FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring
Corresponding Author: Minghua Wu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 133
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.
Highlights:
1 Fluorescence lifetime imaging microscopy (FLIM) applications for cancer diagnosis and treatment monitoring combined with reduced form of nicotinamide adenine dinucleotide, Förster resonance energy transfer (FRET), and biosensors are reviewed.
2 Principles of FLIM, previous clinical applications, and development history are introduced.
3 The current challenges and prospects for the potential of FLIM for cancer diagnosis and promotion of the effect of anti-cancer treatment are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher, Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805 (1994). https://doi.org/10.1126/science.8303295
- W. Becker, Fluorescence lifetime imaging–techniques and applications. J. Microsc. 247(2), 119–136 (2012). https://doi.org/10.1111/j.1365-2818.2012.03618.x
- X.B. Liu, D.Y. Lin, Q.Q. Wu, Y. Wei, T. Luo et al., Recent progress of fluorescence lifetime imaging microscopy technology and its application. Acta Phys. Sin. 67(17), 14 (2018). https://doi.org/10.7498/aps.67.20180320
- A.J. Walsh, J.T. Sharick, M.C. Skala, H.T. Beier, Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed. Biomed. Opt. Express 7(4), 1385–1399 (2016). https://doi.org/10.1364/boe.7.001385
- X.B. Liu, D.Y. Lin, W. Becker, J.J. Niu, B. Yu et al., Fast fluorescence lifetime imaging techniques: a review on challenge and development. J. Innov. Opt. Health Sci. 12(5), 27 (2019). https://doi.org/10.1142/s1793545819300039
- W. Hu, L. Guo, L. Bai, X. Miao, Y. Ni et al., Maximizing aggregation of organic fluorophores to prolong fluorescence lifetime for two-photon fluorescence lifetime imaging. Adv. Healthc. Mater. (2018). https://doi.org/10.1002/adhm.201800299
- T. He, C. Ren, Z. Li, S. Xiao, J. Li et al., Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging. Appl. Phys. Lett. 112(21), 4 (2018). https://doi.org/10.1063/1.5034375
- H. Ranawat, S. Pal, N. Mazumder, Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications. Biomed. Eng. Lett. 9(3), 293–310 (2019). https://doi.org/10.1007/s13534-019-00119-7
- H. Li, J. Yu, R. Zhang, X. Li, W. Zheng, Two-photon excitation fluorescence lifetime imaging microscopy: a promising diagnostic tool for digestive tract tumors. J. Innov. Opt. Health Sci. 12(5), 16 (2019). https://doi.org/10.1142/s179354581930009x
- K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle et al., Clinical two-photon microendoscopy. Microsc. Res. Tech. 70(5), 398–402 (2007). https://doi.org/10.1002/jemt.20445
- K. König, Review: clinical in vivo multiphoton flim tomography. Methods Appl. Fluoresc. (2020). https://doi.org/10.1088/2050-6120/ab8808
- Y. Sun, A. Periasamy, in Localizing protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. ed. by VERVEER P J (Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512–1165 USA; 2015), pp. 83–107
- B. Sauer, Q. Tian, P. Lipp, L. Kaestner, Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging. Cold Spring Harb. Protoc. 2014(12), 1328–1332 (2014). https://doi.org/10.1101/pdb.prot077040
- F. Festy, S.M. Ameer-Beg, T. Ng, K. Suhling, Imaging proteins in vivo using fluorescence lifetime microscopy. Mol. Biosyst. 3(6), 381–391 (2007). https://doi.org/10.1039/b617204k
- Z. Shi, X. Han, W. Hu, H. Bai, B. Peng et al., Bioapplications of small molecule aza-bodipy: from rational structural design to in vivo investigations. Chem. Soc. Rev. 49(21), 7533–7567 (2020). https://doi.org/10.1039/d0cs00234h
- L.M. Hirvonen, K. Suhling, Fast timing techniques in FLIM applications. Front. Phys. 8, 20 (2020). https://doi.org/10.3389/fphy.2020.00161
- S. Rajoria, L. Zhao, X. Intes, M. Barroso, FLIM-FRET for cancer applications. Curr. Mol. Imaging 3(2), 144–161 (2014). https://doi.org/10.2174/2211555203666141117221111
- L.C. Chen, W.R. Lloyd, C.W. Chang, D. Sud, M.A. Mycek, in Fluorescence Lifetime Imaging Microscopy for Quantitative Biological Imaging. ed.by SLUDER G, WOLF D E (Elsevier Academic Press Inc; San Diego, 2013), pp. 457–488
- W. Becker, A. Bergmann, M.A. Hink, K. Konig, K. Benndorf et al., Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc. Res. Tech. 63(1), 58–66 (2004). https://doi.org/10.1002/jemt.10421
- J. Requejo-Isidro, J. McGinty, I. Munro, D.S. Elson, N.P. Galletly et al., High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt. Lett. 29(19), 2249–2251 (2004). https://doi.org/10.1364/ol.29.002249
- R.V. Krishnan, H. Saitoh, H. Terada, V.E. Centonze, B. Herman, Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev. Sci. Instrum. 74(5), 2714–2721 (2003). https://doi.org/10.1063/1.1569410
- L. Martelo, A. Fedorov, M.N. Berberan-Santos, Fluorescence phasor plots using time domain data: effect of the instrument response function. J. Phys. Chem. B 119(32), 10267–10274 (2015). https://doi.org/10.1021/acs.jpcb.5b00261
- A. Vallmitjana, A. Dvornikov, B. Torrado, D.M. Jameson, S. Ranjit et al., Resolution of 4 components in the same pixel in FLIM images using the phasor approach. Methods Appl. Fluoresc. 8(3), 9 (2020). https://doi.org/10.1088/2050-6120/ab8570
- N. Ma, M.A. Digman, L. Malacrida, E. Gratton et al., Measurements of absolute concentrations of NADH in cells using the phasor FLIM method. Bio. Opt. Express 7(7), 2441–2452 (2016). https://doi.org/10.1364/boe.7.002441
- T.S. Blacker, M.R. Duchen, Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic. Biol. Med. 100, 53–65 (2016). https://doi.org/10.1016/j.freeradbiomed.2016.08.010
- G. Einstein, K. Udayakumar, D. Koteeswaran, P. Aruna, S. Ganesan et al., Polarization gating technique extracts depth resolved fluorescence redox ratio in oral cancer diagnostics. Photodiagn. Photodyn. Ther. 8, 30 (2020). https://doi.org/10.1016/j.pdpdt.2020.101757
- Y. Jing, Y. Wang, X. Wang, C. Song, J. Ma et al., Label-free imaging and spectroscopy for early detection of cervical cancer. J. Biophotonics (2018). https://doi.org/10.1002/jbio.201700245
- R. Niesner, B. Peker, P. Schlusche, K.H. Gericke, Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. ChemPhysChem 5(8), 1141–1149 (2004). https://doi.org/10.1002/cphc.200400066
- T.S. Blacker, R.J. Marsh, M.R. Duchen, A.J. Bain, Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH. Chem. Phys. 422, 184–194 (2013). https://doi.org/10.1016/j.chemphys.2013.02.019
- O. Warburg, On the origin of cancer cells. Science 123(3191), 309–314 (1956). https://doi.org/10.1126/science.123.3191.309
- M. Wang, F. Tang, X. Pan, L. Yao, X. Wang et al., Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy. BBA Clin. 8, 7–13 (2017). https://doi.org/10.1016/j.bbacli.2017.04.002
- K. Awasthi, D. Moriya, T. Nakabayashi, L. Li, N. Ohta, Sensitive detection of intracellular environment of normal and cancer cells by autofluorescence lifetime imaging. J. Photochem. Photobiol. B 165, 256–265 (2016). https://doi.org/10.1016/j.jphotobiol.2016.10.023
- M. Brandao, R. Iwakura, F. Basilio, K. Haleplian, A. Ito et al., Fluorescence lifetime of normal, benign, and malignant thyroid tissues. J. Biomed. Opt. (2015). https://doi.org/10.1117/1.Jbo.20.6.067003
- M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324(5930), 1029–1033 (2009). https://doi.org/10.1126/science.1160809
- T.M. Ashton, W.G. McKenna, L.A. Kunz-Schughart, G.S. Higgins, Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24(11), 2482–2490 (2018). https://doi.org/10.1158/1078-0432.Ccr-17-3070
- A. Schroeder, K. Pointer, P. Clark, R. Datta, J. Kuo et al., Metabolic mapping of glioblastoma stem cells reveals NADH fluxes associated with glioblastoma phenotype and survival. J. Biomed. Opt. 25(3), 1–13 (2020). https://doi.org/10.1117/1.Jbo.25.3.036502
- S. Gershanov, S. Michowiz, H. Toledano, G. Yahav, O. Barinfeld et al., Fluorescence lifetime imagingmicroscopy, a novel diagnostic tool for metastatic cell detection in the cerebrospinal fluid of children with medulloblastoma. Sci. Rep. 7(1), 3648 (2017). https://doi.org/10.1038/s41598-017-03892-6
