Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy
Corresponding Author: Yen Nee Tan
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 123
Abstract
The great promise of photodynamic therapy (PDT) has thrusted the rapid progress of developing highly effective photosensitizers (PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers (nano-photosensitizers) with better photostability and higher singlet oxygen generation (SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nano-photosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG (ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.
Highlights:
1 Recent advancement in Type II nano-photosensitizers (AIE nanodots, carbon dots and metal nanoclusters) are reviewed.
2 Nanoplasmonic strategies in enhancing singlet oxygen generation efficiency of different metal-photosensitizer (planar and colloidal) systems are discussed.
3 Current challenges and future prospects of metal-enhanced nano-photosensitizers for advanced photodynamic therapy and theranostic treatment are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Ntziachristos, C. Bremer, R. Weissleder, Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208 (2003). https://doi.org/10.1007/s00330-002-1524-x
- J. Liang, B.Z. Tang, B. Liu, Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 44(10), 2798–2811 (2015). https://doi.org/10.1039/C4CS00444B
- T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003). https://doi.org/10.1101/gad.1047403
- B. Commoner, J. Townsend, G.E. Pake, Free radicals in biological materials. Nature 174(4432), 689 (1954). https://doi.org/10.1038/174689a0
- L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014). https://doi.org/10.1021/cr400532z
- D.E. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380 (2003). https://doi.org/10.1038/nrc1071
- D.J. Burgess, Nanotechnology: tissue penetration of photodynamic therapy. Nat. Rev. Cancer 12(11), 737 (2012). https://doi.org/10.1038/nrc3393
- J.B. Birks, Photophysics of Aromatic Molecules (London, 1970).
- G.A. Hutton, B. Reuillard, B.C. Martindale, C.A. Caputo, C.W. Lockwood et al., Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138(51), 16722–16730 (2016). https://doi.org/10.1021/jacs.6b10146
- Y. Yuan, C.J. Zhang, M. Gao, R. Zhang, B.Z. Tang et al., Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew. Chem. Int. Ed. 54(6), 1780–1786 (2015). https://doi.org/10.1002/anie.201408476
- S. Xu, Y. Yuan, X. Cai, C.J. Zhang, F. Hu et al., Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chem. Sci. 6(10), 5824–5830 (2015). https://doi.org/10.1039/C5SC01733E
- Y. Yu, J. Geng, E.Y.X. Ong, V. Chellappan, Y.N. Tan, Bovine serum albulmin protein-templated silver nanocluster (BSA-Ag13): an effective singlet oxygen generator for photodynamic cancer therapy. Adv. Healthc. Mater. 5(19), 2528–2535 (2016). https://doi.org/10.1002/adhm.201600312
- L.M.T. Phan, A.R. Gul, T.N. Le, M.W. Kim, S.K. Kailasa et al., One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells. Biomater. Sci. 7(12), 5187–5196 (2019). https://doi.org/10.1039/C9BM01228A
- R. Rafique, A.R. Gul, I.G. Lee, S.H. Baek, S.K. Kailasa et al., Photo-induced reactions for disassembling of coloaded photosensitizer and drug molecules from upconversion-mesoporous silica nanops: an effective synergistic cancer therapy. Mater. Sci. Eng. C 110, 110545 (2020). https://doi.org/10.1016/j.msec.2019.110545
- M. Ashrafizadeh, R. Mohammadinejad, S.K. Kailasa, Z. Ahmadi, E.G. Afshar et al., Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: a review. Adv. Colloid Interfaces Sci. 278, 102123 (2020). https://doi.org/10.1016/j.cis.2020.102123
- R. Rafique, S.K. Kailasa, T.J. Park, Recent advances of upconversion nanops in theranostics and bioimaging applications. TrAC Trends Anal. Chem. 120, 115646 (2019). https://doi.org/10.1016/j.trac.2019.115646
- Y. Zhang, K. Aslan, M.J. Previte, C.D. Geddes, Plasmonic engineering of singlet oxygen generation. PNAS 105(6), 1798–1802 (2008). https://doi.org/10.1073/pnas.0709501105
- Y. Zhang, K. Aslan, M.J. Previte, C.D. Geddes, Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields. J. Fluoresc. 17(4), 345–349 (2007). https://doi.org/10.1007/s10895-007-0196-y
- X. Ragas, A. Gallardo, Y. Zhang, W. Massad, C.D. Geddes et al., Singlet oxygen phosphorescence enhancement by silver islands films. J. Phys. Chem. C 115(33), 16275–16281 (2011). https://doi.org/10.1021/jp202095a
- M.T. Yaraki, F. Hu, S.D. Rezaei, B. Liu, Y.N. Tan, Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. Nanoscale Adv. 2(7), 2859–2869 (2020). https://doi.org/10.1039/D0NA00182A
- M.T. Yaraki, M. Wu, E. Middha, W. Wu, S.D. Rezaei et al., Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-Micro Lett. 13, 58 (2021). https://doi.org/10.1007/s40820-020-00583-2
- M.T. Yaraki, Y. Pan, F. Hu, Y. Yu, B. Liu et al., Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front. 4(10), 3074–3085 (2020). https://doi.org/10.1039/D0QM00469C
- K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J.R. Lakowicz et al., Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol. 16(1), 55–62 (2005). https://doi.org/10.1016/j.copbio.2005.01.001
- P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanops and their applications to biosystems. Plasmonics 2(3), 107–118 (2007). https://doi.org/10.1007/s11468-007-9031-1
- M.R. Younis, G. He, J. Qu, J. Lin, P. Huang et al., Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 8(21), 2102587 (2021). https://doi.org/10.1002/advs.202102587
- B. Li, S. Zhao, L. Huang, Q. Wang, J. Xiao et al., Recent advances and prospects of carbon dots in phototherapy. Chem. Eng. J. 408, 127245 (2021). https://doi.org/10.1016/j.cej.2020.127245
- T. Kawawaki, Y. Negishi, H. Kawasaki, Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Adv. 2(1), 17–36 (2020). https://doi.org/10.1039/C9NA00583H
- S. Liu, G. Feng, B.Z. Tang, B. Liu, Recent advances of AIE light-up probes for photodynamic therapy. Chem. Sci. 12(19), 6488–6506 (2021). https://doi.org/10.1039/D1SC00045D
- R. Tong, D.S. Kohane, Shedding light on nanomedicine. WIREs Nanomed. Nanobiotechnol. 4(6), 638–662 (2012). https://doi.org/10.1002/wnan.1188
- L.B. Josefsen, R.W. Boyle, Photodynamic therapy and the development of metal-based photosensitisers. Met.-Based Drugs 2008, 276109 (2008). https://doi.org/10.1155/2008/276109
- J. Zhao, W. Wu, J. Sun, S. Guo, Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 42(12), 5323–5351 (2013). https://doi.org/10.1039/c3cs35531d
- F. Wilkinson, W.P. Helman, A.B. Ross, Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 22(1), 113–262 (1993). https://doi.org/10.1063/1.555934
- S. Wang, R. Gao, F. Zhou, M. Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J. Mater. Chem. 14(4), 487–493 (2004). https://doi.org/10.1039/b311429e
- J.M. Dąbrowski, in Reactive oxygen species in photodynamic therapy: mechanisms of their generation and potentiation. Adv. Inorg. Chem. 70, 343–394 (2017). https://doi.org/10.1016/bs.adioch.2017.03.002
- J.F. Lovell, T.W. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy. Chem. Rev. 110(5), 2839–2857 (2010). https://doi.org/10.1021/cr900236h
- B.W. Henderson, T.J. Dougherty, How does photodynamic therapy work? Photochem. Photobiol. 55(1), 145–157 (1992). https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
- R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 24(1), 19–33 (1995). https://doi.org/10.1039/cs9952400019
- R. Mittler, ROS are good. Trends Plant Sci. 22(1), 11–19 (2017). https://doi.org/10.1016/j.tplants.2016.08.002
- P.Y. Liao, X.R. Wang, Y.H. Gao, X.H. Zhang, L.J. Zhang et al., Synthesis, photophysical properties and biological evaluation of β-alkylaminoporphyrin for photodynamic therapy. Bioorg. Med. Chem. 24(22), 6040–6047 (2016). https://doi.org/10.1016/j.bmc.2016.09.060
- J.J. Chen, G. Hong, L.J. Gao, T.J. Liu, W.J. Cao, In vitro and in vivo antitumor activity of a novel porphyrin-based photosensitizer for photodynamic therapy. J. Cancer Res. Clin. Oncol. 141(9), 1553–1561 (2015). https://doi.org/10.1007/s00432-015-1918-1
- M. Nakai, T. Maeda, T. Mashima, S. Yano, S. Sakuma et al., Syntheses and photodynamic properties of glucopyranoside-conjugated indium (III) porphyrins as a bifunctional agent. J. Porphyr. Phthalocyanines 17(12), 1173–1182 (2013). https://doi.org/10.1142/S1088424613500934
- H. Horiuchi, M. Hosaka, H. Mashio, M. Terata, S. Ishida et al., Silylation improves the photodynamic activity of tetraphenylporphyrin derivatives in vitro and in vivo. Chem. Eur. J. 20(20), 6054–6060 (2014). https://doi.org/10.1002/chem.201303120
- T.D. Lash, V. Gandhi, Porphyrins with exocyclic rings. 15.1 synthesis of quino-and isoquinoporphyrins, aza analogues of the naphthoporphyrins. J. Org. Chem. 65(23), 8020–8026 (2000). https://doi.org/10.1021/jo001216m
- H. Brunner, H. Obermeier, Platinum (II) complexes with porphyrin ligands-additive cytotoxic and photodynamic effect. Angew. Chem. Int. Ed. 33(21), 2214–2215 (1994). https://doi.org/10.1002/anie.199422141
- J. Ferreira, P.F. Menezes, C. Kurachi, C. Sibata, R. Allison et al., Photostability of different chlorine photosensitizers. Laser Phys. Lett. 5(2), 156 (2007). https://doi.org/10.1002/lapl.200710099
- R. Asano, A. Nagami, Y. Fukumoto, K. Miura, F. Yazama et al., Synthesis and biological evaluation of new boron-containing chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer. Bioorg. Med. Chem. Lett. 24(5), 1339–1343 (2014). https://doi.org/10.1016/j.bmcl.2014.01.054
- M. Stillman, T. Nyokong, C. Leznoff, A. Lever, Phthalocyanines: Properties and Applications (1989).
- K.T. Oliveira, F.F. Assis, A.O. Ribeiro, C.R. Neri, A.U. Fernandes et al., Synthesis of phthalocyanines− ALA conjugates: water-soluble compounds with low aggregation. J. Org. Chem. 74(20), 7962–7965 (2009). https://doi.org/10.1021/jo901633a
- Z. Bıyıklıoğlu, H. Kantekin, Synthesis and spectroscopic properties of a series of octacationic water-soluble phthalocyanines. Synth. Met. 161(11–12), 943–948 (2011). https://doi.org/10.1016/j.synthmet.2011.02.027
- A.R.A. Silva, A.R. Simioni, A.C. Tedesco, Photophysical and complexation studies of chloro-aluminum phthalocyanine with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. J. Nanosci. Nanotechnol. 11(5), 4046–4055 (2011). https://doi.org/10.1166/jnn.2011.3823
- M. Durmuş, H. Yaman, C. Göl, V. Ahsen, T. Nyokong, Water-soluble quaternized mercaptopyridine-substituted zinc-phthalocyanines: synthesis, photophysical, photochemical and bovine serum albumin binding properties. Dyes Pigments 91(2), 153–163 (2011). https://doi.org/10.1016/j.dyepig.2011.02.007
- E. Agut-Busquet, J. Romaní, Y. Gilaberte, A. García-Malinis, M. Ribera-Pibernat et al., Photodynamic therapy with intralesional methylene blue and a 635 nm light-emitting diode lamp in hidradenitis suppurativa: a retrospective follow-up study in 7 patients and a review of the literature. Photochem. Photobiol. Sci. 15(8), 1020–1028 (2016). https://doi.org/10.1039/C6PP00082G
- V. Martinez, M. Henary, Nile red and nile blue: applications and syntheses of structural analogues. Chem. Eur. J. 22(39), 13764–13782 (2016). https://doi.org/10.1002/chem.201601570
- G. Sridharan, A.A. Shankar, Toluidine blue: a review of its chemistry and clinical utility. JOMFP 16(2), 251 (2012). https://doi.org/10.4103/0973-029X.99081
- A.B. Ormond, H.S. Freeman, Dye sensitizers for photodynamic therapy. Materials 6(3), 817–840 (2013). https://doi.org/10.3390/ma6030817
- J. Demas, E. Harris, R. McBride, Energy transfer from luminescent transition metal complexes to oxygen. J. Am. Chem. Soc. 99(11), 3547–3551 (1977). https://doi.org/10.1021/ja00453a001
- Q.G. Mulazzani, H. Sun, M.Z. Hoffman, W.E. Ford, M.A. Rodgers, Quenching of the excited states of ruthenium (II)-diimine complexes by oxygen. J. Phys. Chem. 98(4), 1145–1150 (1994). https://doi.org/10.1021/j100055a017
- D. Garcìa-Fresnadillo, Y. Georgiadou, G. Orellana, A.M. Braun, E. Oliveros, Singlet-oxygen (1δg) production by ruthenium (II) complexes containing polyazaheterocyclic ligands in methanol and in water. Helv. Chim. Acta 79(4), 1222–1238 (1996). https://doi.org/10.1002/hlca.19960790428
- D.M. Guldi, T.D. Mody, N.N. Gerasimchuk, D. Magda, J.L. Sessler, Influence of large metal cations on the photophysical properties of texaphyrin, a rigid aromatic chromophore. J. Am. Chem. Soc. 122(34), 8289–8298 (2000). https://doi.org/10.1021/ja001578b
- S. Hannah, V. Lynch, D.M. Guldi, N. Gerasimchuk, C.L. MacDonald et al., Late first-row transition-metal complexes of texaphyrin. J. Am. Chem. Soc. 124(28), 8416–8427 (2002). https://doi.org/10.1021/ja012747a
- M. Wainwright, N.J. Grice, L.E. Pye, Phenothiazine photosensitizers: part 2. 3, 7-bis(arylamino)phenothiazines1. Dyes Pigments 42(1), 45–51 (1999). https://doi.org/10.1016/S0143-7208(99)00008-X
- J. Li, H. Gao, R. Liu, C. Chen, S. Zeng et al., Endoplasmic reticulum targeted AIE bioprobe as a highly efficient inducer of immunogenic cell death. Sci. China Chem. 63(10), 1428–1434 (2020). https://doi.org/10.1007/s11426-020-9846-4
- S. Jia, Z. Gao, Z. Wu, H. Gao, H. Wang et al., Sonosensitized aggregation-induced emission dots with capacities of immunogenic cell death induction and multivalent blocking of programmed cell death-ligand 1 for amplified antitumor immunotherapy. CCS Chem. 4(2), 501–514 (2022). https://doi.org/10.31635/ccschem.021.202101458
- C. Chen, X. Ni, S. Jia, Y. Liang, X. Wu et al., Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 31(52), 1904914 (2019). https://doi.org/10.1002/adma.201904914
- Y. Yu, W.D. Lee, Y.N. Tan, Protein-protected gold/silver alloy nanoclusters in metal-enhanced singlet oxygen generation and their correlation with photoluminescence. Mater. Sci. Eng. C 109, 110525 (2020). https://doi.org/10.1016/j.msec.2019.110525
- J. Geng, W.L. Goh, C. Zhang, D.P. Lane, B. Liu et al., A highly sensitive fluorescent light-up probe for real-time detection of the endogenous protein target and its antagonism in live cells. J. Mater. Chem. B 3(29), 5933–5937 (2015). https://doi.org/10.1039/C5TB00819K
- J.Y.C. Lim, Y. Yu, G. Jin, K. Li, Y. Lu et al., Establishing empirical design rules of nucleic acid templates for the synthesis of silver nanoclusters with tunable photoluminescence and functionalities towards targeted bioimaging applications. Nanoscale Adv. 2(9), 3921–3932 (2020). https://doi.org/10.1039/D0NA00381F
- Y. Yu, Z. Luo, C.S. Teo, Y.N. Tan, J. Xie, Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chem. Commun. 49(84), 9740–9742 (2013). https://doi.org/10.1039/C3CC46005C
- Y. Yu, B.Y.L. Mok, X.J. Loh, Y.N. Tan, Rational design of biomolecular templates for synthesizing multifunctional noble metal nanoclusters toward personalized theranostic applications. Adv. Healthc. Mater. 5(15), 1844–1859 (2016). https://doi.org/10.1002/adhm.201600192
- Y. Yu, S.Y. New, J. Xie, X. Su, Y.N. Tan, Protein-based fluorescent metal nanoclusters for small molecular drug screening. Chem. Commun. 50(89), 13805–13808 (2014). https://doi.org/10.1039/C4CC06914E
- Y. Yu, X.T. Zheng, B.W. Yee, Y.N. Tan, Biomimicking synthesis of photoluminescent molecular lantern catalyzed by in-situ formation of nanogold catalysts. Mater. Sci. Eng. C 77, 1111–1116 (2017). https://doi.org/10.1016/j.msec.2017.04.029
