. Kim, CoB/open-CNTs catalysts for hydrogen generation from alkaline NaBH4 solution. Chem. Eng. J. 210, 316–324 (2012). https://doi.org/10.1016/j.cej.2012.08.102
Y.S. Wei, W. Meng, Y. Wang, Y.X. Gao, K.Z. Qi, K. Zhang, Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co-Ni-B catalysts. Int. J. Hydrog. Energy 42(9), 6072–6079 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.134
Y.C. Lu, M.S. Chen, Y.W. Chen, Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2. Int. J. Hydrog. Energy 37(5), 4254–4258 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.105
E. Marreroalfonso, J. Gray, T. Davis, M. Matthews, Hydrolysis of sodium borohydride with steam. Int. J. Hydrog. Energy 32(18), 4717–4722 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.066
A.F. Baye, M.W. Abebe, R. Appiah-Ntiamoah, H. Kim, Engineered iron-carbon-cobalt (Fe3O4@C-Co) core-shell composite with synergistic catalytic properties towards hydrogen generation via NaBH4 hydrolysis. J. Colloid Interf. Sci. 543, 273–284 (2019). https://doi.org/10.1016/j.jcis.2019.02.065
K. Holbrook, P. Twist, Hydrolysis of the borohydride ion catalysed by metal–boron alloys. J. Chem. Soci. A: Inorg. Phys. Theor. (1971). https://doi.org/10.1039/J19710000890
N. Patel, R. Fernandes, A. Miotello, Promoting effect of transition metal-doped Co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution. J. Catal. 271(2), 315–324 (2010). https://doi.org/10.1016/j.jcat.2010.02.014
U.B. Demirci, About the Technological Readiness of the H-2 Generation by Hydrolysis of B(-N)-H Compounds. Energy Technol-Ger 6(3), 470–486 (2018). https://doi.org/10.1002/ente.201700486
H.A. Bandal, A.R. Jadhav, H. Kim, Cobalt impregnated magnetite-multiwalled carbon nanotube nanocomposite as magnetically separable efficient catalyst for hydrogen generation by NaBH4 hydrolysis. J. Alloy. Compd. 699, 1057–1067 (2017). https://doi.org/10.1016/j.jallcom.2016.12.428
F. Li, E.E. Arthur, D. La, Q.M. Li, H. Kim, Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride). Energy 71, 32–39 (2014). https://doi.org/10.1016/j.energy.2014.03.130
G.R.M. Tomboc, A.H. Tamboli, H. Kim, Synthesis of Co3O4 macrocubes catalyst using novel chitosan/urea template for hydrogen generation from sodium borohydride. Energy 121, 238–245 (2017). https://doi.org/10.1016/j.energy.2017.01.027
Y.Y. Huang, K.Y. Wang, L. Cui, W.X. Zhu, A.M. Asiri et al., Effective hydrolysis of sodium borohydride driven by self-supported cobalt oxide nanorod array for on-demand hydrogen generation. Catal. Commun. 87, 94–97 (2016). https://doi.org/10.1016/j.catcom.2016.09.012
M.H. Loghmani, A.F. Shojaei, Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co-La-Zr-B nanoparticle as a novel catalyst. Energy 68, 152–159 (2014). https://doi.org/10.1016/j.energy.2014.02.047
F. Seven, N. Sahiner, Enhanced catalytic performance in hydrogen generation from NaBH4 hydrolysis by super porous cryogel supported Co and Ni catalysts. J. Power Sources 272, 128–136 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.047
A.R. Jadhav, H.A. Bandal, H. Kim, NiCo2O4 hollow sphere as an efficient catalyst for hydrogen generation by NaBH4 hydrolysis. Mater. Lett. 198, 50–53 (2017). https://doi.org/10.1016/j.matlet.2017.03.161
F. Baydaroglu, E. Ozdemir, A. Hasimoglu, An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4. Int. J. Hydrog. Energy 39(3), 1516–1522 (2014). https://doi.org/10.1016/j.ijhydene.2013.04.111
Y.P. Guo, Z.P. Dong, Z.K. Cui, X.J. Zhang, J.T. Ma, Promoting effect of W doped in electrodeposited Co-P catalysts for hydrogen generation from alkaline NaBH4 solution. Int. J. Hydrog. Energy 37(2), 1577–1583 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.019
L.N. Wang, Z. Li, P.P. Zhang, G.X. Wang, G.W. Xie, Hydrogen generation from alkaline NaBH4 solution using Co-Ni-Mo-P/gamma-Al2O3 catalysts. Int. J. Hydrog. Energy 41(3), 1468–1476 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.028
Y. Wang, Y. Shen, K.Z. Qi, Z.Q. Cao, K. Zhang et al., Nanostructured cobalt-phosphorous catalysts for hydrogen generation from hydrolysis of sodium borohydride solution. Renew Energ. 89, 285–294 (2016). https://doi.org/10.1016/j.renene.2015.12.026
K. Eom, K. Cho, H. Kwon, Effects of electroless deposition conditions on microstructures of cobalt-phosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution. J. Power Sources 180(1), 484–490 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.095