- J.M. Funes, M. Quintero, S. Henderson, D. Martinez, U. Qureshi et al.,Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc. Natl. Acad. Sci. USA 104(15), 6223–6228 (2007). https://doi.org/10.1073/pnas.0700690104
- C. Jose, N. Bellance, R. Rossignol, Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta 1807(6), 552–561 (2011). https://doi.org/10.1016/j.bbabio.2010.10.012
- V.S. LeBleu, J.T. O’Connell, K.N. Gonzalez Herrera, H. Wikman, K. Pantel et al., Pgc-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16(10), 992–1003 (2014). https://doi.org/10.1038/ncb3039
- H. Wu, M.F. Ying, X. Hu et al., Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget 7(26), 40621–40629 (2016). https://doi.org/10.18632/oncotarget.9746
- A.J. Bower, J.E. Sorrells, J. Li, M. Marjanovic, R. Barkalifa et al., Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy. Biomed. Opt. Express. 10(12), 6408–6421 (2019). https://doi.org/10.1364/boe.10.006408
- A.J. Bower, J. Li, E.J. Chaney, M. Marjanovic, D.R. Spillman et al., High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy. Optica 5(10), 1290–1296 (2018). https://doi.org/10.1364/optica.5.001290
- M.M. Lukina, L.E. Shimolina, N.M. Kiselev, V.E. Zagainov, D.V. Komarov et al., Interrogation of tumor metabolism in tissue samples ex vivo using fluorescence lifetime imaging of NAD(P)H. Methods Appl. Fluoresc. 8(1), 11 (2020). https://doi.org/10.1088/2050-6120/ab4ed8
- T. Zahavi, G. Yahav, Y. Shimshon, S. Gershanov, L. Kaduri et al., Utilizing fluorescent life time imaging microscopy technology for identify carriers of BRCA2 mutation. Biochem. Biophys. Res. Commun. 480(1), 36–41 (2016). https://doi.org/10.1016/j.bbrc.2016.10.013
- M.J. Huang, Z.X. Zhang, X.Y. Wang, Y.H. Xie, Y.Y. Fei et al., Detecting benign uterine tumors by autofluorescence lifetime imaging microscopy through adjacent healthy cervical tissues. J. Innov. Opt. Health Sci. 12(5), 11 (2019). https://doi.org/10.1142/s1793545819400066
- M. Lee, J.-H. Yoon, Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse warburg effect and its therapeutic implication. World J. Biol. Chem. 6(3), 148–161 (2015). https://doi.org/10.4331/wjbc.v6.i3.148
- J.M. Buschhaus, B.A. Humphries, S.S. Eckley, T.H. Robison, A.C. Cutter et al., Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow. Oncogene 39(34), 5649–5662 (2020). https://doi.org/10.1038/s41388-020-01391-z
- I.N. Druzhkova, M.V. Shirmanova, M.M. Lukina, V.V. Dudenkova, N.M. Mishina et al., The metabolic interaction of cancer cells and fibroblasts—coupling between NAD(P)H and FAD, intracellular pH and hydrogen peroxide. Cell Cycle 15(9), 1257–1266 (2016). https://doi.org/10.1080/15384101.2016.1160974
- B.L. Cox, S. Erickson-Bhatt, J.M. Szulczewski, J.M. Squirrell, K.D. Ludwig et al., A novel bioreactor for combined magnetic resonance spectroscopy and optical imaging of metabolism in 3d cell cultures. Magn. Reson. Med. 81(5), 3379–3391 (2019). https://doi.org/10.1002/mrm.27644
- J.T. Sharick, P.F. Favreau, A.A. Gillette, S.M. Sdao, M.J. Merrins et al., Protein-bound NAD(P)H lifetime is sensitive to multiple fates of glucose carbon. Sci. Rep. 8(1), 5456 (2018). https://doi.org/10.1038/s41598-018-23691-x
- D.K. Bird, L. Yan, K.M. Vrotsos, K.W. Eliceiri, E.M. Vaughan et al., Metabolic mapping of MCF10a human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme nadh. Cancer Res. 65(19), 8766–8773 (2005). https://doi.org/10.1158/0008-5472.Can-04-3922
- D. Morone, F.D. Autilia, T. Schorn, M. Erreni, A. Doni, Evaluation of cell metabolic adaptation in wound and tumour by fluorescence lifetime imaging microscopy. Sci. Rep. 10(1), 6289 (2020). https://doi.org/10.1038/s41598-020-63203-4
- M.N. Pastore, H. Studier, C.S. Bonder, M.S. Roberts, Non-invasive metabolic imaging of melanoma progression. Exp. Dermatol. 26(7), 607–614 (2017). https://doi.org/10.1111/exd.13274
- K.T. Pate, C. Stringari, S. Sprowl-Tanio, K. Wang, T. TeSlaa et al., Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 33(13), 1454–1473 (2014). https://doi.org/10.15252/embj.201488598
- X. Wang, Y. Wang, Z. Zhang, M. Huang, Y. Fei et al., Discriminating different grades of cervical intraepithelial neoplasia based on label-free phasor fluorescence lifetime imaging microscopy. Biomed. Opt. Express 11(4), 1977–1990 (2020). https://doi.org/10.1364/boe.386999
- A.L. Trinh, H. Chen, Y. Chen, Y. Hu, Z. Li et al., Tracking functional tumor cell subpopulations of malignant glioma by phasor fluorescence lifetime imaging microscopy of NADH. Cancers 9(12), 13 (2017). https://doi.org/10.3390/cancers9120168
- D.H. Lee, X. Li, N. Ma, M.A. Digman, A.P. Lee, Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy. Lab Chip 18(9), 1349–1358 (2018). https://doi.org/10.1039/c7lc01301a
- T. Luo, Y. Lu, S. Liu, D. Lin, J. Qu, Phasor-FLIM as a screening tool for the differential diagnosis of actinic keratosis, bowen’s disease, and basal cell carcinoma. Anal. Chem. 89(15), 8104–8111 (2017). https://doi.org/10.1021/acs.analchem.7b01681
- A.C.B. Sant’Anna-Silva, G.C. Santos, S.P.C. Campos, A.M. Oliveira Gomes, J.A. Pérez-Valencia et al., Metabolic profile of oral squamous carcinoma cell lines relies on a higher demand of lipid metabolism in metastatic cells. Front. Oncol. 8, 13 (2018). https://doi.org/10.3389/fonc.2018.00013
- L. Kong, M.M. Murata, M.A. Digman, Absence of REV3L promotes p53-regulated cancer cell metabolism in cisplatin-treated lung carcinoma cells. Biochem. Biophys. Res. Commun. 496(1), 199–204 (2018). https://doi.org/10.1016/j.bbrc.2018.01.026
- H. Wallrabe, Z. Svindrych, S.R. Alam, K.H. Siller, T. Wang et al., Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by flim. Sci. Rep. 8(1), 79 (2018). https://doi.org/10.1038/s41598-017-18634-x
- S.R. Alam, H. Wallrabe, Z. Svindrych, A.K. Chaudhary, K.G. Christopher et al., Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: an NADH, FAD and Tryptophan FLIM assay. Sci. Rep. 7(1), 10451 (2017). https://doi.org/10.1038/s41598-017-10856-3
- S. Cheng, R.M. Cuenca, B. Liu, B.H. Malik, J.M. Jabbour et al., Handheld multispectral fluorescence lifetime imaging system for in vivo applications. Biom. Opt. Express 5(3), 921–931 (2014). https://doi.org/10.1364/BOE.5.000921
- B.H. Malik, J. Lee, S. Cheng, R. Cuenca, J.M. Jabbour et al., Objective detection of oral carcinoma with multispectral fluorescence lifetime imaging in vivo. Photochem. Photobiol. 92(5), 694–701 (2016). https://doi.org/10.1111/php.12627
- E. Duran-Sierra, S. Cheng, R. Cuenca-Martinez, B. Malik, K.C. Maitland et al., Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions. Oral. Oncol. (2020). https://doi.org/10.1016/j.oraloncology.2020.104635
- J.A. Jo, S. Cheng, R. Cuenca-Martinez, E. Duran-Sierra, B. Malik et al., Endogenous fluorescence lifetime imaging (FLIM) endoscopy for early detection of oral cancer and dysplasia. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 1, 3009–3012 (2018). https://doi.org/10.1109/embc.2018.8513027
- R.A. Romano, R.G.T. Rosa, A.G. Salvio, J.A. Jo, C. Kurachi, Multispectral autofluorescence dermoscope for skin lesion assessment. Photodiagn. Photodyn. Therapy (2020). https://doi.org/10.1016/j.pdpdt.2020.101704
- F. Poulon, J. Pallud, P. Varlet, M. Zanello, F. Chretien et al., Real-time brain tumor imaging with endogenous fluorophores: a diagnosis proof-of-concept study on fresh human samples. Sci Rep 8, 14888 (2018). https://doi.org/10.1038/s41598-018-33134-2
- J.E. Phipps, D. Gorpas, J. Unger, M. Darrow, R.J. Bold et al., Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging. Phys. Med. Biol. (2017). https://doi.org/10.1088/1361-6560/aa983a
- B. Chen, Y. Lu, W. Pan, J. Xiong, Z. Yang et al., Support vector machine classification of nonmelanoma skin lesions based on fluorescence lifetime imaging microscopy. Anal. Chem. 91(16), 10640–10647 (2019). https://doi.org/10.1021/acs.analchem.9b01866