- H. Zou, J. Zhang, C. Wu, B. He, Y. Hu et al., Making aggregation-induced emission luminogen more valuable by gold: enhancing anticancer efficacy by suppressing thioredoxin reductase activity. ACS Nano 15(5), 9176–9185 (2021). https://doi.org/10.1021/acsnano.1c02882
- C. Zhou, C. Peng, C. Shi, M. Jiang, J.H.C. Chau et al., Mitochondria-specific aggregation-induced emission luminogens for selective photodynamic killing of fungi and efficacious treatment of keratitis. ACS Nano 15(7), 12129–12139 (2021). https://doi.org/10.1021/acsnano.1c03508
- Z. Zhang, W. Xu, P. Xiao, M. Kang, D. Yan et al., Molecular engineering of high-performance aggregation-induced emission photosensitizers to boost cancer theranostics mediated by acid-triggered nucleus-targeted nanovectors. ACS Nano 15(6), 10689–10699 (2021). https://doi.org/10.1021/acsnano.1c03700
- X. Zhang, Y. Chen, C. Li, Z. Xue, H. Wu et al., Root canal disinfection using highly effective aggregation-induced emission photosensitizer. ACS Appl. Bio Mater. 4(5), 3796–3804 (2021). https://doi.org/10.1021/acsabm.0c01274
- W. Xu, Z. Zhang, M. Kang, H. Guo, Y. Li et al., Making the best use of excited-state energy: multimodality theranostic systems based on second near-infrared (NIR-II) aggregation-induced emission luminogens (AIEgens). ACS Mater. Lett. 2(8), 1033–1040 (2020). https://doi.org/10.1021/acsmaterialslett.0c00263
- X. Yi, J.J. Hu, J. Dai, X. Lou, Z. Zhao et al., Self-guiding polymeric prodrug micelles with two aggregation-induced emission photosensitizers for enhanced chemo-photodynamic therapy. ACS Nano 15(2), 3026–3037 (2021). https://doi.org/10.1021/acsnano.0c09407
- Y. Huang, D.E. Liu, J. An, B. Liu, L. Sun et al., Reactive oxygen species self-sufficient multifunctional nanoplatform for synergistic chemo-photodynamic therapy with red/near-infrared dual-imaging. ACS Appl. Bio Mater. 3(12), 9135–9144 (2020). https://doi.org/10.1021/acsabm.0c01419
- W. Du, X. Liu, L. Liu, J.W.Y. Lam, B.Z. Tang, Photoresponsive polymers with aggregation-induced emission. ACS Appl. Polym. Mater. 3(5), 2290–2309 (2021). https://doi.org/10.1021/acsapm.1c00182
- D. Chen, Z. Long, C. Zhong, L. Chen, Y. Dang et al., Highly efficient near-infrared photosensitizers with aggregation-induced emission characteristics: rational molecular design and photodynamic cancer cell ablation. ACS Appl. Bio Mater. 4(6), 5231–5239 (2021). https://doi.org/10.1021/acsabm.1c00398
- J. Liu, X. Liu, M. Wu, G. Qi, B. Liu, Engineering living mitochondria with AIE photosensitizer for synergistic cancer cell ablation. Nano Lett. 20(10), 7438–7445 (2020). https://doi.org/10.1021/acs.nanolett.0c02778
- L. Zhang, J.L. Wang, X.X. Ba, S.Y. Hua, P. Jiang et al., Multifunction in one molecule: mitochondrial imaging and photothermal & photodynamic cytotoxicity of fast-response near-infrared fluorescent probes with aggregation-induced emission characteristics. ACS Appl. Mater. Interfaces 13(7), 7945–7954 (2021). https://doi.org/10.1021/acsami.0c20283
- Y. Yuan, C.J. Zhang, R.T. Kwok, S. Xu, R. Zhang et al., Light-up probe for targeted and activatable photodynamic therapy with real-time in situ reporting of sensitizer activation and therapeutic responses. Adv. Funct. Mater. 25(42), 6586–6595 (2015). https://doi.org/10.1002/adfm.201502728
- F. Hu, Y. Huang, G. Zhang, R. Zhao, H. Yang et al., Targeted bioimaging and photodynamic therapy of cancer cells with an activatable red fluorescent bioprobe. Anal. Chem. 86(15), 7987–7995 (2014). https://doi.org/10.1021/ac502103t
- K. Chen, P. He, Z. Wang, B.Z. Tang, A feasible strategy of fabricating type I photosensitizer for photodynamic therapy in cancer cells and pathogens. ACS Nano 15(4), 7735–7743 (2021). https://doi.org/10.1021/acsnano.1c01577
- B. Gu, W. Wu, G. Xu, G. Feng, F. Yin et al., Precise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics. Adv. Mater. 29(28), 1701076 (2017). https://doi.org/10.1002/adma.201701076
- N. Alifu, X. Dong, D. Li, X. Sun, A. Zebibula et al., Aggregation-induced emission nanops as photosensitizer for two-photon photodynamic therapy. Mater. Chem. Front. 1(9), 1746–1753 (2017). https://doi.org/10.1039/C7QM00092H
- W. Liu, Z. Li, Y. Qiu, J. Li, J. Yang et al., Biomineralization of aggregation-induced emission-active photosensitizers for pH-mediated tumor imaging and photodynamic therapy. ACS Appl. Bio Mater. 4(7), 5566–5574 (2021). https://doi.org/10.1021/acsabm.1c00298
- L. Liu, X. Wang, L.J. Wang, L. Guo, Y. Li et al., One-for-all phototheranostic agent based on aggregation-induced emission characteristics for multimodal imaging-guided synergistic photodynamic/photothermal cancer therapy. ACS Appl. Mater. Interfaces 13(17), 19668–19678 (2021). https://doi.org/10.1021/acsami.1c02260
- H. Ma, C. Zhao, H. Meng, R. Li, L. Mao et al., Multifunctional organic fluorescent probe with aggregation-induced emission characteristics: ultrafast tumor monitoring, two-photon imaging, and image-guide photodynamic therapy. ACS Appl. Mater. Interfaces 13(7), 7987–7996 (2021). https://doi.org/10.1021/acsami.0c21309
- Y. Li, R. Tang, X. Liu, J. Gong, Z. Zhao et al., Bright aggregation-induced emission nanops for two-photon imaging and localized compound therapy of cancers. ACS Nano 14(12), 16840–16853 (2020). https://doi.org/10.1021/acsnano.0c05610
- Z. Shen, Q. Ma, X. Zhou, G. Zhang, G. Hao et al., Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater. 13(1), 39 (2021). https://doi.org/10.1038/s41427-021-00303-1
- Q. Wan, R. Zhang, Z. Zhuang, Y. Li, Y. Huang et al., Molecular engineering to boost AIE-active free radical photogenerators and enable high-performance photodynamic therapy under hypoxia. Adv. Funct. Mater. 30(39), 2002057 (2020). https://doi.org/10.1002/adfm.202002057
- W. Wu, D. Mao, F. Hu, S. Xu, C. Chen et al., A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy. Adv. Mater. 29(33), 1700548 (2017). https://doi.org/10.1002/adma.201700548
- S. Xu, W. Wu, X. Cai, C.J. Zhang, Y. Yuan et al., Highly efficient photosensitizers with aggregation-induced emission characteristics obtained through precise molecular design. Chem. Commun. 53(62), 8727–8730 (2017). https://doi.org/10.1039/C7CC04864E
- E. Zhao, Y. Chen, H. Wang, S. Chen, J.W. Lam et al., Light-enhanced bacterial killing and wash-free imaging based on AIE fluorogen. ACS Appl. Mater. Interfaces 7(13), 7180–7188 (2015). https://doi.org/10.1021/am509142k
- W. Wu, D. Mao, S. Xu, S. Ji, F. Hu et al., High performance photosensitizers with aggregation-induced emission for image-guided photodynamic anticancer therapy. Mater. Horiz. 4(6), 1110–1114 (2017). https://doi.org/10.1039/C7MH00469A
- A. Rananaware, R.S. Bhosale, K. Ohkubo, H. Patil, L.A. Jones et al., Tetraphenylethene-based star shaped porphyrins: synthesis, self-assembly, and optical and photophysical study. J. Org. Chem. 80(8), 3832–3840 (2015). https://doi.org/10.1021/jo502760e
- F. Lv, D. Liu, W. Zheng, Y. Zhao, F. Song, Bophy-based aggregation-induced-emission nanop photosensitizers for photodynamic therapy. ACS Appl. Nano Mater. 4(6), 6012–6019 (2021). https://doi.org/10.1021/acsanm.1c00862
- R. Jin, Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3), 343–362 (2010). https://doi.org/10.1039/b9nr00160c
- Y. Lu, W. Chen, Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41(9), 3594–3623 (2012). https://doi.org/10.1039/C2CS15325D
- C. Zeng, Y. Chen, A. Das, R. Jin, Transformation chemistry of gold nanoclusters: from one stable size to another. J. Phys. Chem. Lett. 6(15), 2976–2986 (2015). https://doi.org/10.1021/acs.jpclett.5b01150
- Y. Yu, Q. Yao, Z. Luo, X. Yuan, J.Y. Lee et al., Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale 5(11), 4606–4620 (2013). https://doi.org/10.1039/C3NR00464C
- D. Jose, J.E. Matthiesen, C. Parsons, C.M. Sorensen, K.J. Klabunde, Size focusing of nanops by thermodynamic control through ligand interactions. Molecular clusters compared with nanops of metals. J. Phys. Chem. Lett. 3(7), 885–890 (2012). https://doi.org/10.1021/jz201640e
- R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu et al., Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 1(19), 2903–2910 (2010). https://doi.org/10.1021/jz100944k
- X.T. Zheng, H.V. Xu, Y.N. Tan, Bioinspired design and engineering of functional nanostructured materials for biomedical applications. Adv. Bioinspired Biomed. Mater. (2017). https://doi.org/10.1021/bk-2017-1253.ch007
- Y.G. Srinivasulu, Q. Yao, N. Goswami, J. Xie, Interfacial engineering of gold nanoclusters for biomedical applications. Mater. Horiz. 7(10), 2596–2618 (2020). https://doi.org/10.1039/D0MH00827C
- Y. Yu, P.Y.J. Ching, Y.N. Tan, Microwave-assisted synthesis and mechanistic study of multicolor emissive Au nanoclusters using thiol-containing biomolecules. Adv. Mater. Lett. 9(9), 647–651 (2018). https://doi.org/10.5185/amlett.2018.2081
- N. El-Sayed, M. Schneider, Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. J. Mater. Chem. B 8(39), 8952–8971 (2020). https://doi.org/10.1039/D0TB01610A
- X. Yuan, Z. Luo, Y. Yu, Q. Yao, J. Xie, Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 8(5), 858–871 (2013). https://doi.org/10.1002/asia.201201236
- Z. Yin, Q. Ji, D. Wu, Z. Li, M. Fan et al., H2O2-responsive gold nanoclusters @ mesoporous silica @ manganese dioxide nanozyme for “off/on” modulation and enhancement of magnetic resonance imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 13(13), 14928–14937 (2021). https://doi.org/10.1021/acsami.1c00430
- L. Shang, S.J. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6(4), 401–418 (2011). https://doi.org/10.1016/j.nantod.2011.06.004
- X.L. Guevel, Recent advances on the synthesis of metal quantum nanoclusters and their application for bioimaging. IEEE J. Sel. Top. Quantum Electron. 20(3), 45–56 (2014). https://doi.org/10.1109/JSTQE.2013.2282275
- J. Zhu, T. Xiao, J. Zhang, H. Che, Y. Shi et al., Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy. ACS Nano 14(9), 11225–11237 (2020). https://doi.org/10.1021/acsnano.0c03080
- Y.G. Srinivasulu, A. Mozhi, N. Goswami, Q. Yao, J. Xie, Traceable nanocluster–prodrug conjugate for chemo-photodynamic combinatorial therapy of non-small cell lung cancer. ACS Appl. Bio Mater. 4(4), 3232–3245 (2021). https://doi.org/10.1021/acsabm.0c01611
- H. Cui, Z.S. Shao, Z. Song, Y.B. Wang, H.S. Wang, Development of gold nanoclusters: from preparation to applications in the field of biomedicine. J. Mater. Chem. C 8(41), 14312–14333 (2020). https://doi.org/10.1039/D0TC03443F
- D. Li, B. Kumari, J.M. Makabenta, B. Tao, K. Qian et al., Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. J. Mater. Chem. B 8(41), 9466–9480 (2020). https://doi.org/10.1039/D0TB00549E
- C. Fan, S. Zhai, W. Hu, S. Chi, D. Song et al., Gold nanoclusters as a GSH activated mitochondrial targeting photosensitizer for efficient treatment of malignant tumors. RSC Adv. 11(35), 21384–21389 (2021). https://doi.org/10.1039/D1RA03469C
- T. Das, P. Ghosh, M.S. Shanavas, A. Maity, S. Mondal et al., Protein-templated gold nanoclusters: size dependent inversion of fluorescence emission in the presence of molecular oxygen. Nanoscale 4(19), 6018–6024 (2012). https://doi.org/10.1039/C2NR31271A
- H. Kawasaki, S. Kumar, G. Li, C. Zeng, D.R. Kauffman et al., Generation of singlet oxygen by photoexcited Au25(Sr)18 clusters. Chem. Mater. 26(9), 2777–2788 (2014). https://doi.org/10.1021/cm500260z
- D. Yang, G. Yang, S. Gai, F. He, G. An et al., Au25 cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale 7(46), 19568–19578 (2015). https://doi.org/10.1039/C5NR06192J
- M. Yamamoto, I. Osaka, K. Yamashita, H. Hasegawa, R. Arakawa et al., Effects of ligand species and cluster size of biomolecule-protected Au nanoclusters on efficiency of singlet-oxygen generation. J. Lumin. 180, 315–320 (2016). https://doi.org/10.1016/j.jlumin.2016.08.059
- R. Vankayala, C.L. Kuo, K. Nuthalapati, C.S. Chiang, K.C. Hwang, Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv. Funct. Mater. 25(37), 5934–5945 (2015). https://doi.org/10.1002/adfm.201502650
- P. Huang, J. Lin, S. Wang, Z. Zhou, Z. Li et al., Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 34(19), 4643–4654 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.063
- L.V. Nair, S.S. Nazeer, R.S. Jayasree, A. Ajayaghosh, Fluorescence imaging assisted photodynamic therapy using photosensitizer-linked gold quantum clusters. ACS Nano 9(6), 5825–5832 (2015). https://doi.org/10.1021/acsnano.5b00406
- I. Okamoto, H. Miyaji, S. Miyata, K. Shitomi, T. Sugaya et al., Antibacterial and antibiofilm photodynamic activities of lysozyme-Au nanoclusters/rose bengal conjugates. ACS Omega 6(13), 9279–9290 (2021). https://doi.org/10.1021/acsomega.1c00838
- K. Wu, G. Wu, A.J. MacRobert, E. Allan, A. Gavriilidis et al., Ultra high molecular weight polyethylene with incorporated crystal violet and gold nanoclusters is antimicrobial in low intensity light and in the dark. Mater. Adv. 1(9), 3339–3348 (2020). https://doi.org/10.1039/D0MA00710B
- S. Rondeau-Gagné, J.F. Morin, Preparation of carbon nanomaterials from molecular precursors. Chem. Soc. Rev. 43(1), 85–98 (2014). https://doi.org/10.1039/c3cs60210a
- T.N. Hoheisel, S. Schrettl, R. Szilluweit, H. Frauenrath, Nanostructured carbonaceous materials from molecular precursors. Angew. Chem. Int. Ed. 49(37), 6496–6515 (2010). https://doi.org/10.1002/anie.200907180
- X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h
- Y. Choi, Y. Choi, O.H. Kwon, B.S. Kim, Carbon dots: bottom-up syntheses, properties, and light-harvesting applications. Chem. Asian J. 13(6), 586–598 (2018). https://doi.org/10.1002/asia.201701736
- Y. Choi, X.T. Zheng, Y.N. Tan, Bioinspired carbon dots (biodots): emerging fluorophores with tailored multiple functionalities for biomedical, agricultural and environmental applications. Mol. Syst. Des. Eng. 5(1), 67–90 (2020). https://doi.org/10.1039/C9ME00086K
- H.V. Xu, Y. Zhao, Y.N. Tan, Nanodot-directed formation of plasmonic-fluorescent nanohybrids toward dual optical detection of glucose and cholesterol via hydrogen peroxide sensing. ACS Appl. Mater. Interfaces 11(30), 27233–27242 (2019). https://doi.org/10.1021/acsami.9b08708
- X.T. Zheng, Y.C. Lai, Y.N. Tan, Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy. Nanoscale Adv. 1(6), 2250–2257 (2019). https://doi.org/10.1039/C9NA00058E
- H.V. Xu, X.T. Zheng, C. Wang, Y. Zhao, Y.N. Tan, Bioinspired antimicrobial nanodots with amphiphilic and zwitterionic-like characteristics for combating multidrug-resistant bacteria and biofilm removal. ACS Appl. Nano Mater. 1(5), 2062–2068 (2018). https://doi.org/10.1021/acsanm.8b00465
- H.V. Xu, X.T. Zheng, Y. Zhao, Y.N. Tan, Uncovering the design principle of amino acid-derived photoluminescent biodots with tailor-made structure–properties and applications for cellular bioimaging. ACS Appl. Mater. Interfaces 10(23), 19881–19888 (2018). https://doi.org/10.1021/acsami.8b04864
- X.T. Zheng, Y.N. Tan, Development of blood-cell-selective fluorescent biodots for lysis-free leukocyte imaging and differential counting in whole blood. Small 16(12), 1903328 (2020). https://doi.org/10.1002/smll.201903328
- X.T. Zheng, Y. Choi, D.G.G. Phua, Y.N. Tan, Noncovalent fluorescent biodot–protein conjugates with well-preserved native functions for improved sweat glucose detection. Bioconjugate Chem. 31(3), 754–763 (2020). https://doi.org/10.1021/acs.bioconjchem.9b00856