Y.P. Guo, Q.H. Feng, Z.P. Dong, J.T. Ma, Electrodeposited amorphous Co-P catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. J. Mol. Catal. A-Chem. 378, 273–278 (2013). https://doi.org/10.1016/j.molcata.2013.06.018
Y. Wang, K.Z. Qi, S.W. Wu, Z.Q. Cao, K. Zhang et al., Preparation, characterization and catalytic sodium borohydride hydrolysis of nanostructured cobalt-phosphorous catalysts. J. Power Sources 284, 130–137 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.013
Y.C. Zhao, Z. Ning, J.N. Tian, H.W. Wang, X.Y. Liang et al., Hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co-Mo-Pd-B amorphous catalyst with efficient catalytic properties. J. Power Sources 207, 120–126 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.118
K. Shimoda, K. Doi, T. Nakagawa, Y. Zhang, H. Miyaoka et al., Comparative study of structural changes in NH3BH3, LiNH2BH3, and KNH2BH3 during dehydrogenation process. J. Phys. Chem. C 116(9), 5957–5964 (2012). https://doi.org/10.1021/jp212351f
P.Z. Li, K. Aranishi, Q. Xu, ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem. Commun. 48(26), 3173–3175 (2012). https://doi.org/10.1039/c2cc17302f
C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda et al., Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc. 139(33), 11610–11615 (2017). https://doi.org/10.1021/jacs.7b06859
Z. Li, T. He, L. Liu, W. Chen, M. Zhang et al., Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design. Chem. Sci. 8(1), 781–788 (2017). https://doi.org/10.1039/C6SC02456D
F. Fu, C. Wang, Q. Wang, A.M. Martinez-Villacorta, A. Escobar, H. Chong et al., Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis. J. Am. Chem. Soc. 140(31), 10034–10042 (2018). https://doi.org/10.1021/jacs.8b06511
M. Wang, L. Ouyang, M. Zeng, J. Liu, C. Peng et al., Magnesium borohydride hydrolysis with kinetics controlled by ammoniate formation. Int. J. Hydrog. Energy 44(14), 7392–7401 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.209
M.C. Wang, L.Z. Ouyang, J.W. Liu, H. Wang, M. Zhu, Hydrogen generation from sodium borohydride hydrolysis accelerated by zinc chloride without catalyst: A kinetic study. J. Alloy Compd. 717, 48–54 (2017). https://doi.org/10.1016/j.jallcom.2017.04.274
T. Zhang, Y. Wang, T. Song, H. Miyaoka, K. Shinzato et al., Ammonia, a switch for controlling high ionic conductivity in lithium borohydride ammoniates. Joule 2(8), 1522–1533 (2018). https://doi.org/10.1016/j.joule.2018.04.015
M.V. Solovev, O.V. Chashchikhin, P.V. Dorovatovskii, V.N. Khrustalev, A.S. Zyubin et al., Hydrolysis of Mg(BH4)(2) and its coordination compounds as a way to obtain hydrogen. J. Power Sources 377, 93–102 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.090
J. Chang, H.J. Tian, F.L. Du, Investigation into hydrolysis and alcoholysis of sodium borohydride in ethanol-water solutions in the presence of supported Co-Ce-B catalyst. Int. J. Hydrog. Energy 39(25), 13087–13097 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.150
V.R. Fernandes, A.M.F.R. Pinto, C.M. Rangel, Hydrogen production from sodium borohydride in methanol-water mixtures. Int. J. Hydrog. Energy 35(18), 9862–9868 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.064
J.S. Zhang, T.S. Fisher, J.P. Gore, D. Hazra, P.V. Ramachandran, Heat of reaction measurements of sodium borohydride alcoholysis and hydrolysis. Int. J. Hydrog. Energy 31(15), 2292–2298 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.026
K. Ramya, K.S. Dhathathreyan, J. Sreenivas, S. Kumar, S. Narasimhan, Hydrogen production by alcoholysis of sodium borohydride. Int. J. Energ. Res. 37(14), 1889–1895 (2013). https://doi.org/10.1002/er.3006
L. Zhu, D. Kim, H. Kim, R.I. Masel, M.A. Shannon, Hydrogen generation from hydrides in millimeter scale reactors for micro proton exchange membrane fuel cell applications. J. Power Sources 185(2), 1334–1339 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.092
Y. Kojima, Y. Kawai, M. Kimbara, H. Nakanishi, S. Matsumoto, Hydrogen generation by hydrolysis reaction of lithium borohydride. Int. J. Hydrog. Energy 29(12), 1213–1217 (2004). https://doi.org/10.1016/j.ijhydene.2003.12.009