- S. Wang, F. Ji, Z. Li, M. Xue, Fluorescence imaging-based methods for single-cell protein analysis. Anal. Bioanal. Chem. 411(19), 4339–4347 (2019). https://doi.org/10.1007/s00216-019-01694-5
- R. Penjweini, B. Roarke, G. Alspaugh, A. Gevorgyan, A. Andreoni et al., Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. Redox Biol. (2020). https://doi.org/10.1016/j.redox.2020.101549
- H. Wallrabe, A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy. CurrOpin Biotechnol. 16(1), 19–27 (2005). https://doi.org/10.1016/j.copbio.2004.12.002
- N. Manjubaashini, M.P. Kesavan, J. Rajesh, T. Daniel Thangadurai, Multispectroscopic and bioimaging approach for the interaction of rhodamine 6g capped gold nanoparticles with bovineserum albumin. J. Photochem. Photobiol. B 183, 374–384 (2018). https://doi.org/10.1016/j.jphotobiol.2018.05.005
- K.J. Martin, E.J. McGhee, J.P. Schwarz, M. Drysdale, S.M. Brachmann et al., Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic flim-based fret experiments. PLoS ONE (2018). https://doi.org/10.1371/journal.pone.0183585
- A. Xiao, A.E. Gibbons, K.E. Luker, G.D. Luker, Fluorescence lifetime imaging of apoptosis. Tomography 1(2), 115–124 (2015). https://doi.org/10.18383/j.tom.2015.00163
- J.M. Buschhaus, B. Humphries, K.E. Luker, G.D. Luker, A caspase-3 reporter for fluorescence lifetime imaging of single-cell apoptosis. Cells 7(6), 57 (2018). https://doi.org/10.3390/cells7060057
- M. Pajic, D. Herrmann, C. Vennin, J.R. Conway, V.T. Chin et al., The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 6(2), 123–133 (2015). https://doi.org/10.4161/21541248.2014.973749
- M. Nobis, D. Herrmann, S.C. Warren, S. Kadir, W. Leung et al., A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Rep. 21(1), 274–288 (2017). https://doi.org/10.1016/j.celrep.2017.09.022
- F. Sizaire, G. Le Marchand, J. Pécréaux, O. Bouchareb, M. Tramier, Automated screening of AURKA activity based on a genetically encoded FRET biosensor using fluorescence lifetime imaging microscopy. Methods Appl. Fluoresc. (2020). https://doi.org/10.1088/2050-6120/ab73f5
- G. Chennell, R.J. Willows, S.C. Warren, D. Carling, P.M. French et al., Imaging of metabolic status in 3d cultures with an improved AMPK FRET biosensor for FLIM. Sensors 16(8), 1312 (2016). https://doi.org/10.3390/s16081312
- J. Miles, C.J. Applebee, P. Leboucher, S. Lopez-Fernandez, D.J. Lee et al., Time resolved amplified FRET identifies protein kinase b activation state as a marker for poor prognosis in clear cell renal cell carcinoma. BBA Clin. 8, 97–102 (2017). https://doi.org/10.1016/j.bbacli.2017.10.002
- M. Lu, L.W. Tay, J. He, G. Du, Monitoring phosphatidic acid signaling in breast cancer cells using genetically encoded biosensors. Methods Mol. Biol. 1406, 225–237 (2016). https://doi.org/10.1007/978-1-4939-3444-7_20
- A. Buntz, S. Wallrodt, E. Gwosch, M. Schmalz, S. Beneke et al., Real-time cellular imaging of protein poly(ADP-ribos)ylation. Angew. Chem. Int. Ed. 55(37), 11256–11260 (2016). https://doi.org/10.1002/anie.201605282
- J.R.W. Conway, S.C. Warren, P. Timpson, Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 128, 78–94 (2017). https://doi.org/10.1016/j.ymeth.2017.04.014
- A. Losada, M.J. Muñoz-Alonso, C. García, P.A. Sánchez-Murcia, J.F. Martínez-Leal et al., Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin. Sci. Rep. 6, 35100 (2016). https://doi.org/10.1038/srep35100
- W. Ashraf, C. Bronner, L. Zaayter, T. Ahmad, L. Richert et al., Interaction of the epigenetic integrator UHRF1 with the myst domain of TIP60 inside the cell. J. Exp. Clin. Cancer Res. 36(1), 188 (2017). https://doi.org/10.1186/s13046-017-0659-1
- W. Liu, Y. Cui, W. Ren, J. Irudayaraj, Epigenetic biomarker screening by FLIM-FRET for combination therapy in ER+ breast cancer. Clin. Epigenetics 11(1), 16 (2019). https://doi.org/10.1186/s13148-019-0620-6
- Q. Liu, E.J. Osterlund, X. Chi, J. Pogmore, B. Leber et al., Bim escapes displacement by BH3-mimetic anti-cancer drugs by double-bolt locking both Bcl-xl and Bcl-2. Elife 8, e37689 (2019). https://doi.org/10.7554/eLife.37689
- M. Nobis, E.J. McGhee, D. Herrmann, A. Magenau, J.P. Morton et al., Monitoring the dynamics of src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Celll Adhes Migr. 8(5), 478–486 (2014). https://doi.org/10.4161/19336918.2014.970004
- W. Hu, Q. Wang, X. Miao, L. Bai, L. Li et al., Heteroatom-containing organic molecule for two-photon fluorescence lifetime imaging and photodynamic therapy. J. Phys. Chem. C 122(36), 20945–20951 (2018). https://doi.org/10.1021/acs.jpcc.8b05460
- S. Kalinina, J. Breymayer, K. Reess, L. Lilge, A. Mandel et al., Correlation of intracellular oxygen and cell metabolism by simultaneous PLIM of phosphorescent TLD1433 and FLIM of NAD(P)H. J. Biophotonics 11(10), 11 (2018). https://doi.org/10.1002/jbio.201800085
- J. Kuil, P. Steunenberg, P.T.K. Chin, J. Oldenburg, K. Jalink et al., Peptide-functionalized luminescent iridium complexes for lifetime imaging of CXCR4 expression. ChemBioChem 12(12), 1896–1902 (2011). https://doi.org/10.1002/cbic.201100271
- Y. Ardeshirpour, D.L. Sackett, J.R. Knutson, A.H. Gandjbakhche, Using in vivo fluorescence lifetime imaging to detect HER2-positive tumors. EJNMMI Res. 8(1), 26 (2018). https://doi.org/10.1186/s13550-018-0384-6
- T.J. Lynch, D.W. Bell, R. Sordella, S. Gurubhagavatula, R.A. Okimoto et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350(21), 2129–2139 (2004). https://doi.org/10.1056/NEJMoa040938
- D.J. Slamon, G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich et al., Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785), 177–182 (1987). https://doi.org/10.1126/science.3798106
- G. Weitsman, P.R. Barber, L.K. Nguyen, K. Lawler, G. Patel et al., HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status. Oncotarget 7(32), 51012–51026 (2016). https://doi.org/10.18632/oncotarget.9963
- G. Weitsman, N.J. Mitchell, R. Evans, A. Cheung, T.L. Kalber et al., Detecting intratumoral heterogeneity of EGFR activity by liposome-based in vivo transfection of a fluorescent biosensor. Oncogene 36(25), 3618–3628 (2017). https://doi.org/10.1038/onc.2016.522
- O. Coban, L.C. Zanetti-Dominguez, D.R. Matthews, D.J. Rolfe, G. Weitsman et al., Effect of phosphorylation on EGFR dimer stability probed by single-molecule dynamics and FRET/FLIM. Biophys. J. 108(5), 1013–1026 (2015). https://doi.org/10.1016/j.bpj.2015.01.005
- A.S. Cohen, R. Patek, S.A. Enkemann, J.O. Johnson, T. Chen et al., Delta-opioid receptor (δOR) targeted near-infrared fluorescent agent for imaging of lung cancer: Synthesis and evaluation in vitro and in vivo. Bioconjug. Chem. 27(2), 427–438 (2016). https://doi.org/10.1021/acs.bioconjchem.5b00516
- S. Chattoraj, M.A. Amin, S. Mohapatra, S. Ghosh, K. Bhattacharyya, Cancer cell imaging using in situ generated gold nanoclusters. ChemPhysChem 17(1), 61–68 (2016). https://doi.org/10.1002/cphc.201500731
- G. Yahav, A. Hirshberg, O. Salomon, N. Amariglio, L. Trakhtenbrot et al., Fluorescence lifetime imaging of DAPI-stained nuclei as a novel diagnostic tool for the detection and classification of B-cell chronic lymphocytic leukemia. Cytometry A 89(7), 644–652 (2016). https://doi.org/10.1002/cyto.a.22890
- L.Y. Liu, W. Liu, K.N. Wang, B.C. Zhu, X.Y. Xia et al., Quantitative detection of G-quadruplex DNA in live cells based on photon counts and complex structure discrimination. Angew. Chem. Int. Ed. 59(24), 9719–9726 (2020). https://doi.org/10.1002/anie.202002422
- T.-Y. Tseng, S.-Y. Liu, C.-L. Wang, T.-C. Chang, Antisense oligonucleotides used to identify telomeric g-quadruplexes in metaphase chromosomes and fixed cells by fluorescence lifetime imaging microscopy of o-BMVC foci. Molecules 25(18), 4083 (2020). https://doi.org/10.3390/molecules25184083
- N.P. Damayanti, K. Buno, S.L.V. Harbin, J.M.K. Irudayaraj, Epigenetic process monitoring in live cultures with peptide biosensors. ACS Sensors 4(3), 562–565 (2019). https://doi.org/10.1021/acssensors.8b01134