- X. Nie, C. Jiang, S. Wu, W. Chen, P. Lv et al., Carbon quantum dots: a bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. J. Photochem. Photobiol. B Bio. 206, 111864 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111864
- L. Guo, J. Ge, W. Liu, G. Niu, Q. Jia et al., Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale 8(2), 729–734 (2016). https://doi.org/10.1039/C5NR07153D
- H.V. Xu, X. Zheng, Y. Zhao, Y.N. Tan, Uncovering the design principle of amino acid-derived photoluminescent bio-dots with tailored-made structure-properties and application for cellular bioimaging. ACS Appl. Mater. Interfaces 10(23), 19881–19888 (2018). https://doi.org/10.1021/acsami.8b04864
- X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14), 1620–1636 (2015). https://doi.org/10.1002/smll.201402648
- Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao et al., Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 125(30), 7954–7958 (2013). https://doi.org/10.1002/ange.201301114
- H. Li, X. He, Z. Kang, H. Huang, Y. Liu et al., Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49(26), 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
- P. Innocenzi, L. Stagi, Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem. Sci. 11(26), 6606–6622 (2020). https://doi.org/10.1039/D0SC02658A
- S.P. Jovanović, Z. Syrgiannis, M.D. Budimir, D.D. Milivojević, D.J. Jovanovic et al., Graphene quantum dots as singlet oxygen producer or radical quencher - the matter of functionalization with urea/thiourea. Mater. Sci. Eng. C 109, 110539 (2020). https://doi.org/10.1016/j.msec.2019.110539
- J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo et al., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014). https://doi.org/10.1038/ncomms5596
- J. Ge, Q. Jia, W. Liu, M. Lan, B. Zhou et al., Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv. Healthc. Mater. 5(6), 665–675 (2016). https://doi.org/10.1002/adhm.201500720
- K.P. Nielsen, A. Juzeniene, P. Juzenas, K. Stamnes, J.J. Stamnes et al., Choice of optimal wavelength for PDT: the significance of oxygen depletion. Photochem. Photobiol. 81(5), 1190–1194 (2005). https://doi.org/10.1562/2005-04-06-RA-478
- Q. Jia, J. Ge, W. Liu, L. Guo, X. Zheng et al., Self-assembled carbon dot nanosphere: a robust, near-infrared light-responsive, and vein injectable photosensitizer. Adv. Healthc. Mater. 6(12), 1601419 (2017). https://doi.org/10.1002/adhm.201601419
- Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen et al., A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 30(13), 1706090 (2018). https://doi.org/10.1002/adma.201706090
- J. Feng, Y.L. Yu, J.H. Wang, Porphyrin structure carbon dots under red light irradiation for bacterial inactivation. New J. Chem. 44(42), 18225–18232 (2020). https://doi.org/10.1039/D0NJ04013D
- J. Su, S. Lu, J. Hai, K. Liang, T. Li et al., Confining carbon dots in porous wood: the singlet oxygen enhancement strategy for photothermal signal-amplified detection of Mn2+. ACS Sustain. Chem. Eng. 8(48), 17687–17696 (2020). https://doi.org/10.1021/acssuschemeng.0c05352
- R. Knoblauch, A. Harvey, E. Ra, K.M. Greenberg, J. Lau et al., Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots. Nanoscale 13(1), 85–99 (2021). https://doi.org/10.1039/D0NR06842J
- H. Yao, W. Zhao, S. Zhang, X. Guo, Y. Li et al., Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B 6(19), 3107–3115 (2018). https://doi.org/10.1039/C8TB00118A
- P. Juzenas, A. Kleinauskas, P.G. Luo, Y.P. Sun, Photoactivatable carbon nanodots for cancer therapy. Appl. Phys. Lett. 103(6), 063701 (2013). https://doi.org/10.1063/1.4817787
- Y. Li, X. Zheng, X. Zhang, S. Liu, Q. Pei et al., Porphyrin-based carbon dots for photodynamic therapy of hepatoma. Adv. Healthc. Mater. 6(1), 1600924 (2017). https://doi.org/10.1002/adhm.201600924
- D.K. Ji, G. Reina, S. Guo, M. Eredia, P. Samorì et al., Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. Nanoscale Horiz. 5(8), 1240–1249 (2020). https://doi.org/10.1039/D0NH00300J
- B. Jang, J.Y. Park, C.H. Tung, I.H. Kim, Y. Choi, Gold nanorod−photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5(2), 1086–1094 (2011). https://doi.org/10.1021/nn102722z
- J. Wang, G. Zhu, M. You, E. Song, M.I. Shukoor et al., Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6(6), 5070–5077 (2012). https://doi.org/10.1021/nn300694v
- D. Park, J. Kim, Y. Choi, Photosensitizer-complexed polypyrrole nanops for activatable fluorescence imaging and photodynamic therapy. J. Mater. Chem. B 4(47), 7545–7548 (2016). https://doi.org/10.1039/C6TB02461K
- M.C.A. Issa, M. Manela-Azulay, Photodynamic therapy: a review of the literature and image documentation. An. Bras. Dermatol. 85(4), 501–511 (2010). https://doi.org/10.1590/S0365-05962010000400011
- M.B. Ericson, A.M. Wennberg, O. Larkö, Review of photodynamic therapy in actinic keratosis and basal cell carcinoma. Ther. Clin. Risk Manag. 4(1), 1 (2008). https://doi.org/10.2147/TCRM.S1769
- X. Wang, S. Zhu, L. Liu, L. Li, Flexible antibacterial film based on conjugated polyelectrolyte/silver nanocomposites. ACS Appl. Mater. Interfaces 9(10), 9051–9058 (2017). https://doi.org/10.1021/acsami.7b00885
- V.L. Schlegel, T.M. Cotton, Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity. Anal. Chem. 63(3), 241–247 (1991). https://doi.org/10.1021/ac00003a010
- M. Green, F.M. Liu, SRES substrates fabricated by island lithography: the silver/pyridine system. J. Phys. Chem. B 107(47), 13015–13021 (2003). https://doi.org/10.1021/jp030751y
- J. Karolin, C.D. Geddes, Metal-enhanced fluorescence based excitation volumetric effect of plasmon-enhanced singlet oxygen and super oxide generation. Phys. Chem. Chem. Phys. 15(38), 15740–15745 (2013). https://doi.org/10.1039/c3cp50950h
- A. Dragan, C. Geddes, Excitation volumetric effects (EVE) in metal-enhanced fluorescence. Phys. Chem. Chem. Phys. 13(9), 3831–3838 (2011). https://doi.org/10.1039/c0cp01986k
- R. Toftegaard, J. Arnbjerg, K. Daasbjerg, P.R. Ogilby, A. Dmitriev et al., Metal-enhanced 1270 nm singlet oxygen phosphorescence. Angew. Chem. Int. Ed. 47(32), 6025–6027 (2008). https://doi.org/10.1002/anie.200800755
- Y. Zhang, K. Aslan, S.N. Malyn, C.D. Geddes, Metal-enhanced phosphorescence (MEP). Chem. Phys. Lett. 427(4–6), 432–437 (2006). https://doi.org/10.1016/j.cplett.2006.06.078
- Y. Zhang, K. Aslan, M.J. Previte, S.N. Malyn, C.D. Geddes, Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J. Phys. Chem. B 110(49), 25108–25114 (2006). https://doi.org/10.1021/jp065261v
- Q. Cui, F. He, L. Li, H. Moehwald, Controllable metal-enhanced fluorescence in organized films and colloidal system. Adv. Colloid Interface Sci. 207, 164–177 (2014). https://doi.org/10.1016/j.cis.2013.10.011
- Y. Zhang, L.N. Mandeng, N. Bondre, A. Dragan, C.D. Geddes, Metal-enhanced fluorescence from silver− SiO2− silver nanoburger structures. Langmuir 26(14), 12371–12376 (2010). https://doi.org/10.1021/la101801n
- J. Zhang, J.R. Lakowicz, Metal-enhanced fluorescence of an organic fluorophore using gold ps. Opt. Express 15(5), 2598–2606 (2007). https://doi.org/10.1364/OE.15.002598
- H. Szmacinski, R. Badugu, F. Mahdavi, S. Blair, J.R. Lakowicz, Large fluorescence enhancements of fluorophore ensembles with multilayer plasmonic substrates: comparison of theory and experimental results. J. Phys. Chem. C 116(40), 21563–21571 (2012). https://doi.org/10.1021/jp3072876
- N. Akbay, J.R. Lakowicz, K. Ray, Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanops. J. Phys. Chem. C 116(19), 10766–10773 (2012). https://doi.org/10.1021/jp2122714
- G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997). https://doi.org/10.1126/science.277.5330.1232
- C. Tedeschi, L. Li, H. Möhwald, C. Spitz, D. Seggern et al., Engineering of layer-by-layer coated capsules with the prospect of materials for efficient and directed electron transfer. J. Am. Chem. Soc. 126(10), 3218–3227 (2004). https://doi.org/10.1021/ja037128b
- J. Kim, H.C. Wang, J. Kumar, S.K. Tripathy, K.G. Chittibabu et al., Novel layer-by-layer complexation technique and properties of the fabricated films. Chem. Mater. 11(8), 2250–2256 (1999). https://doi.org/10.1021/cm990193t
- J.J. Richardson, J. Cui, M. Björnmalm, J.A. Braunger, H. Ejima et al., Innovation in layer-by-layer assembly. Chem. Rev. 116(23), 14828–14867 (2016). https://doi.org/10.1021/acs.chemrev.6b00627
- Y. Hu, J. Kanka, K. Liu, Y. Yang, H. Wang et al., Gold nanoring-enhanced generation of singlet oxygen: an intricate correlation with surface plasmon resonance and polyelectrolyte bilayers. RSC Adv. 6(106), 104819–104826 (2016). https://doi.org/10.1039/C6RA22814C
- S. Noimark, M. Bovis, A.J. MacRobert, A. Correia, E. Allan et al., Photobactericidal polymers; the incorporation of crystal violet and nanogold into medical grade silicone. RSC Adv. 3(40), 18383–18394 (2013). https://doi.org/10.1039/c3ra42629g
- S. Perni, P. Prokopovich, I.P. Parkin, M. Wilson, J. Pratten, Prevention of biofilm accumulation on a light-activated antimicrobial catheter material. J. Mater. Chem. 20(39), 8668–8673 (2010). https://doi.org/10.1039/c0jm01891k
- S. Perni, C. Piccirillo, J. Pratten, P. Prokopovich, W. Chrzanowski et al., The antimicrobial properties of light-activated polymers containing methylene blue and gold nanops. Biomaterials 30(1), 89–93 (2009). https://doi.org/10.1016/j.biomaterials.2008.09.020
- S. Perni, C. Piccirillo, A. Kafizas, M. Uppal, J. Pratten et al., Antibacterial activity of light-activated silicone containing methylene blue and gold nanops of different sizes. J. Clust. Sci. 21(3), 427–438 (2010). https://doi.org/10.1007/s10876-010-0319-5
- J.J. Mock, R.T. Hill, A. Degiron, S. Zauscher, A. Chilkoti et al., Distance-dependent plasmon resonant coupling between a gold nanop and gold film. Nano Lett. 8(8), 2245–2252 (2008). https://doi.org/10.1021/nl080872f
- K. Kim, D. Shin, K.L. Kim, K.S. Shin, Electromagnetic field enhancement in the gap between two Au nanops: the size of hot site probed by surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 12(15), 3747–3752 (2010). https://doi.org/10.1039/b917543a
- A.J. Naik, S. Ismail, C. Kay, M. Wilson, I.P. Parkin, Antimicrobial activity of polyurethane embedded with methylene blue, toluidene blue and gold nanops against staphylococcus aureus; illuminated with white light. Mater. Chem. Phys. 129(1–2), 446–450 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.040
- D. Mondal, S. Bera, Porphyrins and phthalocyanines: promising molecules for light-triggered antibacterial nanops. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(3), 033002 (2014). https://doi.org/10.1088/2043-6262/5/3/033002
- E. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat et al., The chemistry of the sulfur-gold interface: in search of a unified model. Acc. Chem. Res. 45(8), 1183–1192 (2012). https://doi.org/10.1021/ar200260p
- Y. Xue, X. Li, H. Li, W. Zhang, Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 5, 4348 (2014). https://doi.org/10.1038/ncomms5348
- X. Zhou, X. He, S. Wei, K. Jia, X. Liu, Au nanorods modulated nir fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine. J. Colloid Interface Sci. 482, 252–259 (2016). https://doi.org/10.1016/j.jcis.2016.07.072
- L. Li, J.Y. Chen, X. Wu, P.N. Wang, Q. Peng, Plasmonic gold nanorods can carry sulfonated aluminum phthalocyanine to improve photodynamic detection and therapy of cancers. J. Phys. Chem. B 114(51), 17194–17200 (2010). https://doi.org/10.1021/jp109363n
- M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanops in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994). https://doi.org/10.1039/C39940000801
- N. Rapulenyane, E. Antunes, T. Nyokong, A study of the photophysicochemical and antimicrobial properties of two zinc phthalocyanine-silver nanop conjugates. New J. Chem. 37(4), 1216–1223 (2013). https://doi.org/10.1039/c3nj41107a
- T. Mthethwa, T. Nyokong, Photoinactivation of candida albicans and escherichia coli using aluminium phthalocyanine on gold nanops. Photochem. Photobiol. Sci. 14(7), 1346–1356 (2015). https://doi.org/10.1039/C4PP00315B
- N. Nombona, K. Maduray, E. Antunes, A. Karsten, T. Nyokong, Synthesis of phthalocyanine conjugates with gold nanops and liposomes for photodynamic therapy. J. Photochem. Photobiol. B Bio. 107, 35–44 (2012). https://doi.org/10.1016/j.jphotobiol.2011.11.007
- T. Stuchinskaya, M. Moreno, M.J. Cook, D.R. Edwards, D.A. Russell, Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanop conjugates. Photochem. Photobiol. Sci. 10(5), 822–831 (2011). https://doi.org/10.1039/c1pp05014a
- L. Bekalé, S. Barazzouk, S. Hotchandani, Nanosilver could usher in next-generation photoprotective agents for magnesium porphyrins. Part. Part. Syst. Charact. 31(8), 843–850 (2014). https://doi.org/10.1002/ppsc.201400008
- M.B.R. Aiello, J.J. Romero, S.G. Bertolotti, M.C. Gonzalez, D.O. Mártire, Effect of silver nanops on the photophysics of riboflavin: consequences on the ROS generation. J. Phys. Chem. C 120(38), 21967–21975 (2016). https://doi.org/10.1021/acs.jpcc.6b06385
- M.T. Yaraki, S.D. Rezaei, E. Middha, Y.N. Tan, Synthesis and simulation study of right silver bipyramids via seed-mediated growth cum selective oxidative etching approach. Part. Part. Syst. Charact. 37(5), 2000027 (2020). https://doi.org/10.1002/ppsc.202000027
- M.T. Yaraki, S.D. Rezaei, Y.N. Tan, Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Phys. Chem. Chem. Phys. 22(10), 5673–5687 (2020). https://doi.org/10.1039/C9CP06029D
- T. Simon, M. Potara, A.M. Gabudean, E. Licarete, M. Banciu et al., Designing theranostic agents based on pluronic stabilized gold nanoaggregates loaded with methylene blue for multimodal cell imaging and enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 7(30), 16191–16201 (2015). https://doi.org/10.1021/acsami.5b04734
- Y. Yang, Y. Hu, H. Du, H. Wang, Intracellular gold nanop aggregation and their potential applications in photodynamic therapy. Chem. Commun. 50(55), 7287–7290 (2014). https://doi.org/10.1039/c4cc02376e
- M.K.K. Oo, Y. Yang, Y. Hu, M. Gomez, H. Du et al., Gold nanop-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin ix. ACS Nano 6(3), 1939–1947 (2012). https://doi.org/10.1021/nn300327c
- D.C. Hone, P.I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby et al., Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanops: a potential delivery vehicle for photodynamic therapy. Langmuir 18(8), 2985–2987 (2002). https://doi.org/10.1021/la0256230
- T.P. Mthethwa, S. Tuncel, M. Durmuş, T. Nyokong, Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanops conjugate. Dalt. Trans. 42(14), 4922–4930 (2013). https://doi.org/10.1039/c3dt32698e
- N. Nombona, E. Antunes, C. Litwinski, T. Nyokong, Synthesis and photophysical studies of phthalocyanine-gold nanop conjugates. Dalt. Trans. 40(44), 11876–11884 (2011). https://doi.org/10.1039/c1dt11151e
- W. Yang, K. Liu, D. Song, Q. Du, R. Wang et al., Aggregation-induced enhancement effect of gold nanops on triplet excited state. J. Phys. Chem. C 117(51), 27088–27095 (2013). https://doi.org/10.1021/jp410369w