B. Weng, Z. Wu, Z. Li, H. Yang, H. Leng, Enhanced hydrogen generation by hydrolysis of LiBH4 doped with multiwalled carbon nanotubes for micro proton exchange membrane fuel cell application. J. Power Sources 196(11), 5095–5101 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.080
B. Weng, Z. Wu, Z. Li, H. Yang, Enhanced hydrogen generation from hydrolysis of LiBH4 with diethyl ether addition for micro proton exchange membrane fuel cell application. J. Power Sources 204, 60–66 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.051
B. Weng, Z. Wu, Z. Li, H. Yang, H. Leng, Hydrogen generation from noncatalytic hydrolysis of LiBH4/NH3BH3 mixture for fuel cell applications. Int. J. Hydrog. Energy 36(17), 10870–10876 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.009
Y. Kojima, K.-I. Suzuki, Y. Kawai, Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2. J. Power Sources 155(2), 325–328 (2006). https://doi.org/10.1016/j.jpowsour.2005.04.019
K. Chen, L.Z. Ouyang, H. Wang, J.W. Liu, H.Y. Shao et al., A high-performance hydrogen generation system: Hydrolysis of LiBH4-based materials catalyzed by transition metal chlorides. Renew. Energy 156, 655–664 (2020). https://doi.org/10.1016/j.renene.2020.04.030
Z.H. Tan, L.Z. Ouyang, J.W. Liu, H. Wang, H.Y. Shao et al., Hydrogen generation by hydrolysis of Mg-Mg2Si composite and enhanced kinetics performance from introducing of MgCl2 and Si. Int. J. Hydrog. Energy 43(5), 2903–2912 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.163
M. Ma, R. Duan, L. Ouyang, X. Zhu, Z. Chen et al., Hydrogen storage and hydrogen generation properties of CaMg2-based alloys. J. Alloy Compd. 691, 929–935 (2017). https://doi.org/10.1016/j.jallcom.2016.08.307
I. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: a most promising material. Int. J. Hydrog. Energy 35(10), 5133–5144 (2010). https://doi.org/10.1016/j.ijhydene.2009.08.088
M. Grosjean, M. Zidoune, L. Roue, J. Huot, Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials. Int. J. Hydrog. Energy 31(1), 109–119 (2006). https://doi.org/10.1016/j.ijhydene.2005.01.001
J.M. Huang, L.Z. Ouyang, Y.J. Wen, H. Wang, J.W. Liu et al., Improved hydrolysis properties of Mg3RE hydrides alloyed with Ni. Int. J. Hydrog. Energy 39(13), 6813–6818 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.155
M.H. Huang, L.Z. Ouyang, H. Wang, J.W. Liu, M. Zhu, Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing. Int. J. Hydrog. Energy 40(18), 6145–6150 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.058
M. Huang, L. Ouyang, J. Ye, J. Liu, X. Yao et al., Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts. J. Mater. Chem. A 5(18), 8566–8575 (2017). https://doi.org/10.1039/C7TA02457F
M.H. Huang, L.Z. Ouyang, J.W. Liu, H. Wang, H.Y. Shao et al., Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS2 for fuel cell applications. J. Power Sources 365, 273–281 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.097
O.V. Kravchenko, L.G. Sevastyanova, S.A. Urvanov, B.M. Bulychev, Formation of hydrogen from oxidation of Mg, Mg alloys and mixture with Ni Co, Cu and Fe in aqueous salt solutions. Int. J. Hydrog. Energy 39(11), 5522–5527 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.181
L.Z. Ouyang, J.M. Huang, C.J. Fang, Q.A. Zhang, D.L. Sun et al., The controllable hydrolysis rate for LaMg12 hydride. Int. J. Hydrog. Energy 37(17), 12358–12364 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.098
L.Z. Ouyang, J.M. Huang, H. Wang, Y.J. Wen et al., Excellent hydrolysis performances of Mg3RE hydrides. Int. J. Hydrog. Energy 38(7), 2973–2978 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.092
L.Z. Ouyang, J.M. Huang, C.J. Fang, H. Wang, J.W. Liu et al., The high capacity and controllable hydrolysis rate of Mg3La hydride. J. Alloy Compd. 580, S317–S319 (2013). https://doi.org/10.1016/j.jallcom.2013.03.153
L.Z. Ouyang, Y.J. Xu, H.W. Dong, L.X. Sun, M. Zhu, Production of hydrogen via hydrolysis of hydrides in Mg-La system. Int. J. Hydrog. Energy 34(24), 9671–9676 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.068
J.M. Huang, R.M. Duan, L.Z. Ouyang, Y.J. Wen, H. Wang et al., The effect of particle size on hydrolysis properties of Mg3La hydrides. Int. J. Hydrog. Energy 39(25), 13564–13568 (2014). https://doi.org/10.1016/j.ijhydene.2014.04.024