- E. Kočišová, P. Praus, J. Bok, S. Bonneau, F. Sureau, Intracellular monitoring of As1411 aptamer by time-resolved microspectrofluorimetry and fluorescence imaging. J. Fluoresc. 25(5), 1245–1250 (2015). https://doi.org/10.1007/s10895-015-1612-3
- C. Ripoll, A. Orte, L. Paniza, M.J. Ruedas-Rama, A quantum dot-based FLIM glucose nanosensor. Sensors 19(22), 16 (2019). https://doi.org/10.3390/s19224992
- T. Yoshihara, R. Maruyama, S. Shiozaki, K. Yamamoto, S. Kato et al., Visualization of lipid droplets in living cells and fatty livers of mice based on the fluorescenceof pi-extended coumarin using fluorescence lifetime imaging microscopy. Anal. Chem. 92(7), 4996–5003 (2020). https://doi.org/10.1021/acs.analchem.9b05184
- J.R. Lazzari-Dean, A.M. Gest, E.W. Miller, Optical estimation of absolute membrane potential using fluorescence lifetime imaging. Elife 8, 29 (2019). https://doi.org/10.7554/eLife.44522
- I.A. Okkelman, D.B. Papkovsky, R.I. Dmitriev, Estimation of the mitochondrial membrane potential using fluorescence lifetime imaging microscopy. Cytom. Part A 97(5), 471–482 (2019). https://doi.org/10.1002/cyto.a.23886
- V.G. Almendro-Vedia, C. Garcia, R. Ahijado-Guzman, D. de la Fuente-Herreruela, M. Munoz-Ubeda et al., Supramolecular zippers elicit interbilayer adhesion of membranes producing cell death. Biochim. Biophys. Acta-Gen. Subj. 1862(12), 2824–2834 (2018). https://doi.org/10.1016/j.bbagen.2018.08.018
- S. Gonzalez Rubio, N. Montero Pastor, C. Garcia, V.G. Almendro-Vedia, I. Ferrer et al., Enhanced cytotoxic activity of mitochondrial mechanical effectors in human lung carcinoma h520 cells: Pharmaceutical implications for cancer therapy. Front. Oncol. 8, 8 (2018). https://doi.org/10.3389/fonc.2018.00514
- X. Liu, W. Chi, Q. Qiao, S.V. Kokate, E.P. Cabrera et al., Molecular mechanism of viscosity sensitivity in bodipy rotors and application to motion-based fluorescent sensors. ACS Sens. 5(3), 731–739 (2020). https://doi.org/10.1021/acssensors.9b01951
- M.V. Shirmanova, M.M. Lukina, L.E. Shimolina, M.K. Kuimova, V.V. Dudenkova et al., in Probing Energy Metabolism and Microviscosity in Cancer Using FLIM. ed.by BROWN J Q, VANLEEUWEN T G (Spie-Int Soc Optical Engineering; Bellingham, 2017), paper1041102, pp.1–5
- M.V. Shirmanova, L.E. Shimolina, M.M. Lukina, E.V. Zagaynova, M.K. Kuimova, Live cell imaging of viscosity in 3d tumour cell models. Adv. Exp. Med. Biol. 1035, 143–153 (2017). https://doi.org/10.1007/978-3-319-67358-5_10
- L.E. Shimolina, M.A. Izquierdo, I. López-Duarte, J.A. Bull, M.V. Shirmanova et al., Imaging tumor microscopic viscosity in vivo using molecular rotors. Sci. Rep. 7, 41097 (2017). https://doi.org/10.1038/srep41097
- N. O’Donnell, I.A. Okkelman, P. Timashev, T.I. Gromovykh, D.B. Papkovsky et al., Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater. 80, 85–96 (2018). https://doi.org/10.1016/j.actbio.2018.09.034
- H. Wang, H. Yang, Z.P. Xu, X. Liu, M.S. Roberts et al., Anionic long-circulating quantum dots for long-term intravital vascular imaging. Pharmaceutics 10(4), 8 (2018). https://doi.org/10.3390/pharmaceutics10040244
- N. Li, Z. Huang, X. Zhang, X. Song, Y. Xiao, Reflecting size differences of exosomes by using the combination of membrane-targeting viscosity probe and fluorescence lifetime imaging microscopy. Anal. Chem. 91(23), 15308–15316 (2019). https://doi.org/10.1021/acs.analchem.9b04587
- F. Wong, O. Coban, G. Weitsman, T. Ng, Integrating imaging, exosome and protein network rewiring information to track early tumour evolution of resistance mechanisms. Converg. Sci. Phys. Oncol. 3(1), 9 (2017). https://doi.org/10.1088/2057-1739/aa5cbd
- R.K. Koninti, S. Palvai, S. Satpathi, S. Basu, P. Hazra, Loading of an anti-cancer drug into mesoporous silica nano-channels and its subsequent release to DNA. Nanoscale 8(43), 18436–18445 (2016). https://doi.org/10.1039/c6nr06285g
- H. Saari, E. Lisitsyna, K. Rautaniemi, T. Rojalin, L. Niemi et al., FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel. J. Control. Release 284, 133–143 (2018). https://doi.org/10.1016/j.jconrel.2018.06.015
- G. Caracciolo, S. Palchetti, L. Digiacomo, R.Z.Z. Chiozzi, A.L. Capriotti et al., Human biomolecular corona of liposomal doxorubicin: the overlooked factor in anticancer drug delivery. ACS Appl. Mater. Interfaces 10(27), 22951–22962 (2018). https://doi.org/10.1021/acsami.8b04962
- A.L.B. Seynhaeve, B.M. Dicheva, S. Hoving, G.A. Koning, T.L.M. ten Hagen, Intact doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome: evaluated by in vitro/in vivo live cell imaging. J. Control. Release 172(1), 330–340 (2013). https://doi.org/10.1016/j.jconrel.2013.08.034
- U. Alexiev, P. Volz, A. Boreham, R. Brodwolf, Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm. 116, 111–124 (2017). https://doi.org/10.1016/j.ejpb.2017.01.005
- E. Tawagi, C. Massmann, H. Chibli, J.L. Nadeau, Differential toxicity of gold-doxorubicin in cancer cells vs. Cardiomyocytes as measured by real-time growth assays and fluorescence lifetime imaging microscopy (FLIM). Analyst 140(16), 5732–5741 (2015). https://doi.org/10.1039/c5an00446b
- E. Quagliarini, R. Di Santo, D. Pozzi, P. Tentori, F. Cardarelli et al., Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells. Nanomaterials 10(8), 1482 (2020). https://doi.org/10.3390/nano10081482
- T. Zhou, T. Luo, J. Song, J. Qu, Phasor-fluorescence lifetime imaging microscopy analysis to monitor intercellular drug release from a pH-sensitive polymeric nanocarrier. Anal. Chem. 90(3), 2170–2177 (2018). https://doi.org/10.1021/acs.analchem.7b04511
- S. Suarasan, A.M. Craciun, E. Licarete, M. Focsan, K. Magyari et al., Intracellulardynamic disentangling of doxorubicin release from luminescent nanogold carriers by fluorescence lifetime imaging microscopy (FLIM) under two-photon excitation. ACS Appl. Mater. Interfaces 11(8), 7812–7822 (2019). https://doi.org/10.1021/acsami.8b21269
- H. Ge, F. Cortezon-Tamarit, H.-C. Wang, A.C. Sedgwick, R.L. Arrowsmith et al., Multiphoton fluorescence lifetime imaging microscopy (FLIM) and super-resolution fluorescence imaging with a supramolecular biopolymer for the controlled tagging of polysaccharides. Nanoscale 11(19), 9498–9507 (2019). https://doi.org/10.1039/c8nr10344e
- T. Nagy-Simon, A.S. Tatar, A.M. Craciun, A. Vulpoi, M.A. Jurj et al., Antibody conjugated, raman tagged hollow gold-silver nanospheres for specific targeting and multimodal dark-field/SERS/two photon-FLIM imaging of CD19(+) B lymphoblasts. ACS Appl. Mater. Interfaces 9(25), 21155–21168 (2017). https://doi.org/10.1021/acsami.7b05145
- H.S. Nam, W.J. Kang, M.W. Lee, J.W. Song, J.W. Kim et al., Multispectral analog-mean-delay fluorescence lifetime imaging combined with optical coherence tomography. Biomed. Opt. Express 9(4), 1930–1947 (2018). https://doi.org/10.1364/boe.9.001930
- B. Shen, J. Yan, S. Wang, F. Zhou, Y. Zhao et al., Label-free whole-colony imaging and metabolic analysis of metastatic pancreatic cancer by an autoregulating flexible optical system. Theranostics 10(4), 1849–1860 (2020). https://doi.org/10.7150/thno.40869
- M.M. Karasev, O.V. Stepanenko, K.A. Rumyantsev, K.K. Turoverov, V.V. Verkhusha, Near-infrared fluorescent proteins and their applications. Biochemistry 84(Suppl 1), 32–50 (2019). https://doi.org/10.1134/s0006297919140037
- V. Venkataramani, D.I. Tanev, C. Strahle, A. Studier-Fischer, L. Fankhauser et al., Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573(7775), 532–538 (2019). https://doi.org/10.1038/s41586-019-1564-x
- T. Le Bourgeois, L. Strauss, H.-I. Aksoylar, S. Daneshmandi, P. Seth et al., Targeting T cell metabolism for improvement of cancer immunotherapy. Front. Oncology 8, 237 (2018). https://doi.org/10.3389/fonc.2018.00237
- Z. Li, X. Zhu, S. Huang, Extracellular vesicle long non-coding RNAs and circular RNAs: biology, functions and applications in cancer. Cancer Lett. 489, 111–120 (2020). https://doi.org/10.1016/j.canlet.2020.06.006
