Human iPS Cells Loaded with MnO2-Based Nanoprobes for Photodynamic and Simultaneous Enhanced Immunotherapy Against Cancer
Corresponding Author: Daxiang Cui
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 127
Abstract
How to trigger strong anti-tumor immune responses has become a focus for tumor therapy. Here, we report the human-induced pluripotent stem cells (iPSs) to deliver MnO2@Ce6 nanoprobes into tumors for simultaneous photodynamic therapy (PDT) and enhanced immunotherapy. Ce6 photosensitizer was attached on manganese dioxide (MnO2) nanoparticles, and resultant MnO2@Ce6 nanoprobes were delivered into mitomycin-treated iPSs to form iPS-MnO2@Ce6 nanoprobes. The iPS-MnO2@Ce6 actively targeted in vivo tumors, the acidic microenvironment triggered interaction between MnO2 and H2O2, released large quantities of oxygen, alleviated hypoxia in tumor. Upon PDT, singlet oxygen formed, broken iPSs released tumor-shared antigens, which evoked an intensive innate and adaptive immune response against the tumor, improving dendritic cells matured, effector T cells, and natural killer cells were activated. Meanwhile, regulatory T cells were reduced, and then the immune response induced by iPS-MnO2@Ce6 was markedly stronger than the immune reaction induced by MnO2@Ce6 (P < 0.05). The iPS-MnO2@Ce6 markedly inhibited tumor growth and metastasis and reduced mortality in mice models with tumor. Human iPSs loaded with MnO2-based nanoprobes are a promising strategy for simultaneous PDT and enhanced immunotherapy against tumor and own clinical translational prospect.
Highlights:
1 MnO2@Ce6 nanoprobes-loaded-iPS cells (iPS-MnO2@Ce6) were developed for enhanced photodynamic and immunotherapy against cancer.
2 Under the guidance of multi-mode real-time imaging, iPS-MnO2@Ce6 achieved an enhanced photodynamic therapeutic effect and stimulated a strong anti-tumor immune response in the tumor-bearing mouse.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.W. Hanahan, The hallmarks of cancer. Cell 100, 57–70 (2000). https://doi.org/10.1016/S0092-8674(00)81683-9
- W. Zou, J.D. Wolchok, L. Chen, PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328–332 (2016). https://doi.org/10.1126/scitranslmed.aad7118
- A. Domling, T.A. Holak, Programmed death-1: therapeutic success after more than 100 years of cancer immunotherapy. Angew. Chem. Int. Ed. 53, 2286–2288 (2014). https://doi.org/10.1002/anie.201307906
- Z. Meng, X. Zhou, J. Xu, X. Han, Z. Dong et al., Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 31, e1900927 (2019). https://doi.org/10.1002/adma.201900927
- P.N. Manghnani, W. Wu, S. Xu, F. Hu, C. The, B. Liu, Visualizing photodynamic therapy in transgenic zebrafish using organic nanoparticles with aggregation-induced emission. Nano-Micro Lett. 10, 61 (2018). https://doi.org/10.1007/s40820-018-0214-4
- P. Srivastava, Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185–194 (2002). https://doi.org/10.1038/nri749
- M. Korbelik, Photodynamic therapy—induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 65, 1018–1026 (2005)
- Google Scholar
- G.M. Lynn, R. Laga, P.A. Darrah, A.S. Ishizuka, A.J. Balaci et al., In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 33, 1201–1210 (2015). https://doi.org/10.1038/nbt.3371
- Y. Min, K.C. Roche, S. Tian, M.J. Eblan, K.P. McKinnon et al., Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017). https://doi.org/10.1038/nnano.2017.113
- W. Xie, W.W. Deng, M. Zan, L. Rao, G.T. Yu et al., Cancer cell membrane camouflaged nanoparticles to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy. ACS Nano 13, 2849–2857 (2019). https://doi.org/10.1021/acsnano.8b03788
- L. Jeanbart, M.A. Swartz, Engineering opportunities in cancer immunotherapy. Proc. Natl. Acad. Sci. USA 112, 14467–14472 (2015). https://doi.org/10.1073/pnas.1508516112
- X. Lu, J.W. Horner, E. Paul, X. Shang, P. Troncoso, P. Deng et al., Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017). https://doi.org/10.1038/nature21676
- G. Yang, L. Xu, Y. Chao, J. Xu, X. Sun, Y. Wu et al., Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8, 902–912 (2017). https://doi.org/10.1038/s41467-017-01050-0