M.L. Ma, R.M. Duan, L.Z. Ouyang, X.K. Zhu, C.H. Peng et al., Hydrogen generation via hydrolysis of H-CaMg2 and H-CaMg1.9Ni0.1. Int. J. Hydrog. Energy 42(35), 22312–22317 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.159
M. Ma, K. Chen, J. Jiang, X. Yang, H. Wang et al., Enhanced hydrogen generation performance of CaMg2-based materials by ball milling. Inorg. Chem. Front. 7(4), 918–929 (2020). https://doi.org/10.1039/C9QI01299K
M.L. Ma, L.L. Yang, L.Z. Ouyang, H.Y. Shao, M. Zhu, Promoting hydrogen generation from the hydrolysis of Mg-Graphite composites by plasma-assisted milling. Energy 167, 1205–1211 (2019). https://doi.org/10.1016/j.energy.2018.11.029
J. Jiang, L. Ouyang, H. Wang, J. Liu, H. Shao et al., Controllable hydrolysis performance of MgLi alloys and their hydrides. ChemPhysChem 20(10), 1316–1324 (2019). https://doi.org/10.1002/cphc.201900058
M.L. Ma, K. Chen, L.Z. Ouyang, J. Jiang, F. Liu et al., Kinetically controllable hydrogen generation at low temperatures by the alcoholysis of CaMg2-based materials in tailored solutions. Chemsuschem 13(10), 2709–2718 (2020). https://doi.org/10.1002/cssc.202000089
J. Chen, H. Fu, Y.F. Xiong, J.R. Xu, J. Zheng et al., MgCl2 promoted hydrolysis of MgH2 nanoparticles for highly efficient H-2 generation. Nano Energy 10, 337–343 (2014). https://doi.org/10.1016/j.nanoen.2014.10.002
Z.H. Tan, L.Z. Ouyang, J.M. Huang, J.W. Liu, H. Wang et al., Hydrogen generation via hydrolysis of Mg2Si. J. Alloy Compd. 770, 108–115 (2019). https://doi.org/10.1016/j.jallcom.2018.08.122
Q. Sun, M.S. Zou, X.Y. Guo, R.J. Yang, H.T. Huang et al., A study of hydrogen generation by reaction of an activated Mg-CoCl2 (magnesium-cobalt chloride) composite with pure water for portable applications. Energy 79, 310–314 (2015). https://doi.org/10.1016/j.energy.2014.11.016
S. Wang, L.X. Sun, F. Xu, C.L. Jiao, J. Zhang et al., Hydrolysis reaction of ball-milled Mg-metal chlorides composite for hydrogen generation for fuel cells. Int. J. Hydrog. Energy 37(8), 6771–6775 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.099
F. Xiao, Y.P. Guo, R.J. Yang, J.M. Li, Hydrogen generation from hydrolysis of activated magnesium/low-melting-point metals alloys. Int. J. Hydrog. Energy 44(3), 1366–1373 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.165
S.L. Li, J.M. Song, J.Y. Uan, Mg-Mg2X (X=Cu, Sn) eutectic alloy for the Mg2X nano-lamellar compounds to catalyze hydrolysis reaction for H-2 generation and the recycling of pure X metals from the reaction wastes. J. Alloy Compd. 772, 489–498 (2019). https://doi.org/10.1016/j.jallcom.2018.09.154
E. Alasmar, I. Aubert, A. Durand, M. Nakhl, M. Zakhour et al., Hydrogen generation from Mg-NdNiMg15 composites by hydrolysis reaction. Int. J. Hydrog. Energy 44(2), 523–530 (2019). https://doi.org/10.1016/j.ijhydene.2018.10.233
A.S. Awad, E. El-Asmar, T. Tayeh, F. Mauvy, M. Nakhl et al., Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb2O5 and V2O5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell. Energy 95, 175–186 (2016). https://doi.org/10.1016/j.energy.2015.12.004
P.P. Liu, H.W. Wu, C.L. Wu, Y.G. Chen, Y.M. Xu et al., Microstructure characteristics and hydrolysis mechanism of Mg-Ca alloy hydrides for hydrogen generation. Int. J. Hydrog. Energy 40(10), 3806–3812 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.105
Y.A. Liu, X.H. Wang, Z.H. Dong, H.Z. Liu, S.Q. Li et al., Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3. Energy 53, 147–152 (2013). https://doi.org/10.1016/j.energy.2013.01.073
X. Hou, Y. Wang, K. Hou, L. Yang, H. Shi et al., Outstanding hydrogen production properties of surface catalysts promoted Mg–Ni–Ce composites at room temperature in simulated seawater. J. Mater. Sci. 55(30), 14922–14937 (2020). https://doi.org/10.1007/s10853-020-05065-9
X. Hou, Y. Wang, Y. Yang, R. Hu, G. Yang et al., Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys. Energy 188, 116081 (2019). https://doi.org/10.1016/j.energy.2019.116081
X.J. Hou, Y. Wang, Y.L. Yang, R. Hu, G. Yang et al., Enhanced hydrogen generation behaviors and hydrolysis thermodynamics of as-cast Mg-Ni-Ce magnesium-rich alloys in simulate seawater. Int. J. Hydrog. Energy 44(44), 24086–24097 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.148