- T. Mthethwa, T. Nyokong, Fluorescence behavior and singlet oxygen generating abilities of aluminum phthalocyanine in the presence of anisotropic gold nanops. J. Lumin. 157, 207–214 (2015). https://doi.org/10.1016/j.jlumin.2014.09.005
- X. Cao, B. Hu, R. Ding, P. Zhang, Plasmon-enhanced homogeneous and heterogeneous triplet-triplet annihilation by gold nanops. Phys. Chem. Chem. Phys. 17(22), 14479–14483 (2015). https://doi.org/10.1039/C5CP01876E
- M. Kotkowiak, A. Dudkowiak, Multiwavelength excitation of photosensitizers interacting with gold nanops and its impact on optical properties of their hybrid mixtures. Phys. Chem. Chem. Phys. 17(41), 27366–27372 (2015). https://doi.org/10.1039/C5CP04459F
- L. Freitas, M. Hamblin, F. Anzengruber, J. Perussi, A. Ribeiro et al., Zinc phthalocyanines attached to gold nanorods for simultaneous hyperthermic and photodynamic therapies against melanoma in vitro. J. Photochem. Photobiol. B Bio. 173, 181–186 (2017). https://doi.org/10.1016/j.jphotobiol.2017.05.037
- S.C. Hayden, L.A. Austin, R.D. Near, R. Ozturk, M.A. El-Sayed, Plasmonic enhancement of photodynamic cancer therapy. J. Photochem. Photobiol. A Chem. 269, 34–41 (2013). https://doi.org/10.1016/j.jphotochem.2013.06.004
- X. Huang, X.J. Tian, W. Yang, B. Ehrenberg, J.Y. Chen, The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photodynamic therapy of cancers. Phys. Chem. Chem. Phys. 15(38), 15727–15733 (2013). https://doi.org/10.1039/c3cp44227f
- M. Ashjari, S. Dehfuly, D. Fatehi, R. Shabani, M. Koruji, Efficient functionalization of gold nanops using cysteine conjugated protoporphyrin ix for singlet oxygen production in vitro. RSC Adv. 5(127), 104621–104628 (2015). https://doi.org/10.1039/C5RA15862A
- W. Li, H. Zhang, X. Guo, Z. Wang, F. Kong et al., Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis. ACS Appl. Mater. Interfaces 9(4), 3354–3367 (2017). https://doi.org/10.1021/acsami.6b13351
- C.K. Chu, Y.C. Tu, J.H. Hsiao, J.H. Yu, C.K. Yu et al., Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. Nanotechnology 27(11), 115102 (2016). https://doi.org/10.1088/0957-4484/27/11/115102
- J. Wang, X. Zhuo, X. Xiao, R. Mao, Y. Wang et al., Alpcs-loaded gold nanobipyramids with high two-photon efficiency for photodynamic therapy in vivo. Nanoscale 11(7), 3386–3395 (2019). https://doi.org/10.1039/C9NR00004F
- T. Nozaki, T. Kakuda, Y.B. Pottathara, H. Kawasaki, A nanocomposite of N-doped carbon dots with gold nanops for visible light active photosensitisers. Photochem. Photobiol. Sci. 18(5), 1235–1241 (2019). https://doi.org/10.1039/C9PP00035F
- R. Jijie, T. Dumych, L. Chengnan, J. Bouckaert, K. Turcheniuk et al., P-based photodynamic therapy based on indocyanine green modified plasmonic nanostructures for inactivation of a Crohn’s disease-associated escherichia coli strain. J. Mater. Chem. B 4(15), 2598–2605 (2016). https://doi.org/10.1039/C5TB02697K
- S.M. Mooi, B. Heyne, Amplified production of singlet oxygen in aqueous solution using metal enhancement effects. Photochem. Photobiol. 90(1), 85–91 (2014). https://doi.org/10.1111/php.12176
- O. Planas, N. Macia, M. Agut, S. Nonell, B. Heyne, Distance-dependent plasmon-enhanced singlet oxygen production and emission for bacterial inactivation. J. Am. Chem. Soc. 138(8), 2762–2768 (2016). https://doi.org/10.1021/jacs.5b12704
- N. Macia, R. Bresoli-Obach, S. Nonell, B.J. Heyne, Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 141(1), 684–692 (2018). https://doi.org/10.1021/jacs.8b12206
- N. Macia, V. Kabanov, M. Côté-Cyr, B. Heyne, Roles of near and far fields in plasmon-enhanced singlet oxygen production. J. Phys. Chem. Lett. 10(13), 3654–3660 (2019). https://doi.org/10.1021/acs.jpclett.9b01165
- N. Macia, V. Kabanov, B. Heyne, Rationalizing the plasmonic contributions to the enhancement of singlet oxygen production. J. Phys. Chem. C 124(6), 3768–3777 (2020). https://doi.org/10.1021/acs.jpcc.9b10724
- I. Rosa-Pardo, M. Roig-Pons, A. Heredia, J. Usagre, A. Ribera et al., Fe3O4@ Au@mSiO2 as an enhancing nanoplatform for rose bengal photodynamic activity. Nanoscale 9(29), 10388–10396 (2017). https://doi.org/10.1039/C7NR00449D
- T. Zhao, H. Wu, S.Q. Yao, Q.H. Xu, G.Q. Xu, Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir 26(18), 14937–14942 (2010). https://doi.org/10.1021/la102556u
- Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji et al., Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8(11), 11529–11542 (2014). https://doi.org/10.1021/nn5047647
- G. Zampini, L. Tarpani, G. Massaro, M. Gambucci, A. Nicoziani et al., Effects of gold colloids on the photosensitization efficiency of silica ps doped with protoporphyrin ix. Chem. Photo. Chem. 1(12), 553–561 (2017). https://doi.org/10.1002/cptc.201700139
- S.H. Seo, B.M. Kim, A. Joe, H.W. Han, X. Chen et al., NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomatereials 35(10), 3309–3318 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.066
- Z. Chu, C. Yin, S. Zhang, G. Lin, Q. Li, Surface plasmon enhanced drug efficacy using core-shell Au@SiO2 nanop carrier. Nanoscale 5(8), 3406–3411 (2013). https://doi.org/10.1039/c3nr00040k
- H.C. Junqueira, D. Severino, L.G. Dias, M.S. Gugliotti, M.S. Baptista, Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces. Phys. Chem. Chem. Phys. 4(11), 2320–2328 (2002). https://doi.org/10.1039/b109753a
- J. Zhang, Z. Lu, Z. Yu, W. Zhong, H. Jiang et al., Photosensitizer-AgNP composite with an ability to selectively recognize pathogen and enhanced photodynamic efficiency. New J. Chem. 41(21), 12371–12374 (2017). https://doi.org/10.1039/C7NJ02204B
- Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu et al., Modification on populating paths of β-NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission. Opt. Mater. Express 6(6), 1942–1955 (2016). https://doi.org/10.1364/OME.6.001942
- E. Dube, N. Nwaji, D.O. Oluwole, J. Mack, T. Nyokong, Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanops. J. Photochem. Photobiol. A Chem. 349, 148–161 (2017). https://doi.org/10.1016/j.jphotochem.2017.09.020
- X. Ke, D. Wang, C. Chen, A. Yang, Y. Han et al., Co-enhancement of fluorescence and singlet oxygen generation by silica-coated gold nanorods core-shell nanop. Nanoscale Res. Lett. 9(1), 666 (2014). https://doi.org/10.1186/1556-276X-9-666
- T. Zhao, K. Yu, L. Li, T. Zhang, Z. Guan et al., Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 6(4), 2700–2708 (2014). https://doi.org/10.1021/am405214w
- J. Liu, H. Liang, M. Li, Z. Luo, J. Zhang et al., Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 157, 107–124 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.003
- P. Wang, H. Tang, P. Zhang, Plasmonic nanop-based hybrid photosensitizers with broadened excitation profile for photodynamic therapy of cancer cells. Sci. Rep. 6, 34981 (2016). https://doi.org/10.1038/srep34981
- C.W. Chen, Y.C. Chan, M. Hsiao, R.S. Liu, Plasmon-enhanced photodynamic cancer therapy by upconversion nanops conjugated with Au nanorods. ACS Appl. Mater. Interfaces 8(47), 32108–32119 (2016). https://doi.org/10.1021/acsami.6b07770
- N.T. Chen, K.C. Tang, M.F. Chung, S.H. Cheng, C.M. Huang et al., Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy. Theranostics 4(8), 798 (2014). https://doi.org/10.7150/thno.8934
- A.M. Fales, H. Yuan, T. Vo-Dinh, Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 27(19), 12186–12190 (2011). https://doi.org/10.1021/la202602q
- S. Natesan, V. Krishnaswami, C. Ponnusamy, M. Madiyalakan, T. Woo et al., Hypocrellin B and nano silver loaded polymeric nanops: enhanced generation of singlet oxygen for improved photodynamic therapy. Mater. Sci. Eng. C 77, 935–946 (2017). https://doi.org/10.1016/j.msec.2017.03.179
- O. Lyutakov, O. Hejna, A. Solovyev, Y. Kalachyova, V. Svorcik, Polymethylmethacrylate doped with porphyrin and silver nanops as light-activated antimicrobial material. RSC Adv. 4(92), 50624–50630 (2014). https://doi.org/10.1039/C4RA08385G
- L.S. Melo, A.S. Gomes, S. Saska, K. Nigoghossian, Y. Messaddeq et al., Singlet oxygen generation enhanced by silver-pectin nanops. J. Fluoresc. 22(6), 1633–1638 (2012). https://doi.org/10.1007/s10895-012-1107-4
- B. Prakash, A.N. Ananth, S. Asha, G.V. Kumari, S.P. Jose et al., Nano silver decorated chitosan based polyelectrolyte microcapsules induced generation of excited oxygen in curcumin. Mater. Today Proc. 4(2), 4366–4371 (2017). https://doi.org/10.1016/j.matpr.2017.04.007
- M. Lismont, L. Dreesen, B. Heinrichs, C.A. Páez, Protoporphyrin ix-functionalized AgSiO2 core-shell nanops: plasmonic enhancement of fluorescence and singlet oxygen production. Photochem. Photobiol. 92(2), 247–256 (2016). https://doi.org/10.1111/php.12557
- T.O. Ahmadov, R. Ding, J. Zhang, P. Wang, H. Tang et al., Silver nanop-enhanced hybrid photosensitizer for photoinactivation of multidrug-resistant staphylococcus aureus (MRSA). RSC Adv. 6(59), 54318–54321 (2016). https://doi.org/10.1039/C6RA11072J
- J. Yu, C.H. Hsu, C.C. Huang, P.Y. Chang, Development of therapeutic Au-methylene blue nanops for targeted photodynamic therapy of cervical cancer cells. ACS Appl. Mater. Interfaces 7(1), 432–441 (2014). https://doi.org/10.1021/am5064298
- S. Clement, M. Sobhan, W. Deng, E. Camilleri, E.M. Goldys, Nanop-mediated singlet oxygen generation from photosensitizers. J. Photochem. Photobiol. A Chem. 332, 66–71 (2017). https://doi.org/10.1016/j.jphotochem.2016.08.009
- W.S. Kuo, Y.T. Chang, K.C. Cho, K.C. Chiu, C.H. Lien et al., Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 33(11), 3270–3278 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.035
- C. Fang, H. Jia, S. Chang, Q. Ruan, P. Wang et al., (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ. Sci. 7(10), 3431–3438 (2014). https://doi.org/10.1039/C4EE01787K
- B. Wang, J.H. Wang, Q. Liu, H. Huang, M. Chen et al., Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 35(6), 1954–1966 (2014). https://doi.org/10.1016/j.biomaterials.2013.11.066
- Y. Huang, A. Skripka, L. Labrador-Páez, F. Sanz-Rodríguez, P. Haro-González et al., Upconverting nanocomposites with combined photothermal and photodynamic effects. Nanoscale 10(2), 791–799 (2018). https://doi.org/10.1039/C7NR05499H
- D.C. Ferreira, C.S. Monteiro, C.R. Chaves, G.A. Sáfar, R.L. Moreira et al., Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Colloid. Surf. B-Biointerfaces 150, 297–307 (2017). https://doi.org/10.1016/j.colsurfb.2016.10.042
- M.H. Chan, S.P. Chen, C.W. Chen, Y.C. Chan, R.J. Lin et al., Single 808 nm laser treatment comprising photothermal and photodynamic therapies by using gold nanorods hybrid upconversion ps. J. Phys. Chem. C 122(4), 2402–2412 (2018). https://doi.org/10.1021/acs.jpcc.7b10976
- C. Wang, F. Tang, X. Wang, L. Li, Preparation of hybrid fluorescent nanocomposites with enhanced fluorescence and their application. Colloid. Surf. A-Physicochem. Eng. Asp. 481, 307–313 (2015). https://doi.org/10.1016/j.colsurfa.2015.06.003
- L. He, J. Dragavon, S. Cho, C. Mao, A. Yildirim et al., Self-assembled gold nanostar-NaYF4:Yb/Er clusters for multimodal imaging, photothermal and photodynamic therapy. J. Mater. Chem. B 4(25), 4455–4461 (2016). https://doi.org/10.1039/C6TB00914J
- N. Wijesiri, T. Ozkaya-Ahmadov, P. Wang, J. Zhang, H. Tang et al., Photodynamic inactivation of multidrug-resistant staphylococcus aureus using hybrid photosensitizers based on amphiphilic block copolymer-functionalized gold nanops. ACS Omega 2(9), 5364–5369 (2017). https://doi.org/10.1021/acsomega.7b00738
- Y. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanops. Nano Lett. 7(3), 690–696 (2007). https://doi.org/10.1021/nl062795z
- M.P. Singh, G.F. Strouse, Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanop. J. Am. Chem. Soc. 132(27), 9383–9391 (2010). https://doi.org/10.1021/ja1022128
- E.I. Sagun, E.I. Zenkevich, V.N. Knyukshto, A.M. Shulga, D.A. Starukhin et al., Interaction of multiporphyrin systems with molecular oxygen in liquid solutions: extra-ligation and screening effects. Chem. Phys. 275(1–3), 211–230 (2002). https://doi.org/10.1016/S0301-0104(01)00517-1
- N. Macia, V. Kabanov, M. Côté-Cyr, B. Heyne, Roles of near-and far-fields in plasmon-enhanced singlet oxygen production. J. Phys. Chem. Lett. 10(13), 3654–3660 (2019). https://doi.org/10.1021/acs.jpclett.9b01165
- K.G. Thomas, P.V. Kamat, Chromophore-functionalized gold nanops. Acc. Chem. Res. 36(12), 888–898 (2003). https://doi.org/10.1021/ar030030h
- B.I. Ipe, K.G. Thomas, S. Barazzouk, S. Hotchandani, P.V. Kamat, Photoinduced charge separation in a fluorophore− gold nanoassembly. J. Phys. Chem. B 106(1), 18–21 (2002). https://doi.org/10.1021/jp0134695
- S. Brown, Photodynamic therapy: two photons are better than one. Nat. Photonics 2(7), 394 (2008). https://doi.org/10.1038/nphoton.2008.112
- Z. Li, C. Kübel, V.I. Pârvulescu, R. Richards, Size tunable gold nanorods evenly distributed in the channels of mesoporous silica. ACS Nano 2(6), 1205–1212 (2008). https://doi.org/10.1021/nn800137x
- H.H. Chang, C.J. Murphy, Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chem. Mater. 30(4), 1427–1435 (2018). https://doi.org/10.1021/acs.chemmater.7b05310
- G. Su, C. Yang, J.J. Zhu, Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Langmuir 31(2), 817–823 (2015). https://doi.org/10.1021/la504041f
- M.B. Cortie, A.M. McDonagh, Synthesis and optical properties of hybrid and alloy plasmonic nanops. Chem. Rev. 111(6), 3713–3735 (2011). https://doi.org/10.1021/cr1002529
- A.R. Halpern, R.M. Corn, Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 7(2), 1755–1762 (2013). https://doi.org/10.1021/nn3058505
- J. Lee, W. Hasan, C.L. Stender, T.W. Odom, Pyramids: a platform for designing multifunctional plasmonic ps. Acc. Chem. Res. 41(12), 1762–1771 (2008). https://doi.org/10.1021/ar800126p
- L. Gao, J. Fei, J. Zhao, H. Li, Y. Cui et al., Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 6(9), 8030–8040 (2012). https://doi.org/10.1021/nn302634m
- M. Prieto, A.Y. Rwei, T. Alejo, T. Wei, M.T. Lopez-Franco et al., Light-emitting photon-upconversion nanops in the generation of transdermal reactive-oxygen species. ACS Appl. Mater. Interfaces 9(48), 41737–41747 (2017). https://doi.org/10.1021/acsami.7b14812
- Y. Li, Z. Di, J. Gao, P. Cheng, C. Di et al., Heterodimers made of upconversion nanops and metal-organic frameworks. J. Am. Chem. Soc. 139(39), 13804–13810 (2017). https://doi.org/10.1021/jacs.7b07302
- P. Zhang, W. Steelant, M. Kumar, M. S
References
V. Ntziachristos, C. Bremer, R. Weissleder, Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208 (2003). https://doi.org/10.1007/s00330-002-1524-x
J. Liang, B.Z. Tang, B. Liu, Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 44(10), 2798–2811 (2015). https://doi.org/10.1039/C4CS00444B
T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003). https://doi.org/10.1101/gad.1047403
B. Commoner, J. Townsend, G.E. Pake, Free radicals in biological materials. Nature 174(4432), 689 (1954). https://doi.org/10.1038/174689a0
L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014). https://doi.org/10.1021/cr400532z
D.E. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380 (2003). https://doi.org/10.1038/nrc1071
D.J. Burgess, Nanotechnology: tissue penetration of photodynamic therapy. Nat. Rev. Cancer 12(11), 737 (2012). https://doi.org/10.1038/nrc3393
J.B. Birks, Photophysics of Aromatic Molecules (London, 1970).