- A. Abramowicz, M.D. Story, The long and short of it: the emerging roles of non-coding RNA in small extracellular vesicles. Cancers 12(6), 17 (2020). https://doi.org/10.3390/cancers12061445
- K. O’Brien, K. Breyne, S. Ughetto, L.C. Laurent, X.O. Breakefield, RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21(10), 585–606 (2020). https://doi.org/10.1038/s41580-020-0251-y
References
M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher, Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805 (1994). https://doi.org/10.1126/science.8303295
W. Becker, Fluorescence lifetime imaging–techniques and applications. J. Microsc. 247(2), 119–136 (2012). https://doi.org/10.1111/j.1365-2818.2012.03618.x
X.B. Liu, D.Y. Lin, Q.Q. Wu, Y. Wei, T. Luo et al., Recent progress of fluorescence lifetime imaging microscopy technology and its application. Acta Phys. Sin. 67(17), 14 (2018). https://doi.org/10.7498/aps.67.20180320
A.J. Walsh, J.T. Sharick, M.C. Skala, H.T. Beier, Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed. Biomed. Opt. Express 7(4), 1385–1399 (2016). https://doi.org/10.1364/boe.7.001385
X.B. Liu, D.Y. Lin, W. Becker, J.J. Niu, B. Yu et al., Fast fluorescence lifetime imaging techniques: a review on challenge and development. J. Innov. Opt. Health Sci. 12(5), 27 (2019). https://doi.org/10.1142/s1793545819300039
W. Hu, L. Guo, L. Bai, X. Miao, Y. Ni et al., Maximizing aggregation of organic fluorophores to prolong fluorescence lifetime for two-photon fluorescence lifetime imaging. Adv. Healthc. Mater. (2018). https://doi.org/10.1002/adhm.201800299
T. He, C. Ren, Z. Li, S. Xiao, J. Li et al., Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging. Appl. Phys. Lett. 112(21), 4 (2018). https://doi.org/10.1063/1.5034375
H. Ranawat, S. Pal, N. Mazumder, Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications. Biomed. Eng. Lett. 9(3), 293–310 (2019). https://doi.org/10.1007/s13534-019-00119-7
H. Li, J. Yu, R. Zhang, X. Li, W. Zheng, Two-photon excitation fluorescence lifetime imaging microscopy: a promising diagnostic tool for digestive tract tumors. J. Innov. Opt. Health Sci. 12(5), 16 (2019). https://doi.org/10.1142/s179354581930009x
K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle et al., Clinical two-photon microendoscopy. Microsc. Res. Tech. 70(5), 398–402 (2007). https://doi.org/10.1002/jemt.20445
K. König, Review: clinical in vivo multiphoton flim tomography. Methods Appl. Fluoresc. (2020). https://doi.org/10.1088/2050-6120/ab8808
Y. Sun, A. Periasamy, in Localizing protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. ed. by VERVEER P J (Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512–1165 USA; 2015), pp. 83–107
B. Sauer, Q. Tian, P. Lipp, L. Kaestner, Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging. Cold Spring Harb. Protoc. 2014(12), 1328–1332 (2014). https://doi.org/10.1101/pdb.prot077040
F. Festy, S.M. Ameer-Beg, T. Ng, K. Suhling, Imaging proteins in vivo using fluorescence lifetime microscopy. Mol. Biosyst. 3(6), 381–391 (2007). https://doi.org/10.1039/b617204k
Z. Shi, X. Han, W. Hu, H. Bai, B. Peng et al., Bioapplications of small molecule aza-bodipy: from rational structural design to in vivo investigations. Chem. Soc. Rev. 49(21), 7533–7567 (2020). https://doi.org/10.1039/d0cs00234h
L.M. Hirvonen, K. Suhling, Fast timing techniques in FLIM applications. Front. Phys. 8, 20 (2020). https://doi.org/10.3389/fphy.2020.00161
S. Rajoria, L. Zhao, X. Intes, M. Barroso, FLIM-FRET for cancer applications. Curr. Mol. Imaging 3(2), 144–161 (2014). https://doi.org/10.2174/2211555203666141117221111
L.C. Chen, W.R. Lloyd, C.W. Chang, D. Sud, M.A. Mycek, in Fluorescence Lifetime Imaging Microscopy for Quantitative Biological Imaging. ed.by SLUDER G, WOLF D E (Elsevier Academic Press Inc; San Diego, 2013), pp. 457–488
W. Becker, A. Bergmann, M.A. Hink, K. Konig, K. Benndorf et al., Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc. Res. Tech. 63(1), 58–66 (2004). https://doi.org/10.1002/jemt.10421
J. Requejo-Isidro, J. McGinty, I. Munro, D.S. Elson, N.P. Galletly et al., High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt. Lett. 29(19), 2249–2251 (2004). https://doi.org/10.1364/ol.29.002249
R.V. Krishnan, H. Saitoh, H. Terada, V.E. Centonze, B. Herman, Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev. Sci. Instrum. 74(5), 2714–2721 (2003). https://doi.org/10.1063/1.1569410
L. Martelo, A. Fedorov, M.N. Berberan-Santos, Fluorescence phasor plots using time domain data: effect of the instrument response function. J. Phys. Chem. B 119(32), 10267–10274 (2015). https://doi.org/10.1021/acs.jpcb.5b00261
A. Vallmitjana, A. Dvornikov, B. Torrado, D.M. Jameson, S. Ranjit et al., Resolution of 4 components in the same pixel in FLIM images using the phasor approach. Methods Appl. Fluoresc. 8(3), 9 (2020). https://doi.org/10.1088/2050-6120/ab8570
N. Ma, M.A. Digman, L. Malacrida, E. Gratton et al., Measurements of absolute concentrations of NADH in cells using the phasor FLIM method. Bio. Opt. Express 7(7), 2441–2452 (2016). https://doi.org/10.1364/boe.7.002441
T.S. Blacker, M.R. Duchen, Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic. Biol. Med. 100, 53–65 (2016). https://doi.org/10.1016/j.freeradbiomed.2016.08.010
G. Einstein, K. Udayakumar, D. Koteeswaran, P. Aruna, S. Ganesan et al., Polarization gating technique extracts depth resolved fluorescence redox ratio in oral cancer diagnostics. Photodiagn. Photodyn. Ther. 8, 30 (2020). https://doi.org/10.1016/j.pdpdt.2020.101757
Y. Jing, Y. Wang, X. Wang, C. Song, J. Ma et al., Label-free imaging and spectroscopy for early detection of cervical cancer. J. Biophotonics (2018). https://doi.org/10.1002/jbio.201700245
R. Niesner, B. Peker, P. Schlusche, K.H. Gericke, Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. ChemPhysChem 5(8), 1141–1149 (2004). https://doi.org/10.1002/cphc.200400066
T.S. Blacker, R.J. Marsh, M.R. Duchen, A.J. Bain, Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH. Chem. Phys. 422, 184–194 (2013). https://doi.org/10.1016/j.chemphys.2013.02.019
O. Warburg, On the origin of cancer cells. Science 123(3191), 309–314 (1956). https://doi.org/10.1126/science.123.3191.309
M. Wang, F. Tang, X. Pan, L. Yao, X. Wang et al., Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy. BBA Clin. 8, 7–13 (2017). https://doi.org/10.1016/j.bbacli.2017.04.002
K. Awasthi, D. Moriya, T. Nakabayashi, L. Li, N. Ohta, Sensitive detection of intracellular environment of normal and cancer cells by autofluorescence lifetime imaging. J. Photochem. Photobiol. B 165, 256–265 (2016). https://doi.org/10.1016/j.jphotobiol.2016.10.023
M. Brandao, R. Iwakura, F. Basilio, K. Haleplian, A. Ito et al., Fluorescence lifetime of normal, benign, and malignant thyroid tissues. J. Biomed. Opt. (2015). https://doi.org/10.1117/1.Jbo.20.6.067003
M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324(5930), 1029–1033 (2009). https://doi.org/10.1126/science.1160809
T.M. Ashton, W.G. McKenna, L.A. Kunz-Schughart, G.S. Higgins, Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24(11), 2482–2490 (2018). https://doi.org/10.1158/1078-0432.Ccr-17-3070
A. Schroeder, K. Pointer, P. Clark, R. Datta, J. Kuo et al., Metabolic mapping of glioblastoma stem cells reveals NADH fluxes associated with glioblastoma phenotype and survival. J. Biomed. Opt. 25(3), 1–13 (2020). https://doi.org/10.1117/1.Jbo.25.3.036502
S. Gershanov, S. Michowiz, H. Toledano, G. Yahav, O. Barinfeld et al., Fluorescence lifetime imagingmicroscopy, a novel diagnostic tool for metastatic cell detection in the cerebrospinal fluid of children with medulloblastoma. Sci. Rep. 7(1), 3648 (2017). https://doi.org/10.1038/s41598-017-03892-6
J.M. Funes, M. Quintero, S. Henderson, D. Martinez, U. Qureshi et al.,Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc. Natl. Acad. Sci. USA 104(15), 6223–6228 (2007). https://doi.org/10.1073/pnas.0700690104