X. Hou, Y. Wang, R. Hu, H. Shi, L. Feng et al., Catalytic effect of EG and MoS2 on hydrolysis hydrogen generation behavior of high-energy ball-milled Mg-10wt.%Ni alloys in NaCl solution—A powerful strategy for superior hydrogen generation performance. Int. J. Energy Res. 43(14), 8426–8438 (2019). https://doi.org/10.1002/er.4840
X. Hou, H. Shi, L. Yang, L. Feng, G. Suo et al., Comparative investigation on feasible hydrolysis H2 production behavior of commercial Mg-M (M = Ni, Ce, and La) binary alloys modified by high-energy ball milling—Feasible modification strategy for Mg-based hydrogen producing alloys. Int. J. Energy Res. 44(14), 11956–11972 (2020). https://doi.org/10.1002/er.5843
K. Hou, X. Ye, X. Hou, Y. Wang, L. Yang et al., Rapid catalytic hydrolysis performance of Mg alloy enhanced by MoS2 auxiliary mass transfer. J. Mater. Sci. 56(7), 4810–4829 (2020). https://doi.org/10.1007/s10853-020-05552-z
Y. Nakagawa, C.-H. Lee, K. Matsui, K. Kousaka, S. Isobe et al., Doping effect of Nb species on hydrogen desorption properties of AlH3. J. Alloy Compd. 734, 55–59 (2018). https://doi.org/10.1016/j.jallcom.2017.10.273
Q.F. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110(1), 1–10 (2002). https://doi.org/10.1016/S0378-7753(01)01014-X
J.S. Bryan, F.B. Krasne, Presynaptic inhibition: the mechanism of protection from habituation of the crayfish lateral giant fibre escape response. J. Physiol. 271(2), 369–390 (1977). https://doi.org/10.1113/jphysiol.1977.sp012005
K. Uehara, H. Takeshita, H. Kotaka, Hydrogen gas generation in the wet cutting of aluminum and its alloys. J. Mater. Process Tech. 127(2), 174–177 (2002). https://doi.org/10.1016/S0924-0136(02)00121-8
Z.Y. Deng, J.M.F. Ferreira, Y. Sakka, Hydrogen-generation materials for portable applications. J. Am. Ceram. Soc. 91(12), 3825–3834 (2008). https://doi.org/10.1111/j.1551-2916.2008.02800.x
H.Z. Wang, D.Y.C. Leung, M.K.H. Leung, M. Ni, A review on hydrogen production using aluminum and aluminum alloys. Renew. Sust. Energ. Rev. 13(4), 845–853 (2009). https://doi.org/10.1016/j.rser.2008.02.009
H.B. Dai, G.L. Ma, H.J. Xia, P. Wang, Reaction of aluminium with alkaline sodium stannate solution as a controlled source of hydrogen. Energy Environ. Sci. 4(6), 2206–2212 (2011). https://doi.org/10.1039/c1ee00014d
G.-L. Ma, H.-B. Dai, D.-W. Zhuang, H.-J. Xia, P. Wang, Controlled hydrogen generation by reaction of aluminum/sodium hydroxide/sodium stannate solid mixture with water. Int. J. Hydrog. Energy 37(7), 5811–5816 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.157
F. Habashi, A short history of hydrometallurgy. Hydrometallurgy 79(1–2), 15–22 (2005). https://doi.org/10.1016/j.hydromet.2004.01.008
J.P. Murray, Aluminum production using high-temperature solar process heat. Sol. Energy 66(2), 133–142 (1999). https://doi.org/10.1016/S0038-092X(99)00011-0
M.Q. Fan, F. Xu, L.X. Sun, Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int. J. Hydrog. Energy 32(14), 2809–2815 (2007). https://doi.org/10.1016/j.ijhydene.2006.12.020
M.Q. Fan, L.X. Sun, F. Xu, Hydrogen production for micro-fuel-cell from activated Al-Sn-Zn-X (X: hydride or halide) mixture in water. Renew. Energy 36(2), 519–524 (2011). https://doi.org/10.1016/j.renene.2010.07.006
Y.A. Liu, X.H. Wang, H.Z. Liu, Z.H. Dong, S.Q. Li et al., Effect of salts addition on the hydrogen generation of Al-LiH composite elaborated by ball milling. Energy 89, 907–913 (2015). https://doi.org/10.1016/j.energy.2015.06.043
Y.Y. Jia, J. Shen, H.X. Meng, Y.M. Dong, Y.J. Chai et al., Hydrogen generation using a ball-milled Al/Ni/NaCl mixture. J. Alloy Compd. 588, 259–264 (2014). https://doi.org/10.1016/j.jallcom.2013.11.058
M.Q. Fan, F. Xu, L.X. Sun, Hydrogen generation by hydrolysis reaction of ball-milled Al-Bi alloys. Energy Fuel 21(4), 2294–2298 (2007). https://doi.org/10.1021/ef0700127
X.N. Huang, C.J. Lv, Y.X. Huang, S. Liu, C. Wang et al., Effects of amalgam on hydrogen generation by hydrolysis of aluminum with water. Int. J. Hydrog. Energy 36(23), 15119–15124 (2011). https://doi.org/10.1016/j.ijhydene.2011.08.073
O.V. Kravchenko, K.N. Semenenko, B.M. Bulychev, K.B. Kalmykov, Activation of aluminum metal and its reaction with water. J. Alloy Compd. 397(1–2), 58–62 (2005). https://doi.org/10.1016/j.jallcom.2004.11.065
A.V. Parmuzina, O.V. Kravchenko, Activation of aluminium metal to evolve hydrogen from water. Int. J. Hydrog. Energy 33(12), 3073–3076 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.025