G.A. Hutton, B. Reuillard, B.C. Martindale, C.A. Caputo, C.W. Lockwood et al., Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138(51), 16722–16730 (2016). https://doi.org/10.1021/jacs.6b10146
Y. Yuan, C.J. Zhang, M. Gao, R. Zhang, B.Z. Tang et al., Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew. Chem. Int. Ed. 54(6), 1780–1786 (2015). https://doi.org/10.1002/anie.201408476
S. Xu, Y. Yuan, X. Cai, C.J. Zhang, F. Hu et al., Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chem. Sci. 6(10), 5824–5830 (2015). https://doi.org/10.1039/C5SC01733E
Y. Yu, J. Geng, E.Y.X. Ong, V. Chellappan, Y.N. Tan, Bovine serum albulmin protein-templated silver nanocluster (BSA-Ag13): an effective singlet oxygen generator for photodynamic cancer therapy. Adv. Healthc. Mater. 5(19), 2528–2535 (2016). https://doi.org/10.1002/adhm.201600312
L.M.T. Phan, A.R. Gul, T.N. Le, M.W. Kim, S.K. Kailasa et al., One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells. Biomater. Sci. 7(12), 5187–5196 (2019). https://doi.org/10.1039/C9BM01228A
R. Rafique, A.R. Gul, I.G. Lee, S.H. Baek, S.K. Kailasa et al., Photo-induced reactions for disassembling of coloaded photosensitizer and drug molecules from upconversion-mesoporous silica nanops: an effective synergistic cancer therapy. Mater. Sci. Eng. C 110, 110545 (2020). https://doi.org/10.1016/j.msec.2019.110545
M. Ashrafizadeh, R. Mohammadinejad, S.K. Kailasa, Z. Ahmadi, E.G. Afshar et al., Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: a review. Adv. Colloid Interfaces Sci. 278, 102123 (2020). https://doi.org/10.1016/j.cis.2020.102123
R. Rafique, S.K. Kailasa, T.J. Park, Recent advances of upconversion nanops in theranostics and bioimaging applications. TrAC Trends Anal. Chem. 120, 115646 (2019). https://doi.org/10.1016/j.trac.2019.115646
Y. Zhang, K. Aslan, M.J. Previte, C.D. Geddes, Plasmonic engineering of singlet oxygen generation. PNAS 105(6), 1798–1802 (2008). https://doi.org/10.1073/pnas.0709501105
Y. Zhang, K. Aslan, M.J. Previte, C.D. Geddes, Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields. J. Fluoresc. 17(4), 345–349 (2007). https://doi.org/10.1007/s10895-007-0196-y
X. Ragas, A. Gallardo, Y. Zhang, W. Massad, C.D. Geddes et al., Singlet oxygen phosphorescence enhancement by silver islands films. J. Phys. Chem. C 115(33), 16275–16281 (2011). https://doi.org/10.1021/jp202095a
M.T. Yaraki, F. Hu, S.D. Rezaei, B. Liu, Y.N. Tan, Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. Nanoscale Adv. 2(7), 2859–2869 (2020). https://doi.org/10.1039/D0NA00182A
M.T. Yaraki, M. Wu, E. Middha, W. Wu, S.D. Rezaei et al., Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-Micro Lett. 13, 58 (2021). https://doi.org/10.1007/s40820-020-00583-2
M.T. Yaraki, Y. Pan, F. Hu, Y. Yu, B. Liu et al., Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front. 4(10), 3074–3085 (2020). https://doi.org/10.1039/D0QM00469C
K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J.R. Lakowicz et al., Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol. 16(1), 55–62 (2005). https://doi.org/10.1016/j.copbio.2005.01.001
P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanops and their applications to biosystems. Plasmonics 2(3), 107–118 (2007). https://doi.org/10.1007/s11468-007-9031-1
M.R. Younis, G. He, J. Qu, J. Lin, P. Huang et al., Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 8(21), 2102587 (2021). https://doi.org/10.1002/advs.202102587
B. Li, S. Zhao, L. Huang, Q. Wang, J. Xiao et al., Recent advances and prospects of carbon dots in phototherapy. Chem. Eng. J. 408, 127245 (2021). https://doi.org/10.1016/j.cej.2020.127245
T. Kawawaki, Y. Negishi, H. Kawasaki, Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Adv. 2(1), 17–36 (2020). https://doi.org/10.1039/C9NA00583H
S. Liu, G. Feng, B.Z. Tang, B. Liu, Recent advances of AIE light-up probes for photodynamic therapy. Chem. Sci. 12(19), 6488–6506 (2021). https://doi.org/10.1039/D1SC00045D
R. Tong, D.S. Kohane, Shedding light on nanomedicine. WIREs Nanomed. Nanobiotechnol. 4(6), 638–662 (2012). https://doi.org/10.1002/wnan.1188
L.B. Josefsen, R.W. Boyle, Photodynamic therapy and the development of metal-based photosensitisers. Met.-Based Drugs 2008, 276109 (2008). https://doi.org/10.1155/2008/276109
J. Zhao, W. Wu, J. Sun, S. Guo, Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 42(12), 5323–5351 (2013). https://doi.org/10.1039/c3cs35531d
F. Wilkinson, W.P. Helman, A.B. Ross, Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 22(1), 113–262 (1993). https://doi.org/10.1063/1.555934
S. Wang, R. Gao, F. Zhou, M. Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J. Mater. Chem. 14(4), 487–493 (2004). https://doi.org/10.1039/b311429e
J.M. Dąbrowski, in Reactive oxygen species in photodynamic therapy: mechanisms of their generation and potentiation. Adv. Inorg. Chem. 70, 343–394 (2017). https://doi.org/10.1016/bs.adioch.2017.03.002
J.F. Lovell, T.W. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy. Chem. Rev. 110(5), 2839–2857 (2010). https://doi.org/10.1021/cr900236h
B.W. Henderson, T.J. Dougherty, How does photodynamic therapy work? Photochem. Photobiol. 55(1), 145–157 (1992). https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 24(1), 19–33 (1995). https://doi.org/10.1039/cs9952400019
R. Mittler, ROS are good. Trends Plant Sci. 22(1), 11–19 (2017). https://doi.org/10.1016/j.tplants.2016.08.002
P.Y. Liao, X.R. Wang, Y.H. Gao, X.H. Zhang, L.J. Zhang et al., Synthesis, photophysical properties and biological evaluation of β-alkylaminoporphyrin for photodynamic therapy. Bioorg. Med. Chem. 24(22), 6040–6047 (2016). https://doi.org/10.1016/j.bmc.2016.09.060
J.J. Chen, G. Hong, L.J. Gao, T.J. Liu, W.J. Cao, In vitro and in vivo antitumor activity of a novel porphyrin-based photosensitizer for photodynamic therapy. J. Cancer Res. Clin. Oncol. 141(9), 1553–1561 (2015). https://doi.org/10.1007/s00432-015-1918-1
M. Nakai, T. Maeda, T. Mashima, S. Yano, S. Sakuma et al., Syntheses and photodynamic properties of glucopyranoside-conjugated indium (III) porphyrins as a bifunctional agent. J. Porphyr. Phthalocyanines 17(12), 1173–1182 (2013). https://doi.org/10.1142/S1088424613500934
H. Horiuchi, M. Hosaka, H. Mashio, M. Terata, S. Ishida et al., Silylation improves the photodynamic activity of tetraphenylporphyrin derivatives in vitro and in vivo. Chem. Eur. J. 20(20), 6054–6060 (2014). https://doi.org/10.1002/chem.201303120
T.D. Lash, V. Gandhi, Porphyrins with exocyclic rings. 15.1 synthesis of quino-and isoquinoporphyrins, aza analogues of the naphthoporphyrins. J. Org. Chem. 65(23), 8020–8026 (2000). https://doi.org/10.1021/jo001216m
H. Brunner, H. Obermeier, Platinum (II) complexes with porphyrin ligands-additive cytotoxic and photodynamic effect. Angew. Chem. Int. Ed. 33(21), 2214–2215 (1994). https://doi.org/10.1002/anie.199422141
J. Ferreira, P.F. Menezes, C. Kurachi, C. Sibata, R. Allison et al., Photostability of different chlorine photosensitizers. Laser Phys. Lett. 5(2), 156 (2007). https://doi.org/10.1002/lapl.200710099
R. Asano, A. Nagami, Y. Fukumoto, K. Miura, F. Yazama et al., Synthesis and biological evaluation of new boron-containing chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer. Bioorg. Med. Chem. Lett. 24(5), 1339–1343 (2014). https://doi.org/10.1016/j.bmcl.2014.01.054