C. Jose, N. Bellance, R. Rossignol, Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta 1807(6), 552–561 (2011). https://doi.org/10.1016/j.bbabio.2010.10.012
V.S. LeBleu, J.T. O’Connell, K.N. Gonzalez Herrera, H. Wikman, K. Pantel et al., Pgc-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16(10), 992–1003 (2014). https://doi.org/10.1038/ncb3039
H. Wu, M.F. Ying, X. Hu et al., Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget 7(26), 40621–40629 (2016). https://doi.org/10.18632/oncotarget.9746
A.J. Bower, J.E. Sorrells, J. Li, M. Marjanovic, R. Barkalifa et al., Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy. Biomed. Opt. Express. 10(12), 6408–6421 (2019). https://doi.org/10.1364/boe.10.006408
A.J. Bower, J. Li, E.J. Chaney, M. Marjanovic, D.R. Spillman et al., High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy. Optica 5(10), 1290–1296 (2018). https://doi.org/10.1364/optica.5.001290
M.M. Lukina, L.E. Shimolina, N.M. Kiselev, V.E. Zagainov, D.V. Komarov et al., Interrogation of tumor metabolism in tissue samples ex vivo using fluorescence lifetime imaging of NAD(P)H. Methods Appl. Fluoresc. 8(1), 11 (2020). https://doi.org/10.1088/2050-6120/ab4ed8
T. Zahavi, G. Yahav, Y. Shimshon, S. Gershanov, L. Kaduri et al., Utilizing fluorescent life time imaging microscopy technology for identify carriers of BRCA2 mutation. Biochem. Biophys. Res. Commun. 480(1), 36–41 (2016). https://doi.org/10.1016/j.bbrc.2016.10.013
M.J. Huang, Z.X. Zhang, X.Y. Wang, Y.H. Xie, Y.Y. Fei et al., Detecting benign uterine tumors by autofluorescence lifetime imaging microscopy through adjacent healthy cervical tissues. J. Innov. Opt. Health Sci. 12(5), 11 (2019). https://doi.org/10.1142/s1793545819400066
M. Lee, J.-H. Yoon, Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse warburg effect and its therapeutic implication. World J. Biol. Chem. 6(3), 148–161 (2015). https://doi.org/10.4331/wjbc.v6.i3.148
J.M. Buschhaus, B.A. Humphries, S.S. Eckley, T.H. Robison, A.C. Cutter et al., Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow. Oncogene 39(34), 5649–5662 (2020). https://doi.org/10.1038/s41388-020-01391-z
I.N. Druzhkova, M.V. Shirmanova, M.M. Lukina, V.V. Dudenkova, N.M. Mishina et al., The metabolic interaction of cancer cells and fibroblasts—coupling between NAD(P)H and FAD, intracellular pH and hydrogen peroxide. Cell Cycle 15(9), 1257–1266 (2016). https://doi.org/10.1080/15384101.2016.1160974
B.L. Cox, S. Erickson-Bhatt, J.M. Szulczewski, J.M. Squirrell, K.D. Ludwig et al., A novel bioreactor for combined magnetic resonance spectroscopy and optical imaging of metabolism in 3d cell cultures. Magn. Reson. Med. 81(5), 3379–3391 (2019). https://doi.org/10.1002/mrm.27644
J.T. Sharick, P.F. Favreau, A.A. Gillette, S.M. Sdao, M.J. Merrins et al., Protein-bound NAD(P)H lifetime is sensitive to multiple fates of glucose carbon. Sci. Rep. 8(1), 5456 (2018). https://doi.org/10.1038/s41598-018-23691-x
D.K. Bird, L. Yan, K.M. Vrotsos, K.W. Eliceiri, E.M. Vaughan et al., Metabolic mapping of MCF10a human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme nadh. Cancer Res. 65(19), 8766–8773 (2005). https://doi.org/10.1158/0008-5472.Can-04-3922
D. Morone, F.D. Autilia, T. Schorn, M. Erreni, A. Doni, Evaluation of cell metabolic adaptation in wound and tumour by fluorescence lifetime imaging microscopy. Sci. Rep. 10(1), 6289 (2020). https://doi.org/10.1038/s41598-020-63203-4
M.N. Pastore, H. Studier, C.S. Bonder, M.S. Roberts, Non-invasive metabolic imaging of melanoma progression. Exp. Dermatol. 26(7), 607–614 (2017). https://doi.org/10.1111/exd.13274
K.T. Pate, C. Stringari, S. Sprowl-Tanio, K. Wang, T. TeSlaa et al., Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 33(13), 1454–1473 (2014). https://doi.org/10.15252/embj.201488598
X. Wang, Y. Wang, Z. Zhang, M. Huang, Y. Fei et al., Discriminating different grades of cervical intraepithelial neoplasia based on label-free phasor fluorescence lifetime imaging microscopy. Biomed. Opt. Express 11(4), 1977–1990 (2020). https://doi.org/10.1364/boe.386999
A.L. Trinh, H. Chen, Y. Chen, Y. Hu, Z. Li et al., Tracking functional tumor cell subpopulations of malignant glioma by phasor fluorescence lifetime imaging microscopy of NADH. Cancers 9(12), 13 (2017). https://doi.org/10.3390/cancers9120168
D.H. Lee, X. Li, N. Ma, M.A. Digman, A.P. Lee, Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy. Lab Chip 18(9), 1349–1358 (2018). https://doi.org/10.1039/c7lc01301a
T. Luo, Y. Lu, S. Liu, D. Lin, J. Qu, Phasor-FLIM as a screening tool for the differential diagnosis of actinic keratosis, bowen’s disease, and basal cell carcinoma. Anal. Chem. 89(15), 8104–8111 (2017). https://doi.org/10.1021/acs.analchem.7b01681
A.C.B. Sant’Anna-Silva, G.C. Santos, S.P.C. Campos, A.M. Oliveira Gomes, J.A. Pérez-Valencia et al., Metabolic profile of oral squamous carcinoma cell lines relies on a higher demand of lipid metabolism in metastatic cells. Front. Oncol. 8, 13 (2018). https://doi.org/10.3389/fonc.2018.00013
L. Kong, M.M. Murata, M.A. Digman, Absence of REV3L promotes p53-regulated cancer cell metabolism in cisplatin-treated lung carcinoma cells. Biochem. Biophys. Res. Commun. 496(1), 199–204 (2018). https://doi.org/10.1016/j.bbrc.2018.01.026
H. Wallrabe, Z. Svindrych, S.R. Alam, K.H. Siller, T. Wang et al., Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by flim. Sci. Rep. 8(1), 79 (2018). https://doi.org/10.1038/s41598-017-18634-x
S.R. Alam, H. Wallrabe, Z. Svindrych, A.K. Chaudhary, K.G. Christopher et al., Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: an NADH, FAD and Tryptophan FLIM assay. Sci. Rep. 7(1), 10451 (2017). https://doi.org/10.1038/s41598-017-10856-3
S. Cheng, R.M. Cuenca, B. Liu, B.H. Malik, J.M. Jabbour et al., Handheld multispectral fluorescence lifetime imaging system for in vivo applications. Biom. Opt. Express 5(3), 921–931 (2014). https://doi.org/10.1364/BOE.5.000921
B.H. Malik, J. Lee, S. Cheng, R. Cuenca, J.M. Jabbour et al., Objective detection of oral carcinoma with multispectral fluorescence lifetime imaging in vivo. Photochem. Photobiol. 92(5), 694–701 (2016). https://doi.org/10.1111/php.12627
E. Duran-Sierra, S. Cheng, R. Cuenca-Martinez, B. Malik, K.C. Maitland et al., Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions. Oral. Oncol. (2020). https://doi.org/10.1016/j.oraloncology.2020.104635
J.A. Jo, S. Cheng, R. Cuenca-Martinez, E. Duran-Sierra, B. Malik et al., Endogenous fluorescence lifetime imaging (FLIM) endoscopy for early detection of oral cancer and dysplasia. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 1, 3009–3012 (2018). https://doi.org/10.1109/embc.2018.8513027
R.A. Romano, R.G.T. Rosa, A.G. Salvio, J.A. Jo, C. Kurachi, Multispectral autofluorescence dermoscope for skin lesion assessment. Photodiagn. Photodyn. Therapy (2020). https://doi.org/10.1016/j.pdpdt.2020.101704
F. Poulon, J. Pallud, P. Varlet, M. Zanello, F. Chretien et al., Real-time brain tumor imaging with endogenous fluorophores: a diagnosis proof-of-concept study on fresh human samples. Sci Rep 8, 14888 (2018). https://doi.org/10.1038/s41598-018-33134-2
J.E. Phipps, D. Gorpas, J. Unger, M. Darrow, R.J. Bold et al., Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging. Phys. Med. Biol. (2017). https://doi.org/10.1088/1361-6560/aa983a
B. Chen, Y. Lu, W. Pan, J. Xiong, Z. Yang et al., Support vector machine classification of nonmelanoma skin lesions based on fluorescence lifetime imaging microscopy. Anal. Chem. 91(16), 10640–10647 (2019). https://doi.org/10.1021/acs.analchem.9b01866
S. Wang, F. Ji, Z. Li, M. Xue, Fluorescence imaging-based methods for single-cell protein analysis. Anal. Bioanal. Chem. 411(19), 4339–4347 (2019). https://doi.org/10.1007/s00216-019-01694-5