M.Q. Fan, L.X. Sun, F. Xu, Feasibility study of hydrogen production for micro fuel cell from activated Al-In mixture in water. Energy 35(3), 1333–1337 (2010). https://doi.org/10.1016/j.energy.2009.11.016
M.J. Baniamerian, S.E. Moradi, Al-Ga doped nanostructured carbon as a novel material for hydrogen production in water. J. Alloy Compd. 509(21), 6307–6310 (2011). https://doi.org/10.1016/j.jallcom.2011.03.069
J.T. Ziebarth, J.M. Woodall, R.A. Kramer, G. Choi, Liquid phase-enabled reaction of Al-Ga and Al-Ga-In-Sn alloys with water. Int. J. Hydrog. Energy 36(9), 5271–5279 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.127
W. Wang, D.M. Chen, K. Yang, Investigation on microstructure and hydrogen generation performance of Al-rich alloys. Int. J. Hydrog. Energy 35(21), 12011–12019 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.089
T.P. Huang, Q. Gao, D. Liu, S.N. Xu, C.B. Guo et al., Preparation of Al-Ga-In-Sn-Bi quinary alloy and its hydrogen production via water splitting. Int. J. Hydrog. Energy 40(5), 2354–2362 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.034
H.S. Nam, D.J. Srolovitz, Effect of material properties on liquid metal embrittlement in the Al-Ga system. Acta Mater. 57(5), 1546–1553 (2009). https://doi.org/10.1016/j.actamat.2008.11.041
W. Wang, W. Chen, X.M. Zhao, D.M. Chen, K. Yang, Effect of composition on the reactivity of Al-rich alloys with water. Int. J. Hydrog. Energy 37(24), 18672–18678 (2012). https://doi.org/10.1016/j.ijhydene.2012.09.164
S.-C. Tan, H. Gui, X.-H. Yang, B. Yuan, S.-H. Zhan et al., Comparative study on activation of aluminum with four liquid metals to generate hydrogen in alkaline solution. Int. J. Hydrog. Energy 41(48), 22663–22667 (2016). https://doi.org/10.1016/j.ijhydene.2016.10.090
H.H. Wang, Y. Chang, S.J. Dong, Z.F. Lei, Q.B. Zhu et al., Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and its mechanism. Int. J. Hydrog. Energy 38(3), 1236–1243 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.034
D.X. Qiao, Y.P. Lu, Z.Y. Tang, X.S. Fan, T.M. Wang et al., The superior hydrogen-generation performance of multi-component Al alloys by the hydrolysis reaction. Int. J. Hydrog. Energy 44(7), 3527–3537 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.124
W. Yang, T. Zhang, J. Zhou, W. Shi, J. Liu et al., Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction. Energy 88, 537–543 (2015). https://doi.org/10.1016/j.energy.2015.05.069
Y. Liu, X. Wang, H. Liu, Z. Dong, S. Li et al., Effect of salts addition on the hydrogen generation of Al–LiH composite elaborated by ball milling. Energy 89, 907–913 (2015). https://doi.org/10.1016/j.energy.2015.06.043
Y. Jia, J. Shen, H. Meng, Y. Dong, Y. Chai et al., Hydrogen generation using a ball-milled Al/Ni/NaCl mixture. J. Alloy. Compd. 588, 259–264 (2014). https://doi.org/10.1016/j.jallcom.2013.11.058
M.-Q. Fan, F. Xu, L.-X. Sun, Hydrogen generation by hydrolysis reaction of ball-milled Al−Bi alloys. Energy Fuels 21(4), 2294–2298 (2007). https://doi.org/10.1021/ef0700127
M.-Q. Fan, L.-X. Sun, F. Xu, Feasibility study of hydrogen production for micro fuel cell from activated Al–In mixture in water. Energy 35(3), 1333–1337 (2010). https://doi.org/10.1016/j.energy.2009.11.016
M.J. Baniamerian, S.E. Moradi, Al–Ga doped nanostructured carbon as a novel material for hydrogen production in water. J. Alloy. Compd. 509(21), 6307–6310 (2011). https://doi.org/10.1016/j.jallcom.2011.03.069
J.T. Ziebarth, J.M. Woodall, R.A. Kramer, G. Choi, Liquid phase-enabled reaction of Al–Ga and Al–Ga–In–Sn alloys with water. Int. J. Hydrog. Energy 36(9), 5271–5279 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.127
C. Wang, C. Qiu, H. Wei, H. Zou, K. Lin et al., Mild hydrogen production from the hydrolysis of Al–Bi–Zn composite powder. Int. J. Hydrog. Energy 46(14), 9314–9323 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.104
M. Su, H. Hu, J. Gan, W. Ye, W. Zhang et al., Thermodynamics, kinetics and reaction mechanism of hydrogen production from a novel Al alloy/NaCl/g-C3N4 composite by low temperature hydrolysis. Energy 218, 119489 (2021). https://doi.org/10.1016/j.energy.2020.119489