M. Stillman, T. Nyokong, C. Leznoff, A. Lever, Phthalocyanines: Properties and Applications (1989).
K.T. Oliveira, F.F. Assis, A.O. Ribeiro, C.R. Neri, A.U. Fernandes et al., Synthesis of phthalocyanines− ALA conjugates: water-soluble compounds with low aggregation. J. Org. Chem. 74(20), 7962–7965 (2009). https://doi.org/10.1021/jo901633a
Z. Bıyıklıoğlu, H. Kantekin, Synthesis and spectroscopic properties of a series of octacationic water-soluble phthalocyanines. Synth. Met. 161(11–12), 943–948 (2011). https://doi.org/10.1016/j.synthmet.2011.02.027
A.R.A. Silva, A.R. Simioni, A.C. Tedesco, Photophysical and complexation studies of chloro-aluminum phthalocyanine with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. J. Nanosci. Nanotechnol. 11(5), 4046–4055 (2011). https://doi.org/10.1166/jnn.2011.3823
M. Durmuş, H. Yaman, C. Göl, V. Ahsen, T. Nyokong, Water-soluble quaternized mercaptopyridine-substituted zinc-phthalocyanines: synthesis, photophysical, photochemical and bovine serum albumin binding properties. Dyes Pigments 91(2), 153–163 (2011). https://doi.org/10.1016/j.dyepig.2011.02.007
E. Agut-Busquet, J. Romaní, Y. Gilaberte, A. García-Malinis, M. Ribera-Pibernat et al., Photodynamic therapy with intralesional methylene blue and a 635 nm light-emitting diode lamp in hidradenitis suppurativa: a retrospective follow-up study in 7 patients and a review of the literature. Photochem. Photobiol. Sci. 15(8), 1020–1028 (2016). https://doi.org/10.1039/C6PP00082G
V. Martinez, M. Henary, Nile red and nile blue: applications and syntheses of structural analogues. Chem. Eur. J. 22(39), 13764–13782 (2016). https://doi.org/10.1002/chem.201601570
G. Sridharan, A.A. Shankar, Toluidine blue: a review of its chemistry and clinical utility. JOMFP 16(2), 251 (2012). https://doi.org/10.4103/0973-029X.99081
A.B. Ormond, H.S. Freeman, Dye sensitizers for photodynamic therapy. Materials 6(3), 817–840 (2013). https://doi.org/10.3390/ma6030817
J. Demas, E. Harris, R. McBride, Energy transfer from luminescent transition metal complexes to oxygen. J. Am. Chem. Soc. 99(11), 3547–3551 (1977). https://doi.org/10.1021/ja00453a001
Q.G. Mulazzani, H. Sun, M.Z. Hoffman, W.E. Ford, M.A. Rodgers, Quenching of the excited states of ruthenium (II)-diimine complexes by oxygen. J. Phys. Chem. 98(4), 1145–1150 (1994). https://doi.org/10.1021/j100055a017
D. Garcìa-Fresnadillo, Y. Georgiadou, G. Orellana, A.M. Braun, E. Oliveros, Singlet-oxygen (1δg) production by ruthenium (II) complexes containing polyazaheterocyclic ligands in methanol and in water. Helv. Chim. Acta 79(4), 1222–1238 (1996). https://doi.org/10.1002/hlca.19960790428
D.M. Guldi, T.D. Mody, N.N. Gerasimchuk, D. Magda, J.L. Sessler, Influence of large metal cations on the photophysical properties of texaphyrin, a rigid aromatic chromophore. J. Am. Chem. Soc. 122(34), 8289–8298 (2000). https://doi.org/10.1021/ja001578b
S. Hannah, V. Lynch, D.M. Guldi, N. Gerasimchuk, C.L. MacDonald et al., Late first-row transition-metal complexes of texaphyrin. J. Am. Chem. Soc. 124(28), 8416–8427 (2002). https://doi.org/10.1021/ja012747a
M. Wainwright, N.J. Grice, L.E. Pye, Phenothiazine photosensitizers: part 2. 3, 7-bis(arylamino)phenothiazines1. Dyes Pigments 42(1), 45–51 (1999). https://doi.org/10.1016/S0143-7208(99)00008-X
J. Li, H. Gao, R. Liu, C. Chen, S. Zeng et al., Endoplasmic reticulum targeted AIE bioprobe as a highly efficient inducer of immunogenic cell death. Sci. China Chem. 63(10), 1428–1434 (2020). https://doi.org/10.1007/s11426-020-9846-4
S. Jia, Z. Gao, Z. Wu, H. Gao, H. Wang et al., Sonosensitized aggregation-induced emission dots with capacities of immunogenic cell death induction and multivalent blocking of programmed cell death-ligand 1 for amplified antitumor immunotherapy. CCS Chem. 4(2), 501–514 (2022). https://doi.org/10.31635/ccschem.021.202101458
C. Chen, X. Ni, S. Jia, Y. Liang, X. Wu et al., Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 31(52), 1904914 (2019). https://doi.org/10.1002/adma.201904914
Y. Yu, W.D. Lee, Y.N. Tan, Protein-protected gold/silver alloy nanoclusters in metal-enhanced singlet oxygen generation and their correlation with photoluminescence. Mater. Sci. Eng. C 109, 110525 (2020). https://doi.org/10.1016/j.msec.2019.110525
J. Geng, W.L. Goh, C. Zhang, D.P. Lane, B. Liu et al., A highly sensitive fluorescent light-up probe for real-time detection of the endogenous protein target and its antagonism in live cells. J. Mater. Chem. B 3(29), 5933–5937 (2015). https://doi.org/10.1039/C5TB00819K
J.Y.C. Lim, Y. Yu, G. Jin, K. Li, Y. Lu et al., Establishing empirical design rules of nucleic acid templates for the synthesis of silver nanoclusters with tunable photoluminescence and functionalities towards targeted bioimaging applications. Nanoscale Adv. 2(9), 3921–3932 (2020). https://doi.org/10.1039/D0NA00381F
Y. Yu, Z. Luo, C.S. Teo, Y.N. Tan, J. Xie, Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chem. Commun. 49(84), 9740–9742 (2013). https://doi.org/10.1039/C3CC46005C
Y. Yu, B.Y.L. Mok, X.J. Loh, Y.N. Tan, Rational design of biomolecular templates for synthesizing multifunctional noble metal nanoclusters toward personalized theranostic applications. Adv. Healthc. Mater. 5(15), 1844–1859 (2016). https://doi.org/10.1002/adhm.201600192
Y. Yu, S.Y. New, J. Xie, X. Su, Y.N. Tan, Protein-based fluorescent metal nanoclusters for small molecular drug screening. Chem. Commun. 50(89), 13805–13808 (2014). https://doi.org/10.1039/C4CC06914E
Y. Yu, X.T. Zheng, B.W. Yee, Y.N. Tan, Biomimicking synthesis of photoluminescent molecular lantern catalyzed by in-situ formation of nanogold catalysts. Mater. Sci. Eng. C 77, 1111–1116 (2017). https://doi.org/10.1016/j.msec.2017.04.029
H. Zou, J. Zhang, C. Wu, B. He, Y. Hu et al., Making aggregation-induced emission luminogen more valuable by gold: enhancing anticancer efficacy by suppressing thioredoxin reductase activity. ACS Nano 15(5), 9176–9185 (2021). https://doi.org/10.1021/acsnano.1c02882
C. Zhou, C. Peng, C. Shi, M. Jiang, J.H.C. Chau et al., Mitochondria-specific aggregation-induced emission luminogens for selective photodynamic killing of fungi and efficacious treatment of keratitis. ACS Nano 15(7), 12129–12139 (2021). https://doi.org/10.1021/acsnano.1c03508
Z. Zhang, W. Xu, P. Xiao, M. Kang, D. Yan et al., Molecular engineering of high-performance aggregation-induced emission photosensitizers to boost cancer theranostics mediated by acid-triggered nucleus-targeted nanovectors. ACS Nano 15(6), 10689–10699 (2021). https://doi.org/10.1021/acsnano.1c03700
X. Zhang, Y. Chen, C. Li, Z. Xue, H. Wu et al., Root canal disinfection using highly effective aggregation-induced emission photosensitizer. ACS Appl. Bio Mater. 4(5), 3796–3804 (2021). https://doi.org/10.1021/acsabm.0c01274
W. Xu, Z. Zhang, M. Kang, H. Guo, Y. Li et al., Making the best use of excited-state energy: multimodality theranostic systems based on second near-infrared (NIR-II) aggregation-induced emission luminogens (AIEgens). ACS Mater. Lett. 2(8), 1033–1040 (2020). https://doi.org/10.1021/acsmaterialslett.0c00263
X. Yi, J.J. Hu, J. Dai, X. Lou, Z. Zhao et al., Self-guiding polymeric prodrug micelles with two aggregation-induced emission photosensitizers for enhanced chemo-photodynamic therapy. ACS Nano 15(2), 3026–3037 (2021). https://doi.org/10.1021/acsnano.0c09407
Y. Huang, D.E. Liu, J. An, B. Liu, L. Sun et al., Reactive oxygen species self-sufficient multifunctional nanoplatform for synergistic chemo-photodynamic therapy with red/near-infrared dual-imaging. ACS Appl. Bio Mater. 3(12), 9135–9144 (2020). https://doi.org/10.1021/acsabm.0c01419
W. Du, X. Liu, L. Liu, J.W.Y. Lam, B.Z. Tang, Photoresponsive polymers with aggregation-induced emission. ACS Appl. Polym. Mater. 3(5), 2290–2309 (2021). https://doi.org/10.1021/acsapm.1c00182
D. Chen, Z. Long, C. Zhong, L. Chen, Y. Dang et al., Highly efficient near-infrared photosensitizers with aggregation-induced emission characteristics: rational molecular design and photodynamic cancer cell ablation. ACS Appl. Bio Mater. 4(6), 5231–5239 (2021). https://doi.org/10.1021/acsabm.1c00398
J. Liu, X. Liu, M. Wu, G. Qi, B. Liu, Engineering living mitochondria with AIE photosensitizer for synergistic cancer cell ablation. Nano Lett. 20(10), 7438–7445 (2020). https://doi.org/10.1021/acs.nanolett.0c02778
L. Zhang, J.L. Wang, X.X. Ba, S.Y. Hua, P. Jiang et al., Multifunction in one molecule: mitochondrial imaging and photothermal & photodynamic cytotoxicity of fast-response near-infrared fluorescent probes with aggregation-induced emission characteristics. ACS Appl. Mater. Interfaces 13(7), 7945–7954 (2021). https://doi.org/10.1021/acsami.0c20283
Y. Yuan, C.J. Zhang, R.T. Kwok, S. Xu, R. Zhang et al., Light-up probe for targeted and activatable photodynamic therapy with real-time in situ reporting of sensitizer activation and therapeutic responses. Adv. Funct. Mater. 25(42), 6586–6595 (2015). https://doi.org/10.1002/adfm.201502728
F. Hu, Y. Huang, G. Zhang, R. Zhao, H. Yang et al., Targeted bioimaging and photodynamic therapy of cancer cells with an activatable red fluorescent bioprobe. Anal. Chem. 86(15), 7987–7995 (2014). https://doi.org/10.1021/ac502103t
K. Chen, P. He, Z. Wang, B.Z. Tang, A feasible strategy of fabricating type I photosensitizer for photodynamic therapy in cancer cells and pathogens. ACS Nano 15(4), 7735–7743 (2021). https://doi.org/10.1021/acsnano.1c01577
B. Gu, W. Wu, G. Xu, G. Feng, F. Yin et al., Precise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics. Adv. Mater. 29(28), 1701076 (2017). https://doi.org/10.1002/adma.201701076
N. Alifu, X. Dong, D. Li, X. Sun, A. Zebibula et al., Aggregation-induced emission nanops as photosensitizer for two-photon photodynamic therapy. Mater. Chem. Front. 1(9), 1746–1753 (2017). https://doi.org/10.1039/C7QM00092H
W. Liu, Z. Li, Y. Qiu, J. Li, J. Yang et al., Biomineralization of aggregation-induced emission-active photosensitizers for pH-mediated tumor imaging and photodynamic therapy. ACS Appl. Bio Mater. 4(7), 5566–5574 (2021). https://doi.org/10.1021/acsabm.1c00298
L. Liu, X. Wang, L.J. Wang, L. Guo, Y. Li et al., One-for-all phototheranostic agent based on aggregation-induced emission characteristics for multimodal imaging-guided synergistic photodynamic/photothermal cancer therapy. ACS Appl. Mater. Interfaces 13(17), 19668–19678 (2021). https://doi.org/10.1021/acsami.1c02260
H. Ma, C. Zhao, H. Meng, R. Li, L. Mao et al., Multifunctional organic fluorescent probe with aggregation-induced emission characteristics: ultrafast tumor monitoring, two-photon imaging, and image-guide photodynamic therapy. ACS Appl. Mater. Interfaces 13(7), 7987–7996 (2021). https://doi.org/10.1021/acsami.0c21309
Y. Li, R. Tang, X. Liu, J. Gong, Z. Zhao et al., Bright aggregation-induced emission nanops for two-photon imaging and localized compound therapy of cancers. ACS Nano 14(12), 16840–16853 (2020). https://doi.org/10.1021/acsnano.0c05610
Z. Shen, Q. Ma, X. Zhou, G. Zhang, G. Hao et al., Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater. 13(1), 39 (2021). https://doi.org/10.1038/s41427-021-00303-1
Q. Wan, R. Zhang, Z. Zhuang, Y. Li, Y. Huang et al., Molecular engineering to boost AIE-active free radical photogenerators and enable high-performance photodynamic therapy under hypoxia. Adv. Funct. Mater. 30(39), 2002057 (2020). https://doi.org/10.1002/adfm.202002057
W. Wu, D. Mao, F. Hu, S. Xu, C. Chen et al., A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy. Adv. Mater. 29(33), 1700548 (2017). https://doi.org/10.1002/adma.201700548
S. Xu, W. Wu, X. Cai, C.J. Zhang, Y. Yuan et al., Highly efficient photosensitizers with aggregation-induced emission characteristics obtained through precise molecular design. Chem. Commun. 53(62), 8727–8730 (2017). https://doi.org/10.1039/C7CC04864E
E. Zhao, Y. Chen, H. Wang, S. Chen, J.W. Lam et al., Light-enhanced bacterial killing and wash-free imaging based on AIE fluorogen. ACS Appl. Mater. Interfaces 7(13), 7180–7188 (2015). https://doi.org/10.1021/am509142k
W. Wu, D. Mao, S. Xu, S. Ji, F. Hu et al., High performance photosensitizers with aggregation-induced emission for image-guided photodynamic anticancer therapy. Mater. Horiz. 4(6), 1110–1114 (2017). https://doi.org/10.1039/C7MH00469A
A. Rananaware, R.S. Bhosale, K. Ohkubo, H. Patil, L.A. Jones et al., Tetraphenylethene-based star shaped porphyrins: synthesis, self-assembly, and optical and photophysical study. J. Org. Chem. 80(8), 3832–3840 (2015). https://doi.org/10.1021/jo502760e
F. Lv, D. Liu, W. Zheng, Y. Zhao, F. Song, Bophy-based aggregation-induced-emission nanop photosensitizers for photodynamic therapy. ACS Appl. Nano Mater. 4(6), 6012–6019 (2021). https://doi.org/10.1021/acsanm.1c00862
R. Jin, Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3), 343–362 (2010). https://doi.org/10.1039/b9nr00160c
Y. Lu, W. Chen, Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41(9), 3594–3623 (2012). https://doi.org/10.1039/C2CS15325D
C. Zeng, Y. Chen, A. Das, R. Jin, Transformation chemistry of gold nanoclusters: from one stable size to another. J. Phys. Chem. Lett. 6(15), 2976–2986 (2015). https://doi.org/10.1021/acs.jpclett.5b01150
Y. Yu, Q. Yao, Z. Luo, X. Yuan, J.Y. Lee et al., Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale 5(11), 4606–4620 (2013). https://doi.org/10.1039/C3NR00464C
D. Jose, J.E. Matthiesen, C. Parsons, C.M. Sorensen, K.J. Klabunde, Size focusing of nanops by thermodynamic control through ligand interactions. Molecular clusters compared with nanops of metals. J. Phys. Chem. Lett. 3(7), 885–890 (2012). https://doi.org/10.1021/jz201640e
R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu et al., Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 1(19), 2903–2910 (2010). https://doi.org/10.1021/jz100944k
X.T. Zheng, H.V. Xu, Y.N. Tan, Bioinspired design and engineering of functional nanostructured materials for biomedical applications. Adv. Bioinspired Biomed. Mater. (2017). https://doi.org/10.1021/bk-2017-1253.ch007
Y.G. Srinivasulu, Q. Yao, N. Goswami, J. Xie, Interfacial engineering of gold nanoclusters for biomedical applications. Mater. Horiz. 7(10), 2596–2618 (2020). https://doi.org/10.1039/D0MH00827C
Y. Yu, P.Y.J. Ching, Y.N. Tan, Microwave-assisted synthesis and mechanistic study of multicolor emissive Au nanoclusters using thiol-containing biomolecules. Adv. Mater. Lett. 9(9), 647–651 (2018). https://doi.org/10.5185/amlett.2018.2081
N. El-Sayed, M. Schneider, Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. J. Mater. Chem. B 8(39), 8952–8971 (2020). https://doi.org/10.1039/D0TB01610A
X. Yuan, Z. Luo, Y. Yu, Q. Yao, J. Xie, Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 8(5), 858–871 (2013). https://doi.org/10.1002/asia.201201236
Z. Yin, Q. Ji, D. Wu, Z. Li, M. Fan et al., H2O2-responsive gold nanoclusters @ mesoporous silica @ manganese dioxide nanozyme for “off/on” modulation and enhancement of magnetic resonance imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 13(13), 14928–14937 (2021). https://doi.org/10.1021/acsami.1c00430
L. Shang, S.J. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6(4), 401–418 (2011). https://doi.org/10.1016/j.nantod.2011.06.004
X.L. Guevel, Recent advances on the synthesis of metal quantum nanoclusters and their application for bioimaging. IEEE J. Sel. Top. Quantum Electron. 20(3), 45–56 (2014). https://doi.org/10.1109/JSTQE.2013.2282275
J. Zhu, T. Xiao, J. Zhang, H. Che, Y. Shi et al., Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy. ACS Nano 14(9), 11225–11237 (2020). https://doi.org/10.1021/acsnano.0c03080