R. Penjweini, B. Roarke, G. Alspaugh, A. Gevorgyan, A. Andreoni et al., Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. Redox Biol. (2020). https://doi.org/10.1016/j.redox.2020.101549
H. Wallrabe, A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy. CurrOpin Biotechnol. 16(1), 19–27 (2005). https://doi.org/10.1016/j.copbio.2004.12.002
N. Manjubaashini, M.P. Kesavan, J. Rajesh, T. Daniel Thangadurai, Multispectroscopic and bioimaging approach for the interaction of rhodamine 6g capped gold nanoparticles with bovineserum albumin. J. Photochem. Photobiol. B 183, 374–384 (2018). https://doi.org/10.1016/j.jphotobiol.2018.05.005
K.J. Martin, E.J. McGhee, J.P. Schwarz, M. Drysdale, S.M. Brachmann et al., Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic flim-based fret experiments. PLoS ONE (2018). https://doi.org/10.1371/journal.pone.0183585
A. Xiao, A.E. Gibbons, K.E. Luker, G.D. Luker, Fluorescence lifetime imaging of apoptosis. Tomography 1(2), 115–124 (2015). https://doi.org/10.18383/j.tom.2015.00163
J.M. Buschhaus, B. Humphries, K.E. Luker, G.D. Luker, A caspase-3 reporter for fluorescence lifetime imaging of single-cell apoptosis. Cells 7(6), 57 (2018). https://doi.org/10.3390/cells7060057
M. Pajic, D. Herrmann, C. Vennin, J.R. Conway, V.T. Chin et al., The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 6(2), 123–133 (2015). https://doi.org/10.4161/21541248.2014.973749
M. Nobis, D. Herrmann, S.C. Warren, S. Kadir, W. Leung et al., A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Rep. 21(1), 274–288 (2017). https://doi.org/10.1016/j.celrep.2017.09.022
F. Sizaire, G. Le Marchand, J. Pécréaux, O. Bouchareb, M. Tramier, Automated screening of AURKA activity based on a genetically encoded FRET biosensor using fluorescence lifetime imaging microscopy. Methods Appl. Fluoresc. (2020). https://doi.org/10.1088/2050-6120/ab73f5
G. Chennell, R.J. Willows, S.C. Warren, D. Carling, P.M. French et al., Imaging of metabolic status in 3d cultures with an improved AMPK FRET biosensor for FLIM. Sensors 16(8), 1312 (2016). https://doi.org/10.3390/s16081312
J. Miles, C.J. Applebee, P. Leboucher, S. Lopez-Fernandez, D.J. Lee et al., Time resolved amplified FRET identifies protein kinase b activation state as a marker for poor prognosis in clear cell renal cell carcinoma. BBA Clin. 8, 97–102 (2017). https://doi.org/10.1016/j.bbacli.2017.10.002
M. Lu, L.W. Tay, J. He, G. Du, Monitoring phosphatidic acid signaling in breast cancer cells using genetically encoded biosensors. Methods Mol. Biol. 1406, 225–237 (2016). https://doi.org/10.1007/978-1-4939-3444-7_20
A. Buntz, S. Wallrodt, E. Gwosch, M. Schmalz, S. Beneke et al., Real-time cellular imaging of protein poly(ADP-ribos)ylation. Angew. Chem. Int. Ed. 55(37), 11256–11260 (2016). https://doi.org/10.1002/anie.201605282
J.R.W. Conway, S.C. Warren, P. Timpson, Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 128, 78–94 (2017). https://doi.org/10.1016/j.ymeth.2017.04.014
A. Losada, M.J. Muñoz-Alonso, C. García, P.A. Sánchez-Murcia, J.F. Martínez-Leal et al., Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin. Sci. Rep. 6, 35100 (2016). https://doi.org/10.1038/srep35100
W. Ashraf, C. Bronner, L. Zaayter, T. Ahmad, L. Richert et al., Interaction of the epigenetic integrator UHRF1 with the myst domain of TIP60 inside the cell. J. Exp. Clin. Cancer Res. 36(1), 188 (2017). https://doi.org/10.1186/s13046-017-0659-1
W. Liu, Y. Cui, W. Ren, J. Irudayaraj, Epigenetic biomarker screening by FLIM-FRET for combination therapy in ER+ breast cancer. Clin. Epigenetics 11(1), 16 (2019). https://doi.org/10.1186/s13148-019-0620-6
Q. Liu, E.J. Osterlund, X. Chi, J. Pogmore, B. Leber et al., Bim escapes displacement by BH3-mimetic anti-cancer drugs by double-bolt locking both Bcl-xl and Bcl-2. Elife 8, e37689 (2019). https://doi.org/10.7554/eLife.37689
M. Nobis, E.J. McGhee, D. Herrmann, A. Magenau, J.P. Morton et al., Monitoring the dynamics of src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Celll Adhes Migr. 8(5), 478–486 (2014). https://doi.org/10.4161/19336918.2014.970004
W. Hu, Q. Wang, X. Miao, L. Bai, L. Li et al., Heteroatom-containing organic molecule for two-photon fluorescence lifetime imaging and photodynamic therapy. J. Phys. Chem. C 122(36), 20945–20951 (2018). https://doi.org/10.1021/acs.jpcc.8b05460
S. Kalinina, J. Breymayer, K. Reess, L. Lilge, A. Mandel et al., Correlation of intracellular oxygen and cell metabolism by simultaneous PLIM of phosphorescent TLD1433 and FLIM of NAD(P)H. J. Biophotonics 11(10), 11 (2018). https://doi.org/10.1002/jbio.201800085
J. Kuil, P. Steunenberg, P.T.K. Chin, J. Oldenburg, K. Jalink et al., Peptide-functionalized luminescent iridium complexes for lifetime imaging of CXCR4 expression. ChemBioChem 12(12), 1896–1902 (2011). https://doi.org/10.1002/cbic.201100271
Y. Ardeshirpour, D.L. Sackett, J.R. Knutson, A.H. Gandjbakhche, Using in vivo fluorescence lifetime imaging to detect HER2-positive tumors. EJNMMI Res. 8(1), 26 (2018). https://doi.org/10.1186/s13550-018-0384-6
T.J. Lynch, D.W. Bell, R. Sordella, S. Gurubhagavatula, R.A. Okimoto et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350(21), 2129–2139 (2004). https://doi.org/10.1056/NEJMoa040938
D.J. Slamon, G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich et al., Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785), 177–182 (1987). https://doi.org/10.1126/science.3798106
G. Weitsman, P.R. Barber, L.K. Nguyen, K. Lawler, G. Patel et al., HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status. Oncotarget 7(32), 51012–51026 (2016). https://doi.org/10.18632/oncotarget.9963
G. Weitsman, N.J. Mitchell, R. Evans, A. Cheung, T.L. Kalber et al., Detecting intratumoral heterogeneity of EGFR activity by liposome-based in vivo transfection of a fluorescent biosensor. Oncogene 36(25), 3618–3628 (2017). https://doi.org/10.1038/onc.2016.522
O. Coban, L.C. Zanetti-Dominguez, D.R. Matthews, D.J. Rolfe, G. Weitsman et al., Effect of phosphorylation on EGFR dimer stability probed by single-molecule dynamics and FRET/FLIM. Biophys. J. 108(5), 1013–1026 (2015). https://doi.org/10.1016/j.bpj.2015.01.005
A.S. Cohen, R. Patek, S.A. Enkemann, J.O. Johnson, T. Chen et al., Delta-opioid receptor (δOR) targeted near-infrared fluorescent agent for imaging of lung cancer: Synthesis and evaluation in vitro and in vivo. Bioconjug. Chem. 27(2), 427–438 (2016). https://doi.org/10.1021/acs.bioconjchem.5b00516
S. Chattoraj, M.A. Amin, S. Mohapatra, S. Ghosh, K. Bhattacharyya, Cancer cell imaging using in situ generated gold nanoclusters. ChemPhysChem 17(1), 61–68 (2016). https://doi.org/10.1002/cphc.201500731
G. Yahav, A. Hirshberg, O. Salomon, N. Amariglio, L. Trakhtenbrot et al., Fluorescence lifetime imaging of DAPI-stained nuclei as a novel diagnostic tool for the detection and classification of B-cell chronic lymphocytic leukemia. Cytometry A 89(7), 644–652 (2016). https://doi.org/10.1002/cyto.a.22890
L.Y. Liu, W. Liu, K.N. Wang, B.C. Zhu, X.Y. Xia et al., Quantitative detection of G-quadruplex DNA in live cells based on photon counts and complex structure discrimination. Angew. Chem. Int. Ed. 59(24), 9719–9726 (2020). https://doi.org/10.1002/anie.202002422
T.-Y. Tseng, S.-Y. Liu, C.-L. Wang, T.-C. Chang, Antisense oligonucleotides used to identify telomeric g-quadruplexes in metaphase chromosomes and fixed cells by fluorescence lifetime imaging microscopy of o-BMVC foci. Molecules 25(18), 4083 (2020). https://doi.org/10.3390/molecules25184083
N.P. Damayanti, K. Buno, S.L.V. Harbin, J.M.K. Irudayaraj, Epigenetic process monitoring in live cultures with peptide biosensors. ACS Sensors 4(3), 562–565 (2019). https://doi.org/10.1021/acssensors.8b01134
E. Kočišová, P. Praus, J. Bok, S. Bonneau, F. Sureau, Intracellular monitoring of As1411 aptamer by time-resolved microspectrofluorimetry and fluorescence imaging. J. Fluoresc. 25(5), 1245–1250 (2015). https://doi.org/10.1007/s10895-015-1612-3