S. Liu, M.Q. Fan, D. Chen, C.J. Lv, The effect of composition design on the hydrolysis reaction of Al−Li−Sn alloy and water. Energy Sour. Part A: Recov. Util. Environ. Eff. 37(4), 356–364 (2015). https://doi.org/10.1080/15567036.2011.580325
Y. Liu, X. Liu, X. Chen, S. Yang, C. Wang, Hydrogen generation from hydrolysis of activated Al-Bi, Al-Sn powders prepared by gas atomization method. Int. J. Hydrog. Energy 42(16), 10943–10951 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.205
S.P. du Preez, D.G. Bessarabov, Hydrogen generation of mechanochemically activated Al Bi In composites. Int. J. Hydrog. Energy 42(26), 16589–16602 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.211
B.D. Du, W. Wang, W. Chen, D.M. Chen, K. Yang, Grain refinement and Al-water reactivity of Al Ga In Sn alloys. Int. J. Hydrog. Energy 42(34), 21586–21596 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.105
F. Zhang, K. Edalati, M. Arita, Z. Horita, Fast hydrolysis and hydrogen generation on Al-Bi alloys and Al-Bi-C composites synthesized by high-pressure torsion. Int. J. Hydrog. Energy 42(49), 29121–29130 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.057
F. Xu, X. Zhang, L. Sun, F. Yu, P. Li et al., Hydrogen generation of a novel Al NaMgH3 composite reaction with water. Int. J. Hydrog. Energy 42(52), 30535–30542 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.161
C. Zhao, F. Xu, L. Sun, J. Chen, X. Guo et al., A novel Al BiOCl composite for hydrogen generation from water. Int. J. Hydrog. Energy 44(13), 6655–6662 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.165
Z. Liu, H. Zhao, L. Han, W. Cui, L. Zhou et al., Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis. Biotechnol. Bioeng. 116(8), 1833–1843 (2019). https://doi.org/10.1002/bit.26983
X. Guan, Z. Zhou, P. Luo, F. Wu, S. Dong, Hydrogen generation from the reaction of Al-based composites activated by low-melting-point metals/oxides/salts with water. Energy 188, 116107 (2019). https://doi.org/10.1016/j.energy.2019.116107
D. Liu, Q. Gao, Q. An, H. Wang, J. Wei et al., Experimental study on Zn-doped Al-rich alloys for fast on-board hydrogen production. Curr. Comput.-Aided Drug Des. 10(3), 167 (2020). https://doi.org/10.3390/cryst10030167
T. He, W. Chen, W. Wang, F. Ren, H.-R. Stock, Effect of different Cu contents on the microstructure and hydrogen production of Al–Cu-Ga-In-Sn alloys for dissolvable materials. J. Alloy. Compd. 821, 153489 (2020). https://doi.org/10.1016/j.jallcom.2019.153489
T. He, W. Chen, W. Wang, S. Du, S. Deng, Microstructure and hydrogen production of the rapidly solidified Al–Mg-Ga-In-Sn alloy. J. Alloy. Compd. 827, 154290 (2020). https://doi.org/10.1016/j.jallcom.2020.154290
K. Naseem, H. Zhong, H. Wang, L. Ouyang, M. Zhu, Promoting Al hydrolysis via MgH2 and NaOH addition. J. Alloy. Compd. 831, 154793 (2020). https://doi.org/10.1016/j.jallcom.2020.154793
S. Prabu, H.-W. Wang, Enhanced hydrogen generation from graphite-mixed aluminum hydroxides catalyzed Al/water reaction. Int. J. Hydrog. Energy 45(58), 33419–33429 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.036
J. Guo, Z. Su, J. Tian, J. Deng, T. Fu et al., Enhanced hydrogen generation from Al-water reaction mediated by metal salts. Int. J. Hydrog. Energy 46(5), 3453–3463 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.220
H. Zhong, H. Wang, J.W. Liu, D.L. Sun, F. Fang et al., Enhanced hydrolysis properties and energy efficiency of MgH2-base hydrides. J. Alloy. Compd. 680, 419–426 (2016). https://doi.org/10.1016/j.jallcom.2016.04.148
R. Xiao, J. Chen, K. Fu, X. Zheng, T. Wang et al., Hydrolysis batteries: generating electrical energy during hydrogen absorption. Angew. Chem. Int. Ed. 57(8), 2219–2223 (2018). https://doi.org/10.1002/anie.201711666
L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang et al., Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv. Energy Mater. 7(19), 1700299 (2017). https://doi.org/10.1002/aenm.201700299
H. Zhong, L.Z. Ouyang, J.S. Ye, J.W. Liu, H. Wang et al., An one-step approach towards hydrogen production and storage through regeneration of NaBH4. Energy Storage Mater. 7, 222–228 (2017). https://doi.org/10.1016/j.ensm.2017.03.001
H.I. Schlesinger, H.C. Brown, B. Abraham, A. Bond, N. Davidson et al., New developments in the chemistry of diborane and the borohydrides. I. General Summary. J. Am. Chem. Soc. 75(1), 186–190 (1953). https://doi.org/10.1021/ja01097a049