- W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin et al., Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 10, 2025–2032 (2019). https://doi.org/10.1038/s41467-019-09760-3
- L. Dai, K. Li, M. Li, X. Zhao, Z. Luo et al., Size/charge changeable acidity-responsive micelleplex for photodynamic-improved PD-L1 immunotherapy with enhanced tumor penetration. Adv. Funct. Mater. 28, 1707249 (2018). https://doi.org/10.1002/adfm.201707249
- X. Duan, C. Chan, N. Guo, W. Han, R.R. Weichselbau et al., Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc. 138, 16686–16695 (2016). https://doi.org/10.1021/jacs.6b09538
- D. Wang, T. Wang, J. Liu, H. Yu, S. Jiao et al., Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 16, 5503–5509 (2016). https://doi.org/10.1021/acs.nanolett.6b01994
- S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127–7138 (2011). https://doi.org/10.1016/j.biomaterials.2011.06.024
- Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji et al., Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8, 11529–11542 (2014). https://doi.org/10.1021/nn5047647
- W. Hou, F. Xia, C.S. Alves, X. Qian, Y. Yang et al., MMP2-targeting and redox-responsive PEGylated chlorin e6 nanoparticles for cancer near-infrared imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 8, 1447–1457 (2016). https://doi.org/10.1021/acsami.5b10772
- F. Xia, W. Hou, Y. Liu, W. Wang, Y. Han et al., Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials 170, 1–11 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.048
- C.H. Chang, J. Qiu, D. O’Sullivan, M.D. Buck, T. Noguchi et al., Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015). https://doi.org/10.1016/j.cell.2015.08.016
- I. Lohse, C. Lourenco, E. Ibrahimov, M. Pintilie, M.S. Tsao et al., Assessment of hypoxia in the stroma of patient-derived pancreatic tumor xenografts. Cancers 6, 459–471 (2014). https://doi.org/10.3390/cancers6010459
- I. Ben-Porath, M.W. Thomson, V.J. Carey, R. Ge, G.W. Bell et al., An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008). https://doi.org/10.1038/ng.127
- Z. Ghosh, M. Huang, S. Hu, K.D. Wilson, D. Dey et al., Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Res. 71, 5030–5039 (2011). https://doi.org/10.1158/0008-5472.CAN-10-4402
- K. Yaddanapudi, R.A. Mitchell, K. Putty, S. Willer, R.K. Sharma et al., Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible? PLoS ONE 7, e42289 (2012). https://doi.org/10.1371/journal.pone.0042289
- K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007). https://doi.org/10.1016/j.cell.2007.11.019
- K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). https://doi.org/10.1016/j.cell.2006.07.024
- N.G. Kooreman, Y. Kim, P.E. Almeida, V. Termglinchan, S. Diecke et al., Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell 22, 501–511 (2018). https://doi.org/10.1016/j.stem.2018.01.016
- P.E. Almeida, E.H. Meyer, N.G. Kooreman, S. Diecke, D. Dey et al., Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat. Commun. 5, 3903–3909 (2014). https://doi.org/10.1038/ncomms4903
- T. Zhao, Z.N. Zhang, Z. Rong, Y. Xu, Immunogenicity of induced pluripotent stem cells. Nature 474, 212–215 (2011). https://doi.org/10.1038/nature10135
- C. Bock, E. Kiskinis, G. Verstappen, H. Gu, G. Boulting et al., Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011). https://doi.org/10.1016/j.cell.2010.12.032
- B.S. Mallon, J.G. Chenoweth, K.R. Johnson, R.S. Hamilton, P.J. Tesar et al., StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Stem Cell Res. 10, 57–66 (2013). https://doi.org/10.1016/j.scr.2012.09.002
- Y. Liu, M. Yang, J. Zhang, X. Zhi, C. Li et al., Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 10, 2375–2385 (2016). https://doi.org/10.1021/acsnano.5b07172
- M. Yang, Y. Liu, W. Hou, X. Zhi, C. Zhang et al., Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer. Nanoscale 9, 334–340 (2017). https://doi.org/10.1039/C6NR06851K