C. Ripoll, A. Orte, L. Paniza, M.J. Ruedas-Rama, A quantum dot-based FLIM glucose nanosensor. Sensors 19(22), 16 (2019). https://doi.org/10.3390/s19224992
T. Yoshihara, R. Maruyama, S. Shiozaki, K. Yamamoto, S. Kato et al., Visualization of lipid droplets in living cells and fatty livers of mice based on the fluorescenceof pi-extended coumarin using fluorescence lifetime imaging microscopy. Anal. Chem. 92(7), 4996–5003 (2020). https://doi.org/10.1021/acs.analchem.9b05184
J.R. Lazzari-Dean, A.M. Gest, E.W. Miller, Optical estimation of absolute membrane potential using fluorescence lifetime imaging. Elife 8, 29 (2019). https://doi.org/10.7554/eLife.44522
I.A. Okkelman, D.B. Papkovsky, R.I. Dmitriev, Estimation of the mitochondrial membrane potential using fluorescence lifetime imaging microscopy. Cytom. Part A 97(5), 471–482 (2019). https://doi.org/10.1002/cyto.a.23886
V.G. Almendro-Vedia, C. Garcia, R. Ahijado-Guzman, D. de la Fuente-Herreruela, M. Munoz-Ubeda et al., Supramolecular zippers elicit interbilayer adhesion of membranes producing cell death. Biochim. Biophys. Acta-Gen. Subj. 1862(12), 2824–2834 (2018). https://doi.org/10.1016/j.bbagen.2018.08.018
S. Gonzalez Rubio, N. Montero Pastor, C. Garcia, V.G. Almendro-Vedia, I. Ferrer et al., Enhanced cytotoxic activity of mitochondrial mechanical effectors in human lung carcinoma h520 cells: Pharmaceutical implications for cancer therapy. Front. Oncol. 8, 8 (2018). https://doi.org/10.3389/fonc.2018.00514
X. Liu, W. Chi, Q. Qiao, S.V. Kokate, E.P. Cabrera et al., Molecular mechanism of viscosity sensitivity in bodipy rotors and application to motion-based fluorescent sensors. ACS Sens. 5(3), 731–739 (2020). https://doi.org/10.1021/acssensors.9b01951
M.V. Shirmanova, M.M. Lukina, L.E. Shimolina, M.K. Kuimova, V.V. Dudenkova et al., in Probing Energy Metabolism and Microviscosity in Cancer Using FLIM. ed.by BROWN J Q, VANLEEUWEN T G (Spie-Int Soc Optical Engineering; Bellingham, 2017), paper1041102, pp.1–5
M.V. Shirmanova, L.E. Shimolina, M.M. Lukina, E.V. Zagaynova, M.K. Kuimova, Live cell imaging of viscosity in 3d tumour cell models. Adv. Exp. Med. Biol. 1035, 143–153 (2017). https://doi.org/10.1007/978-3-319-67358-5_10
L.E. Shimolina, M.A. Izquierdo, I. López-Duarte, J.A. Bull, M.V. Shirmanova et al., Imaging tumor microscopic viscosity in vivo using molecular rotors. Sci. Rep. 7, 41097 (2017). https://doi.org/10.1038/srep41097
N. O’Donnell, I.A. Okkelman, P. Timashev, T.I. Gromovykh, D.B. Papkovsky et al., Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater. 80, 85–96 (2018). https://doi.org/10.1016/j.actbio.2018.09.034
H. Wang, H. Yang, Z.P. Xu, X. Liu, M.S. Roberts et al., Anionic long-circulating quantum dots for long-term intravital vascular imaging. Pharmaceutics 10(4), 8 (2018). https://doi.org/10.3390/pharmaceutics10040244
N. Li, Z. Huang, X. Zhang, X. Song, Y. Xiao, Reflecting size differences of exosomes by using the combination of membrane-targeting viscosity probe and fluorescence lifetime imaging microscopy. Anal. Chem. 91(23), 15308–15316 (2019). https://doi.org/10.1021/acs.analchem.9b04587
F. Wong, O. Coban, G. Weitsman, T. Ng, Integrating imaging, exosome and protein network rewiring information to track early tumour evolution of resistance mechanisms. Converg. Sci. Phys. Oncol. 3(1), 9 (2017). https://doi.org/10.1088/2057-1739/aa5cbd
R.K. Koninti, S. Palvai, S. Satpathi, S. Basu, P. Hazra, Loading of an anti-cancer drug into mesoporous silica nano-channels and its subsequent release to DNA. Nanoscale 8(43), 18436–18445 (2016). https://doi.org/10.1039/c6nr06285g
H. Saari, E. Lisitsyna, K. Rautaniemi, T. Rojalin, L. Niemi et al., FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel. J. Control. Release 284, 133–143 (2018). https://doi.org/10.1016/j.jconrel.2018.06.015
G. Caracciolo, S. Palchetti, L. Digiacomo, R.Z.Z. Chiozzi, A.L. Capriotti et al., Human biomolecular corona of liposomal doxorubicin: the overlooked factor in anticancer drug delivery. ACS Appl. Mater. Interfaces 10(27), 22951–22962 (2018). https://doi.org/10.1021/acsami.8b04962
A.L.B. Seynhaeve, B.M. Dicheva, S. Hoving, G.A. Koning, T.L.M. ten Hagen, Intact doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome: evaluated by in vitro/in vivo live cell imaging. J. Control. Release 172(1), 330–340 (2013). https://doi.org/10.1016/j.jconrel.2013.08.034
U. Alexiev, P. Volz, A. Boreham, R. Brodwolf, Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm. 116, 111–124 (2017). https://doi.org/10.1016/j.ejpb.2017.01.005
E. Tawagi, C. Massmann, H. Chibli, J.L. Nadeau, Differential toxicity of gold-doxorubicin in cancer cells vs. Cardiomyocytes as measured by real-time growth assays and fluorescence lifetime imaging microscopy (FLIM). Analyst 140(16), 5732–5741 (2015). https://doi.org/10.1039/c5an00446b
E. Quagliarini, R. Di Santo, D. Pozzi, P. Tentori, F. Cardarelli et al., Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells. Nanomaterials 10(8), 1482 (2020). https://doi.org/10.3390/nano10081482
T. Zhou, T. Luo, J. Song, J. Qu, Phasor-fluorescence lifetime imaging microscopy analysis to monitor intercellular drug release from a pH-sensitive polymeric nanocarrier. Anal. Chem. 90(3), 2170–2177 (2018). https://doi.org/10.1021/acs.analchem.7b04511
S. Suarasan, A.M. Craciun, E. Licarete, M. Focsan, K. Magyari et al., Intracellulardynamic disentangling of doxorubicin release from luminescent nanogold carriers by fluorescence lifetime imaging microscopy (FLIM) under two-photon excitation. ACS Appl. Mater. Interfaces 11(8), 7812–7822 (2019). https://doi.org/10.1021/acsami.8b21269
H. Ge, F. Cortezon-Tamarit, H.-C. Wang, A.C. Sedgwick, R.L. Arrowsmith et al., Multiphoton fluorescence lifetime imaging microscopy (FLIM) and super-resolution fluorescence imaging with a supramolecular biopolymer for the controlled tagging of polysaccharides. Nanoscale 11(19), 9498–9507 (2019). https://doi.org/10.1039/c8nr10344e
T. Nagy-Simon, A.S. Tatar, A.M. Craciun, A. Vulpoi, M.A. Jurj et al., Antibody conjugated, raman tagged hollow gold-silver nanospheres for specific targeting and multimodal dark-field/SERS/two photon-FLIM imaging of CD19(+) B lymphoblasts. ACS Appl. Mater. Interfaces 9(25), 21155–21168 (2017). https://doi.org/10.1021/acsami.7b05145
H.S. Nam, W.J. Kang, M.W. Lee, J.W. Song, J.W. Kim et al., Multispectral analog-mean-delay fluorescence lifetime imaging combined with optical coherence tomography. Biomed. Opt. Express 9(4), 1930–1947 (2018). https://doi.org/10.1364/boe.9.001930
B. Shen, J. Yan, S. Wang, F. Zhou, Y. Zhao et al., Label-free whole-colony imaging and metabolic analysis of metastatic pancreatic cancer by an autoregulating flexible optical system. Theranostics 10(4), 1849–1860 (2020). https://doi.org/10.7150/thno.40869
M.M. Karasev, O.V. Stepanenko, K.A. Rumyantsev, K.K. Turoverov, V.V. Verkhusha, Near-infrared fluorescent proteins and their applications. Biochemistry 84(Suppl 1), 32–50 (2019). https://doi.org/10.1134/s0006297919140037
V. Venkataramani, D.I. Tanev, C. Strahle, A. Studier-Fischer, L. Fankhauser et al., Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573(7775), 532–538 (2019). https://doi.org/10.1038/s41586-019-1564-x
T. Le Bourgeois, L. Strauss, H.-I. Aksoylar, S. Daneshmandi, P. Seth et al., Targeting T cell metabolism for improvement of cancer immunotherapy. Front. Oncology 8, 237 (2018). https://doi.org/10.3389/fonc.2018.00237
Z. Li, X. Zhu, S. Huang, Extracellular vesicle long non-coding RNAs and circular RNAs: biology, functions and applications in cancer. Cancer Lett. 489, 111–120 (2020). https://doi.org/10.1016/j.canlet.2020.06.006
A. Abramowicz, M.D. Story, The long and short of it: the emerging roles of non-coding RNA in small extracellular vesicles. Cancers 12(6), 17 (2020). https://doi.org/10.3390/cancers12061445
K. O’Brien, K. Breyne, S. Ughetto, L.C. Laurent, X.O. Breakefield, RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21(10), 585–606 (2020). https://doi.org/10.1038/s41580-020-0251-y