S. Friedrich, L. Konrad, Production of Alkali Metal Borohydrides. Google Patents: 1965.
Z.P. Li, N. Morigazaki, B.H. Liu, S. Suda, Preparation of sodium borohydride by the reaction of MgH2 with dehydrated borax through ball milling at room temperature. J. Alloy. Compd. 349(1–2), 232–236 (2003). https://doi.org/10.1016/S0925-8388(02)00872-1
Ç. Çakanyildirim, M. Gürü, The production of NaBH4 from its elements by mechano-chemical reaction and usage in hydrogen recycle. Energy Sour. Part A: Recov. Util. Environ. Eff. 33(20), 1912–1920 (2011). https://doi.org/10.1080/15567030903503175
M. Bilen, M. Gürü, Ç. Çakanyıldırım, Role of NaCl in NaBH4 production and its hydrolysis. Energy Convers. Manag. 72, 134–140 (2013). https://doi.org/10.1016/j.enconman.2012.08.031
S. Garroni, C.B. Minella, D. Pottmaier, C. Pistidda, C. Milanese et al., Mechanochemical synthesis of NaBH4 starting from NaH–MgB2 reactive hydride composite system. Int. J. Hydrog. Energy 38(5), 2363–2369 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.136
Y. Kojima, T. Haga, Recycling process of sodium metaborate to sodium borohydride. Int. J. Hydrog. Energy 28(9), 989–993 (2003). https://doi.org/10.1016/S0360-3199(02)00173-8
C.-L. Hsueh, C.-H. Liu, B.-H. Chen, C.-Y. Chen, Y.-C. Kuo et al., Regeneration of spent-NaBH4 back to NaBH4 by using high-energy ball milling. Int. J. Hydrog. Energy 34(4), 1717–1725 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.036
L. Kong, X. Cui, H. Jin, J. Wu, H. Du et al., Mechanochemical synthesis of sodium borohydride by recycling sodium metaborate. Energy Fuel 23(10), 5049–5054 (2009). https://doi.org/10.1021/ef900619y
Ç. Çakanyıldırım, M. Gürü, Processing of NaBH4 from NaBO2 with MgH2 by ball milling and usage as hydrogen carrier. Renew. Energy 35(9), 1895–1899 (2010). https://doi.org/10.1016/j.renene.2010.01.001
M. Felderhoff, L. Ouyang, M. Zhu, H.Z. Zhong, H. Shao et al., Realizing Facile Regeneration of spent NaBH4 with Mg-Al Alloy. J. Mater. Chem. A 7, 10723–10728 (2019). https://doi.org/10.1039/c9ta00769e
W. Chen, L.Z. Ouyang, J.W. Liu, X.D. Yao, H. Wang et al., Hydrolysis and regeneration of sodium borohydride (NaBH4) – A combination of hydrogen production and storage. J. Power Sources 359, 400–407 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.075
Y.Y. Zhu, L.Z. Ouyang, H. Zhong, J.W. Liu, H. Wang et al., Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem. Int. Ed. 59(22), 8623–8629 (2020). https://doi.org/10.1002/anie.201915988
Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Efficient synthesis of sodium borohydride: balancing reducing agents with intrinsic hydrogen source in hydrated borax. ACS Sustain. Chem. Eng. 8(35), 13449–13458 (2020). https://doi.org/10.1021/acssuschemeng.0c04354
L. Ouyang, H. Zhong, H.-W. Li, M. Zhu, A recycling hydrogen supply system of NaBH4 based on a facile regeneration process: A review. Inorganics 6(1), 10 (2018). https://doi.org/10.3390/inorganics6010010
M. Bilen, O. Yilmaz, M. Guru, Synthesis of LiBH4 from LiBO2 as hydrogen carrier and its catalytic dehydrogenation. Int. J. Hydrog. Energy 40(44), 15213–15217 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.085
M. Touboul, E. Bétourné, Dehydration process of lithium borates. Solid State Ion. 84(3), 189–197 (1996). https://doi.org/10.1016/0167-2738(96)00027-6
K. Chen, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Converting H+ from coordinated water into H- enables super facile synthesis of LiBH4. Green Chem. 21(16), 4380–4387 (2019). https://doi.org/10.1039/C9GC01897B
M. Bilen, M. Gürü, Ç. Çakanyildirim, Conversion of KCl into KBH4 by mechano-chemical reaction and its catalytic decomposition. J. Electron. Mater. 46(7), 4126–4132 (2017). https://doi.org/10.1007/s11664-017-5340-0