- Y.L. Liu, Y.X. Pan, W. Cao, F.F. Xia, B. Liu et al., A tumor microenvironment responsive biodegradable CaCO3/MnO2-based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics 9, 6867–6884 (2019). https://doi.org/10.7150/thno.37586
- W. Cao, B. Liu, F.F. Xia, M. Duan, Y.P. Hong et al., MnO2@Ce6-loaded mesenchymal stem cells as an “oxygen-laden guided-missile” for the enhanced photodynamic therapy on lung cancer. Nanoscale 12, 3090–3102 (2020). https://doi.org/10.1039/C9NR07947E
- Y. Luo, Preparation of MnO2 nanoparticles by directly mixing potassium permanganate and polyelectrolyte aqueous solutions. Mater. Lett. 61, 1893–1999 (2007). https://doi.org/10.1016/j.matlet.2006.07.165
- W. Zhu, Z. Dong, T. Fu, J. Liu, Q. Chen et al., Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 26, 5490 (2016). https://doi.org/10.1002/adfm.201600676
- J.L. Messerschmidt, G.C. Prendergast, G.L. Messerschmidt, How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: helping nonimmunologists decipher recent advances. Oncologist 61, 21–22 (2016). https://doi.org/10.1634/theoncologist.2015-0282
References
D.W. Hanahan, The hallmarks of cancer. Cell 100, 57–70 (2000). https://doi.org/10.1016/S0092-8674(00)81683-9
W. Zou, J.D. Wolchok, L. Chen, PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328–332 (2016). https://doi.org/10.1126/scitranslmed.aad7118
A. Domling, T.A. Holak, Programmed death-1: therapeutic success after more than 100 years of cancer immunotherapy. Angew. Chem. Int. Ed. 53, 2286–2288 (2014). https://doi.org/10.1002/anie.201307906
Z. Meng, X. Zhou, J. Xu, X. Han, Z. Dong et al., Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 31, e1900927 (2019). https://doi.org/10.1002/adma.201900927
P.N. Manghnani, W. Wu, S. Xu, F. Hu, C. The, B. Liu, Visualizing photodynamic therapy in transgenic zebrafish using organic nanoparticles with aggregation-induced emission. Nano-Micro Lett. 10, 61 (2018). https://doi.org/10.1007/s40820-018-0214-4
P. Srivastava, Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185–194 (2002). https://doi.org/10.1038/nri749
M. Korbelik, Photodynamic therapy—induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 65, 1018–1026 (2005)
Google Scholar
G.M. Lynn, R. Laga, P.A. Darrah, A.S. Ishizuka, A.J. Balaci et al., In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 33, 1201–1210 (2015). https://doi.org/10.1038/nbt.3371
Y. Min, K.C. Roche, S. Tian, M.J. Eblan, K.P. McKinnon et al., Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017). https://doi.org/10.1038/nnano.2017.113
W. Xie, W.W. Deng, M. Zan, L. Rao, G.T. Yu et al., Cancer cell membrane camouflaged nanoparticles to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy. ACS Nano 13, 2849–2857 (2019). https://doi.org/10.1021/acsnano.8b03788
L. Jeanbart, M.A. Swartz, Engineering opportunities in cancer immunotherapy. Proc. Natl. Acad. Sci. USA 112, 14467–14472 (2015). https://doi.org/10.1073/pnas.1508516112
X. Lu, J.W. Horner, E. Paul, X. Shang, P. Troncoso, P. Deng et al., Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017). https://doi.org/10.1038/nature21676
G. Yang, L. Xu, Y. Chao, J. Xu, X. Sun, Y. Wu et al., Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8, 902–912 (2017). https://doi.org/10.1038/s41467-017-01050-0
W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin et al., Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 10, 2025–2032 (2019). https://doi.org/10.1038/s41467-019-09760-3
L. Dai, K. Li, M. Li, X. Zhao, Z. Luo et al., Size/charge changeable acidity-responsive micelleplex for photodynamic-improved PD-L1 immunotherapy with enhanced tumor penetration. Adv. Funct. Mater. 28, 1707249 (2018). https://doi.org/10.1002/adfm.201707249
X. Duan, C. Chan, N. Guo, W. Han, R.R. Weichselbau et al., Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc. 138, 16686–16695 (2016). https://doi.org/10.1021/jacs.6b09538
D. Wang, T. Wang, J. Liu, H. Yu, S. Jiao et al., Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 16, 5503–5509 (2016). https://doi.org/10.1021/acs.nanolett.6b01994
S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127–7138 (2011). https://doi.org/10.1016/j.biomaterials.2011.06.024
Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji et al., Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8, 11529–11542 (2014). https://doi.org/10.1021/nn5047647
W. Hou, F. Xia, C.S. Alves, X. Qian, Y. Yang et al., MMP2-targeting and redox-responsive PEGylated chlorin e6 nanoparticles for cancer near-infrared imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 8, 1447–1457 (2016). https://doi.org/10.1021/acsami.5b10772
F. Xia, W. Hou, Y. Liu, W. Wang, Y. Han et al., Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials 170, 1–11 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.048
C.H. Chang, J. Qiu, D. O’Sullivan, M.D. Buck, T. Noguchi et al., Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015). https://doi.org/10.1016/j.cell.2015.08.016
I. Lohse, C. Lourenco, E. Ibrahimov, M. Pintilie, M.S. Tsao et al., Assessment of hypoxia in the stroma of patient-derived pancreatic tumor xenografts. Cancers 6, 459–471 (2014). https://doi.org/10.3390/cancers6010459
I. Ben-Porath, M.W. Thomson, V.J. Carey, R. Ge, G.W. Bell et al., An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008). https://doi.org/10.1038/ng.127
Z. Ghosh, M. Huang, S. Hu, K.D. Wilson, D. Dey et al., Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Res. 71, 5030–5039 (2011). https://doi.org/10.1158/0008-5472.CAN-10-4402
K. Yaddanapudi, R.A. Mitchell, K. Putty, S. Willer, R.K. Sharma et al., Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible? PLoS ONE 7, e42289 (2012). https://doi.org/10.1371/journal.pone.0042289
K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007). https://doi.org/10.1016/j.cell.2007.11.019
K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). https://doi.org/10.1016/j.cell.2006.07.024
N.G. Kooreman, Y. Kim, P.E. Almeida, V. Termglinchan, S. Diecke et al., Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell 22, 501–511 (2018). https://doi.org/10.1016/j.stem.2018.01.016
P.E. Almeida, E.H. Meyer, N.G. Kooreman, S. Diecke, D. Dey et al., Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat. Commun. 5, 3903–3909 (2014). https://doi.org/10.1038/ncomms4903
T. Zhao, Z.N. Zhang, Z. Rong, Y. Xu, Immunogenicity of induced pluripotent stem cells. Nature 474, 212–215 (2011). https://doi.org/10.1038/nature10135
C. Bock, E. Kiskinis, G. Verstappen, H. Gu, G. Boulting et al., Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011). https://doi.org/10.1016/j.cell.2010.12.032
B.S. Mallon, J.G. Chenoweth, K.R. Johnson, R.S. Hamilton, P.J. Tesar et al., StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Stem Cell Res. 10, 57–66 (2013). https://doi.org/10.1016/j.scr.2012.09.002
Y. Liu, M. Yang, J. Zhang, X. Zhi, C. Li et al., Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 10, 2375–2385 (2016). https://doi.org/10.1021/acsnano.5b07172
M. Yang, Y. Liu, W. Hou, X. Zhi, C. Zhang et al., Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer. Nanoscale 9, 334–340 (2017). https://doi.org/10.1039/C6NR06851K
Y.L. Liu, Y.X. Pan, W. Cao, F.F. Xia, B. Liu et al., A tumor microenvironment responsive biodegradable CaCO3/MnO2-based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics 9, 6867–6884 (2019). https://doi.org/10.7150/thno.37586
W. Cao, B. Liu, F.F. Xia, M. Duan, Y.P. Hong et al., MnO2@Ce6-loaded mesenchymal stem cells as an “oxygen-laden guided-missile” for the enhanced photodynamic therapy on lung cancer. Nanoscale 12, 3090–3102 (2020). https://doi.org/10.1039/C9NR07947E
Y. Luo, Preparation of MnO2 nanoparticles by directly mixing potassium permanganate and polyelectrolyte aqueous solutions. Mater. Lett. 61, 1893–1999 (2007). https://doi.org/10.1016/j.matlet.2006.07.165
W. Zhu, Z. Dong, T. Fu, J. Liu, Q. Chen et al., Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 26, 5490 (2016). https://doi.org/10.1002/adfm.201600676
J.L. Messerschmidt, G.C. Prendergast, G.L. Messerschmidt, How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: helping nonimmunologists decipher recent advances. Oncologist 61, 21–22 (2016). https://doi.org/10.1634/theoncologist.2015-0282