Y.G. Srinivasulu, A. Mozhi, N. Goswami, Q. Yao, J. Xie, Traceable nanocluster–prodrug conjugate for chemo-photodynamic combinatorial therapy of non-small cell lung cancer. ACS Appl. Bio Mater. 4(4), 3232–3245 (2021). https://doi.org/10.1021/acsabm.0c01611
H. Cui, Z.S. Shao, Z. Song, Y.B. Wang, H.S. Wang, Development of gold nanoclusters: from preparation to applications in the field of biomedicine. J. Mater. Chem. C 8(41), 14312–14333 (2020). https://doi.org/10.1039/D0TC03443F
D. Li, B. Kumari, J.M. Makabenta, B. Tao, K. Qian et al., Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. J. Mater. Chem. B 8(41), 9466–9480 (2020). https://doi.org/10.1039/D0TB00549E
C. Fan, S. Zhai, W. Hu, S. Chi, D. Song et al., Gold nanoclusters as a GSH activated mitochondrial targeting photosensitizer for efficient treatment of malignant tumors. RSC Adv. 11(35), 21384–21389 (2021). https://doi.org/10.1039/D1RA03469C
T. Das, P. Ghosh, M.S. Shanavas, A. Maity, S. Mondal et al., Protein-templated gold nanoclusters: size dependent inversion of fluorescence emission in the presence of molecular oxygen. Nanoscale 4(19), 6018–6024 (2012). https://doi.org/10.1039/C2NR31271A
H. Kawasaki, S. Kumar, G. Li, C. Zeng, D.R. Kauffman et al., Generation of singlet oxygen by photoexcited Au25(Sr)18 clusters. Chem. Mater. 26(9), 2777–2788 (2014). https://doi.org/10.1021/cm500260z
D. Yang, G. Yang, S. Gai, F. He, G. An et al., Au25 cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale 7(46), 19568–19578 (2015). https://doi.org/10.1039/C5NR06192J
M. Yamamoto, I. Osaka, K. Yamashita, H. Hasegawa, R. Arakawa et al., Effects of ligand species and cluster size of biomolecule-protected Au nanoclusters on efficiency of singlet-oxygen generation. J. Lumin. 180, 315–320 (2016). https://doi.org/10.1016/j.jlumin.2016.08.059
R. Vankayala, C.L. Kuo, K. Nuthalapati, C.S. Chiang, K.C. Hwang, Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv. Funct. Mater. 25(37), 5934–5945 (2015). https://doi.org/10.1002/adfm.201502650
P. Huang, J. Lin, S. Wang, Z. Zhou, Z. Li et al., Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 34(19), 4643–4654 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.063
L.V. Nair, S.S. Nazeer, R.S. Jayasree, A. Ajayaghosh, Fluorescence imaging assisted photodynamic therapy using photosensitizer-linked gold quantum clusters. ACS Nano 9(6), 5825–5832 (2015). https://doi.org/10.1021/acsnano.5b00406
I. Okamoto, H. Miyaji, S. Miyata, K. Shitomi, T. Sugaya et al., Antibacterial and antibiofilm photodynamic activities of lysozyme-Au nanoclusters/rose bengal conjugates. ACS Omega 6(13), 9279–9290 (2021). https://doi.org/10.1021/acsomega.1c00838
K. Wu, G. Wu, A.J. MacRobert, E. Allan, A. Gavriilidis et al., Ultra high molecular weight polyethylene with incorporated crystal violet and gold nanoclusters is antimicrobial in low intensity light and in the dark. Mater. Adv. 1(9), 3339–3348 (2020). https://doi.org/10.1039/D0MA00710B
S. Rondeau-Gagné, J.F. Morin, Preparation of carbon nanomaterials from molecular precursors. Chem. Soc. Rev. 43(1), 85–98 (2014). https://doi.org/10.1039/c3cs60210a
T.N. Hoheisel, S. Schrettl, R. Szilluweit, H. Frauenrath, Nanostructured carbonaceous materials from molecular precursors. Angew. Chem. Int. Ed. 49(37), 6496–6515 (2010). https://doi.org/10.1002/anie.200907180
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h
Y. Choi, Y. Choi, O.H. Kwon, B.S. Kim, Carbon dots: bottom-up syntheses, properties, and light-harvesting applications. Chem. Asian J. 13(6), 586–598 (2018). https://doi.org/10.1002/asia.201701736
Y. Choi, X.T. Zheng, Y.N. Tan, Bioinspired carbon dots (biodots): emerging fluorophores with tailored multiple functionalities for biomedical, agricultural and environmental applications. Mol. Syst. Des. Eng. 5(1), 67–90 (2020). https://doi.org/10.1039/C9ME00086K
H.V. Xu, Y. Zhao, Y.N. Tan, Nanodot-directed formation of plasmonic-fluorescent nanohybrids toward dual optical detection of glucose and cholesterol via hydrogen peroxide sensing. ACS Appl. Mater. Interfaces 11(30), 27233–27242 (2019). https://doi.org/10.1021/acsami.9b08708
X.T. Zheng, Y.C. Lai, Y.N. Tan, Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy. Nanoscale Adv. 1(6), 2250–2257 (2019). https://doi.org/10.1039/C9NA00058E
H.V. Xu, X.T. Zheng, C. Wang, Y. Zhao, Y.N. Tan, Bioinspired antimicrobial nanodots with amphiphilic and zwitterionic-like characteristics for combating multidrug-resistant bacteria and biofilm removal. ACS Appl. Nano Mater. 1(5), 2062–2068 (2018). https://doi.org/10.1021/acsanm.8b00465
H.V. Xu, X.T. Zheng, Y. Zhao, Y.N. Tan, Uncovering the design principle of amino acid-derived photoluminescent biodots with tailor-made structure–properties and applications for cellular bioimaging. ACS Appl. Mater. Interfaces 10(23), 19881–19888 (2018). https://doi.org/10.1021/acsami.8b04864
X.T. Zheng, Y.N. Tan, Development of blood-cell-selective fluorescent biodots for lysis-free leukocyte imaging and differential counting in whole blood. Small 16(12), 1903328 (2020). https://doi.org/10.1002/smll.201903328
X.T. Zheng, Y. Choi, D.G.G. Phua, Y.N. Tan, Noncovalent fluorescent biodot–protein conjugates with well-preserved native functions for improved sweat glucose detection. Bioconjugate Chem. 31(3), 754–763 (2020). https://doi.org/10.1021/acs.bioconjchem.9b00856
X. Nie, C. Jiang, S. Wu, W. Chen, P. Lv et al., Carbon quantum dots: a bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. J. Photochem. Photobiol. B Bio. 206, 111864 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111864
L. Guo, J. Ge, W. Liu, G. Niu, Q. Jia et al., Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale 8(2), 729–734 (2016). https://doi.org/10.1039/C5NR07153D
H.V. Xu, X. Zheng, Y. Zhao, Y.N. Tan, Uncovering the design principle of amino acid-derived photoluminescent bio-dots with tailored-made structure-properties and application for cellular bioimaging. ACS Appl. Mater. Interfaces 10(23), 19881–19888 (2018). https://doi.org/10.1021/acsami.8b04864
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14), 1620–1636 (2015). https://doi.org/10.1002/smll.201402648
Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao et al., Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 125(30), 7954–7958 (2013). https://doi.org/10.1002/ange.201301114
H. Li, X. He, Z. Kang, H. Huang, Y. Liu et al., Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49(26), 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
P. Innocenzi, L. Stagi, Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem. Sci. 11(26), 6606–6622 (2020). https://doi.org/10.1039/D0SC02658A
S.P. Jovanović, Z. Syrgiannis, M.D. Budimir, D.D. Milivojević, D.J. Jovanovic et al., Graphene quantum dots as singlet oxygen producer or radical quencher - the matter of functionalization with urea/thiourea. Mater. Sci. Eng. C 109, 110539 (2020). https://doi.org/10.1016/j.msec.2019.110539
J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo et al., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014). https://doi.org/10.1038/ncomms5596
J. Ge, Q. Jia, W. Liu, M. Lan, B. Zhou et al., Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv. Healthc. Mater. 5(6), 665–675 (2016). https://doi.org/10.1002/adhm.201500720
K.P. Nielsen, A. Juzeniene, P. Juzenas, K. Stamnes, J.J. Stamnes et al., Choice of optimal wavelength for PDT: the significance of oxygen depletion. Photochem. Photobiol. 81(5), 1190–1194 (2005). https://doi.org/10.1562/2005-04-06-RA-478
Q. Jia, J. Ge, W. Liu, L. Guo, X. Zheng et al., Self-assembled carbon dot nanosphere: a robust, near-infrared light-responsive, and vein injectable photosensitizer. Adv. Healthc. Mater. 6(12), 1601419 (2017). https://doi.org/10.1002/adhm.201601419
Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen et al., A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 30(13), 1706090 (2018). https://doi.org/10.1002/adma.201706090
J. Feng, Y.L. Yu, J.H. Wang, Porphyrin structure carbon dots under red light irradiation for bacterial inactivation. New J. Chem. 44(42), 18225–18232 (2020). https://doi.org/10.1039/D0NJ04013D
J. Su, S. Lu, J. Hai, K. Liang, T. Li et al., Confining carbon dots in porous wood: the singlet oxygen enhancement strategy for photothermal signal-amplified detection of Mn2+. ACS Sustain. Chem. Eng. 8(48), 17687–17696 (2020). https://doi.org/10.1021/acssuschemeng.0c05352
R. Knoblauch, A. Harvey, E. Ra, K.M. Greenberg, J. Lau et al., Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots. Nanoscale 13(1), 85–99 (2021). https://doi.org/10.1039/D0NR06842J
H. Yao, W. Zhao, S. Zhang, X. Guo, Y. Li et al., Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B 6(19), 3107–3115 (2018). https://doi.org/10.1039/C8TB00118A
P. Juzenas, A. Kleinauskas, P.G. Luo, Y.P. Sun, Photoactivatable carbon nanodots for cancer therapy. Appl. Phys. Lett. 103(6), 063701 (2013). https://doi.org/10.1063/1.4817787
Y. Li, X. Zheng, X. Zhang, S. Liu, Q. Pei et al., Porphyrin-based carbon dots for photodynamic therapy of hepatoma. Adv. Healthc. Mater. 6(1), 1600924 (2017). https://doi.org/10.1002/adhm.201600924
D.K. Ji, G. Reina, S. Guo, M. Eredia, P. Samorì et al., Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. Nanoscale Horiz. 5(8), 1240–1249 (2020). https://doi.org/10.1039/D0NH00300J
B. Jang, J.Y. Park, C.H. Tung, I.H. Kim, Y. Choi, Gold nanorod−photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5(2), 1086–1094 (2011). https://doi.org/10.1021/nn102722z
J. Wang, G. Zhu, M. You, E. Song, M.I. Shukoor et al., Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6(6), 5070–5077 (2012). https://doi.org/10.1021/nn300694v
D. Park, J. Kim, Y. Choi, Photosensitizer-complexed polypyrrole nanops for activatable fluorescence imaging and photodynamic therapy. J. Mater. Chem. B 4(47), 7545–7548 (2016). https://doi.org/10.1039/C6TB02461K
M.C.A. Issa, M. Manela-Azulay, Photodynamic therapy: a review of the literature and image documentation. An. Bras. Dermatol. 85(4), 501–511 (2010). https://doi.org/10.1590/S0365-05962010000400011
M.B. Ericson, A.M. Wennberg, O. Larkö, Review of photodynamic therapy in actinic keratosis and basal cell carcinoma. Ther. Clin. Risk Manag. 4(1), 1 (2008). https://doi.org/10.2147/TCRM.S1769
X. Wang, S. Zhu, L. Liu, L. Li, Flexible antibacterial film based on conjugated polyelectrolyte/silver nanocomposites. ACS Appl. Mater. Interfaces 9(10), 9051–9058 (2017). https://doi.org/10.1021/acsami.7b00885
V.L. Schlegel, T.M. Cotton, Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity. Anal. Chem. 63(3), 241–247 (1991). https://doi.org/10.1021/ac00003a010
M. Green, F.M. Liu, SRES substrates fabricated by island lithography: the silver/pyridine system. J. Phys. Chem. B 107(47), 13015–13021 (2003). https://doi.org/10.1021/jp030751y
J. Karolin, C.D. Geddes, Metal-enhanced fluorescence based excitation volumetric effect of plasmon-enhanced singlet oxygen and super oxide generation. Phys. Chem. Chem. Phys. 15(38), 15740–15745 (2013). https://doi.org/10.1039/c3cp50950h
A. Dragan, C. Geddes, Excitation volumetric effects (EVE) in metal-enhanced fluorescence. Phys. Chem. Chem. Phys. 13(9), 3831–3838 (2011). https://doi.org/10.1039/c0cp01986k
R. Toftegaard, J. Arnbjerg, K. Daasbjerg, P.R. Ogilby, A. Dmitriev et al., Metal-enhanced 1270 nm singlet oxygen phosphorescence. Angew. Chem. Int. Ed. 47(32), 6025–6027 (2008). https://doi.org/10.1002/anie.200800755
Y. Zhang, K. Aslan, S.N. Malyn, C.D. Geddes, Metal-enhanced phosphorescence (MEP). Chem. Phys. Lett. 427(4–6), 432–437 (2006). https://doi.org/10.1016/j.cplett.2006.06.078
Y. Zhang, K. Aslan, M.J. Previte, S.N. Malyn, C.D. Geddes, Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J. Phys. Chem. B 110(49), 25108–25114 (2006). https://doi.org/10.1021/jp065261v
Q. Cui, F. He, L. Li, H. Moehwald, Controllable metal-enhanced fluorescence in organized films and colloidal system. Adv. Colloid Interface Sci. 207, 164–177 (2014). https://doi.org/10.1016/j.cis.2013.10.011
Y. Zhang, L.N. Mandeng, N. Bondre, A. Dragan, C.D. Geddes, Metal-enhanced fluorescence from silver− SiO2− silver nanoburger structures. Langmuir 26(14), 12371–12376 (2010). https://doi.org/10.1021/la101801n
J. Zhang, J.R. Lakowicz, Metal-enhanced fluorescence of an organic fluorophore using gold ps. Opt. Express 15(5), 2598–2606 (2007). https://doi.org/10.1364/OE.15.002598
H. Szmacinski, R. Badugu, F. Mahdavi, S. Blair, J.R. Lakowicz, Large fluorescence enhancements of fluorophore ensembles with multilayer plasmonic substrates: comparison of theory and experimental results. J. Phys. Chem. C 116(40), 21563–21571 (2012). https://doi.org/10.1021/jp3072876
N. Akbay, J.R. Lakowicz, K. Ray, Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanops. J. Phys. Chem. C 116(19), 10766–10773 (2012). https://doi.org/10.1021/jp2122714
G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997). https://doi.org/10.1126/science.277.5330.1232
C. Tedeschi, L. Li, H. Möhwald, C. Spitz, D. Seggern et al., Engineering of layer-by-layer coated capsules with the prospect of materials for efficient and directed electron transfer. J. Am. Chem. Soc. 126(10), 3218–3227 (2004). https://doi.org/10.1021/ja037128b
J. Kim, H.C. Wang, J. Kumar, S.K. Tripathy, K.G. Chittibabu et al., Novel layer-by-layer complexation technique and properties of the fabricated films. Chem. Mater. 11(8), 2250–2256 (1999). https://doi.org/10.1021/cm990193t
J.J. Richardson, J. Cui, M. Björnmalm, J.A. Braunger, H. Ejima et al., Innovation in layer-by-layer assembly. Chem. Rev. 116(23), 14828–14867 (2016). https://doi.org/10.1021/acs.chemrev.6b00627
Y. Hu, J. Kanka, K. Liu, Y. Yang, H. Wang et al., Gold nanoring-enhanced generation of singlet oxygen: an intricate correlation with surface plasmon resonance and polyelectrolyte bilayers. RSC Adv. 6(106), 104819–104826 (2016). https://doi.org/10.1039/C6RA22814C
S. Noimark, M. Bovis, A.J. MacRobert, A. Correia, E. Allan et al., Photobactericidal polymers; the incorporation of crystal violet and nanogold into medical grade silicone. RSC Adv. 3(40), 18383–18394 (2013). https://doi.org/10.1039/c3ra42629g
S. Perni, P. Prokopovich, I.P. Parkin, M. Wilson, J. Pratten, Prevention of biofilm accumulation on a light-activated antimicrobial catheter material. J. Mater. Chem. 20(39), 8668–8673 (2010). https://doi.org/10.1039/c0jm01891k
S. Perni, C. Piccirillo, J. Pratten, P. Prokopovich, W. Chrzanowski et al., The antimicrobial properties of light-activated polymers containing methylene blue and gold nanops. Biomaterials 30(1), 89–93 (2009). https://doi.org/10.1016/j.biomaterials.2008.09.020
S. Perni, C. Piccirillo, A. Kafizas, M. Uppal, J. Pratten et al., Antibacterial activity of light-activated silicone containing methylene blue and gold nanops of different sizes. J. Clust. Sci. 21(3), 427–438 (2010). https://doi.org/10.1007/s10876-010-0319-5
J.J. Mock, R.T. Hill, A. Degiron, S. Zauscher, A. Chilkoti et al., Distance-dependent plasmon resonant coupling between a gold nanop and gold film. Nano Lett. 8(8), 2245–2252 (2008). https://doi.org/10.1021/nl080872f
K. Kim, D. Shin, K.L. Kim, K.S. Shin, Electromagnetic field enhancement in the gap between two Au nanops: the size of hot site probed by surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 12(15), 3747–3752 (2010). https://doi.org/10.1039/b917543a
A.J. Naik, S. Ismail, C. Kay, M. Wilson, I.P. Parkin, Antimicrobial activity of polyurethane embedded with methylene blue, toluidene blue and gold nanops against staphylococcus aureus; illuminated with white light. Mater. Chem. Phys. 129(1–2), 446–450 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.040
D. Mondal, S. Bera, Porphyrins and phthalocyanines: promising molecules for light-triggered antibacterial nanops. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(3), 033002 (2014). https://doi.org/10.1088/2043-6262/5/3/033002
E. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat et al., The chemistry of the sulfur-gold interface: in search of a unified model. Acc. Chem. Res. 45(8), 1183–1192 (2012). https://doi.org/10.1021/ar200260p
Y. Xue, X. Li, H. Li, W. Zhang, Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 5, 4348 (2014). https://doi.org/10.1038/ncomms5348
X. Zhou, X. He, S. Wei, K. Jia, X. Liu, Au nanorods modulated nir fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine. J. Colloid Interface Sci. 482, 252–259 (2016). https://doi.org/10.1016/j.jcis.2016.07.072
L. Li, J.Y. Chen, X. Wu, P.N. Wang, Q. Peng, Plasmonic gold nanorods can carry sulfonated aluminum phthalocyanine to improve photodynamic detection and therapy of cancers. J. Phys. Chem. B 114(51), 17194–17200 (2010). https://doi.org/10.1021/jp109363n
M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanops in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994). https://doi.org/10.1039/C39940000801
N. Rapulenyane, E. Antunes, T. Nyokong, A study of the photophysicochemical and antimicrobial properties of two zinc phthalocyanine-silver nanop conjugates. New J. Chem. 37(4), 1216–1223 (2013). https://doi.org/10.1039/c3nj41107a
T. Mthethwa, T. Nyokong, Photoinactivation of candida albicans and escherichia coli using aluminium phthalocyanine on gold nanops. Photochem. Photobiol. Sci. 14(7), 1346–1356 (2015). https://doi.org/10.1039/C4PP00315B
N. Nombona, K. Maduray, E. Antunes, A. Karsten, T. Nyokong, Synthesis of phthalocyanine conjugates with gold nanops and liposomes for photodynamic therapy. J. Photochem. Photobiol. B Bio. 107, 35–44 (2012). https://doi.org/10.1016/j.jphotobiol.2011.11.007
T. Stuchinskaya, M. Moreno, M.J. Cook, D.R. Edwards, D.A. Russell, Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanop conjugates. Photochem. Photobiol. Sci. 10(5), 822–831 (2011). https://doi.org/10.1039/c1pp05014a
L. Bekalé, S. Barazzouk, S. Hotchandani, Nanosilver could usher in next-generation photoprotective agents for magnesium porphyrins. Part. Part. Syst. Charact. 31(8), 843–850 (2014). https://doi.org/10.1002/ppsc.201400008
M.B.R. Aiello, J.J. Romero, S.G. Bertolotti, M.C. Gonzalez, D.O. Mártire, Effect of silver nanops on the photophysics of riboflavin: consequences on the ROS generation. J. Phys. Chem. C 120(38), 21967–21975 (2016). https://doi.org/10.1021/acs.jpcc.6b06385
M.T. Yaraki, S.D. Rezaei, E. Middha, Y.N. Tan, Synthesis and simulation study of right silver bipyramids via seed-mediated growth cum selective oxidative etching approach. Part. Part. Syst. Charact. 37(5), 2000027 (2020). https://doi.org/10.1002/ppsc.202000027
M.T. Yaraki, S.D. Rezaei, Y.N. Tan, Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Phys. Chem. Chem. Phys. 22(10), 5673–5687 (2020). https://doi.org/10.1039/C9CP06029D
T. Simon, M. Potara, A.M. Gabudean, E. Licarete, M. Banciu et al., Designing theranostic agents based on pluronic stabilized gold nanoaggregates loaded with methylene blue for multimodal cell imaging and enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 7(30), 16191–16201 (2015). https://doi.org/10.1021/acsami.5b04734
Y. Yang, Y. Hu, H. Du, H. Wang, Intracellular gold nanop aggregation and their potential applications in photodynamic therapy. Chem. Commun. 50(55), 7287–7290 (2014). https://doi.org/10.1039/c4cc02376e
M.K.K. Oo, Y. Yang, Y. Hu, M. Gomez, H. Du et al., Gold nanop-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin ix. ACS Nano 6(3), 1939–1947 (2012). https://doi.org/10.1021/nn300327c
D.C. Hone, P.I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby et al., Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanops: a potential delivery vehicle for photodynamic therapy. Langmuir 18(8), 2985–2987 (2002). https://doi.org/10.1021/la0256230
T.P. Mthethwa, S. Tuncel, M. Durmuş, T. Nyokong, Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanops conjugate. Dalt. Trans. 42(14), 4922–4930 (2013). https://doi.org/10.1039/c3dt32698e
N. Nombona, E. Antunes, C. Litwinski, T. Nyokong, Synthesis and photophysical studies of phthalocyanine-gold nanop conjugates. Dalt. Trans. 40(44), 11876–11884 (2011). https://doi.org/10.1039/c1dt11151e
W. Yang, K. Liu, D. Song, Q. Du, R. Wang et al., Aggregation-induced enhancement effect of gold nanops on triplet excited state. J. Phys. Chem. C 117(51), 27088–27095 (2013). https://doi.org/10.1021/jp410369w
T. Mthethwa, T. Nyokong, Fluorescence behavior and singlet oxygen generating abilities of aluminum phthalocyanine in the presence of anisotropic gold nanops. J. Lumin. 157, 207–214 (2015). https://doi.org/10.1016/j.jlumin.2014.09.005
X. Cao, B. Hu, R. Ding, P. Zhang, Plasmon-enhanced homogeneous and heterogeneous triplet-triplet annihilation by gold nanops. Phys. Chem. Chem. Phys. 17(22), 14479–14483 (2015). https://doi.org/10.1039/C5CP01876E
M. Kotkowiak, A. Dudkowiak, Multiwavelength excitation of photosensitizers interacting with gold nanops and its impact on optical properties of their hybrid mixtures. Phys. Chem. Chem. Phys. 17(41), 27366–27372 (2015). https://doi.org/10.1039/C5CP04459F
L. Freitas, M. Hamblin, F. Anzengruber, J. Perussi, A. Ribeiro et al., Zinc phthalocyanines attached to gold nanorods for simultaneous hyperthermic and photodynamic therapies against melanoma in vitro. J. Photochem. Photobiol. B Bio. 173, 181–186 (2017). https://doi.org/10.1016/j.jphotobiol.2017.05.037
S.C. Hayden, L.A. Austin, R.D. Near, R. Ozturk, M.A. El-Sayed, Plasmonic enhancement of photodynamic cancer therapy. J. Photochem. Photobiol. A Chem. 269, 34–41 (2013). https://doi.org/10.1016/j.jphotochem.2013.06.004
X. Huang, X.J. Tian, W. Yang, B. Ehrenberg, J.Y. Chen, The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photodynamic therapy of cancers. Phys. Chem. Chem. Phys. 15(38), 15727–15733 (2013). https://doi.org/10.1039/c3cp44227f
M. Ashjari, S. Dehfuly, D. Fatehi, R. Shabani, M. Koruji, Efficient functionalization of gold nanops using cysteine conjugated protoporphyrin ix for singlet oxygen production in vitro. RSC Adv. 5(127), 104621–104628 (2015). https://doi.org/10.1039/C5RA15862A
W. Li, H. Zhang, X. Guo, Z. Wang, F. Kong et al., Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis. ACS Appl. Mater. Interfaces 9(4), 3354–3367 (2017). https://doi.org/10.1021/acsami.6b13351
C.K. Chu, Y.C. Tu, J.H. Hsiao, J.H. Yu, C.K. Yu et al., Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. Nanotechnology 27(11), 115102 (2016). https://doi.org/10.1088/0957-4484/27/11/115102
J. Wang, X. Zhuo, X. Xiao, R. Mao, Y. Wang et al., Alpcs-loaded gold nanobipyramids with high two-photon efficiency for photodynamic therapy in vivo. Nanoscale 11(7), 3386–3395 (2019). https://doi.org/10.1039/C9NR00004F
T. Nozaki, T. Kakuda, Y.B. Pottathara, H. Kawasaki, A nanocomposite of N-doped carbon dots with gold nanops for visible light active photosensitisers. Photochem. Photobiol. Sci. 18(5), 1235–1241 (2019). https://doi.org/10.1039/C9PP00035F
R. Jijie, T. Dumych, L. Chengnan, J. Bouckaert, K. Turcheniuk et al., P-based photodynamic therapy based on indocyanine green modified plasmonic nanostructures for inactivation of a Crohn’s disease-associated escherichia coli strain. J. Mater. Chem. B 4(15), 2598–2605 (2016). https://doi.org/10.1039/C5TB02697K
S.M. Mooi, B. Heyne, Amplified production of singlet oxygen in aqueous solution using metal enhancement effects. Photochem. Photobiol. 90(1), 85–91 (2014). https://doi.org/10.1111/php.12176
O. Planas, N. Macia, M. Agut, S. Nonell, B. Heyne, Distance-dependent plasmon-enhanced singlet oxygen production and emission for bacterial inactivation. J. Am. Chem. Soc. 138(8), 2762–2768 (2016). https://doi.org/10.1021/jacs.5b12704
N. Macia, R. Bresoli-Obach, S. Nonell, B.J. Heyne, Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 141(1), 684–692 (2018). https://doi.org/10.1021/jacs.8b12206
N. Macia, V. Kabanov, M. Côté-Cyr, B. Heyne, Roles of near and far fields in plasmon-enhanced singlet oxygen production. J. Phys. Chem. Lett. 10(13), 3654–3660 (2019). https://doi.org/10.1021/acs.jpclett.9b01165
N. Macia, V. Kabanov, B. Heyne, Rationalizing the plasmonic contributions to the enhancement of singlet oxygen production. J. Phys. Chem. C 124(6), 3768–3777 (2020). https://doi.org/10.1021/acs.jpcc.9b10724
I. Rosa-Pardo, M. Roig-Pons, A. Heredia, J. Usagre, A. Ribera et al., Fe3O4@ Au@mSiO2 as an enhancing nanoplatform for rose bengal photodynamic activity. Nanoscale 9(29), 10388–10396 (2017). https://doi.org/10.1039/C7NR00449D
T. Zhao, H. Wu, S.Q. Yao, Q.H. Xu, G.Q. Xu, Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir 26(18), 14937–14942 (2010). https://doi.org/10.1021/la102556u
Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji et al., Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8(11), 11529–11542 (2014). https://doi.org/10.1021/nn5047647
G. Zampini, L. Tarpani, G. Massaro, M. Gambucci, A. Nicoziani et al., Effects of gold colloids on the photosensitization efficiency of silica ps doped with protoporphyrin ix. Chem. Photo. Chem. 1(12), 553–561 (2017). https://doi.org/10.1002/cptc.201700139
S.H. Seo, B.M. Kim, A. Joe, H.W. Han, X. Chen et al., NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomatereials 35(10), 3309–3318 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.066
Z. Chu, C. Yin, S. Zhang, G. Lin, Q. Li, Surface plasmon enhanced drug efficacy using core-shell Au@SiO2 nanop carrier. Nanoscale 5(8), 3406–3411 (2013). https://doi.org/10.1039/c3nr00040k
H.C. Junqueira, D. Severino, L.G. Dias, M.S. Gugliotti, M.S. Baptista, Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces. Phys. Chem. Chem. Phys. 4(11), 2320–2328 (2002). https://doi.org/10.1039/b109753a
J. Zhang, Z. Lu, Z. Yu, W. Zhong, H. Jiang et al., Photosensitizer-AgNP composite with an ability to selectively recognize pathogen and enhanced photodynamic efficiency. New J. Chem. 41(21), 12371–12374 (2017). https://doi.org/10.1039/C7NJ02204B
Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu et al., Modification on populating paths of β-NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission. Opt. Mater. Express 6(6), 1942–1955 (2016). https://doi.org/10.1364/OME.6.001942
E. Dube, N. Nwaji, D.O. Oluwole, J. Mack, T. Nyokong, Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanops. J. Photochem. Photobiol. A Chem. 349, 148–161 (2017). https://doi.org/10.1016/j.jphotochem.2017.09.020
X. Ke, D. Wang, C. Chen, A. Yang, Y. Han et al., Co-enhancement of fluorescence and singlet oxygen generation by silica-coated gold nanorods core-shell nanop. Nanoscale Res. Lett. 9(1), 666 (2014). https://doi.org/10.1186/1556-276X-9-666
T. Zhao, K. Yu, L. Li, T. Zhang, Z. Guan et al., Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 6(4), 2700–2708 (2014). https://doi.org/10.1021/am405214w
J. Liu, H. Liang, M. Li, Z. Luo, J. Zhang et al., Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 157, 107–124 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.003
P. Wang, H. Tang, P. Zhang, Plasmonic nanop-based hybrid photosensitizers with broadened excitation profile for photodynamic therapy of cancer cells. Sci. Rep. 6, 34981 (2016). https://doi.org/10.1038/srep34981
C.W. Chen, Y.C. Chan, M. Hsiao, R.S. Liu, Plasmon-enhanced photodynamic cancer therapy by upconversion nanops conjugated with Au nanorods. ACS Appl. Mater. Interfaces 8(47), 32108–32119 (2016). https://doi.org/10.1021/acsami.6b07770
N.T. Chen, K.C. Tang, M.F. Chung, S.H. Cheng, C.M. Huang et al., Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy. Theranostics 4(8), 798 (2014). https://doi.org/10.7150/thno.8934
A.M. Fales, H. Yuan, T. Vo-Dinh, Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 27(19), 12186–12190 (2011). https://doi.org/10.1021/la202602q
S. Natesan, V. Krishnaswami, C. Ponnusamy, M. Madiyalakan, T. Woo et al., Hypocrellin B and nano silver loaded polymeric nanops: enhanced generation of singlet oxygen for improved photodynamic therapy. Mater. Sci. Eng. C 77, 935–946 (2017). https://doi.org/10.1016/j.msec.2017.03.179
O. Lyutakov, O. Hejna, A. Solovyev, Y. Kalachyova, V. Svorcik, Polymethylmethacrylate doped with porphyrin and silver nanops as light-activated antimicrobial material. RSC Adv. 4(92), 50624–50630 (2014). https://doi.org/10.1039/C4RA08385G
L.S. Melo, A.S. Gomes, S. Saska, K. Nigoghossian, Y. Messaddeq et al., Singlet oxygen generation enhanced by silver-pectin nanops. J. Fluoresc. 22(6), 1633–1638 (2012). https://doi.org/10.1007/s10895-012-1107-4
B. Prakash, A.N. Ananth, S. Asha, G.V. Kumari, S.P. Jose et al., Nano silver decorated chitosan based polyelectrolyte microcapsules induced generation of excited oxygen in curcumin. Mater. Today Proc. 4(2), 4366–4371 (2017). https://doi.org/10.1016/j.matpr.2017.04.007
M. Lismont, L. Dreesen, B. Heinrichs, C.A. Páez, Protoporphyrin ix-functionalized AgSiO2 core-shell nanops: plasmonic enhancement of fluorescence and singlet oxygen production. Photochem. Photobiol. 92(2), 247–256 (2016). https://doi.org/10.1111/php.12557
T.O. Ahmadov, R. Ding, J. Zhang, P. Wang, H. Tang et al., Silver nanop-enhanced hybrid photosensitizer for photoinactivation of multidrug-resistant staphylococcus aureus (MRSA). RSC Adv. 6(59), 54318–54321 (2016). https://doi.org/10.1039/C6RA11072J
J. Yu, C.H. Hsu, C.C. Huang, P.Y. Chang, Development of therapeutic Au-methylene blue nanops for targeted photodynamic therapy of cervical cancer cells. ACS Appl. Mater. Interfaces 7(1), 432–441 (2014). https://doi.org/10.1021/am5064298
S. Clement, M. Sobhan, W. Deng, E. Camilleri, E.M. Goldys, Nanop-mediated singlet oxygen generation from photosensitizers. J. Photochem. Photobiol. A Chem. 332, 66–71 (2017). https://doi.org/10.1016/j.jphotochem.2016.08.009
W.S. Kuo, Y.T. Chang, K.C. Cho, K.C. Chiu, C.H. Lien et al., Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 33(11), 3270–3278 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.035
C. Fang, H. Jia, S. Chang, Q. Ruan, P. Wang et al., (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ. Sci. 7(10), 3431–3438 (2014). https://doi.org/10.1039/C4EE01787K
B. Wang, J.H. Wang, Q. Liu, H. Huang, M. Chen et al., Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 35(6), 1954–1966 (2014). https://doi.org/10.1016/j.biomaterials.2013.11.066
Y. Huang, A. Skripka, L. Labrador-Páez, F. Sanz-Rodríguez, P. Haro-González et al., Upconverting nanocomposites with combined photothermal and photodynamic effects. Nanoscale 10(2), 791–799 (2018). https://doi.org/10.1039/C7NR05499H
D.C. Ferreira, C.S. Monteiro, C.R. Chaves, G.A. Sáfar, R.L. Moreira et al., Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Colloid. Surf. B-Biointerfaces 150, 297–307 (2017). https://doi.org/10.1016/j.colsurfb.2016.10.042
M.H. Chan, S.P. Chen, C.W. Chen, Y.C. Chan, R.J. Lin et al., Single 808 nm laser treatment comprising photothermal and photodynamic therapies by using gold nanorods hybrid upconversion ps. J. Phys. Chem. C 122(4), 2402–2412 (2018). https://doi.org/10.1021/acs.jpcc.7b10976
C. Wang, F. Tang, X. Wang, L. Li, Preparation of hybrid fluorescent nanocomposites with enhanced fluorescence and their application. Colloid. Surf. A-Physicochem. Eng. Asp. 481, 307–313 (2015). https://doi.org/10.1016/j.colsurfa.2015.06.003
L. He, J. Dragavon, S. Cho, C. Mao, A. Yildirim et al., Self-assembled gold nanostar-NaYF4:Yb/Er clusters for multimodal imaging, photothermal and photodynamic therapy. J. Mater. Chem. B 4(25), 4455–4461 (2016). https://doi.org/10.1039/C6TB00914J
N. Wijesiri, T. Ozkaya-Ahmadov, P. Wang, J. Zhang, H. Tang et al., Photodynamic inactivation of multidrug-resistant staphylococcus aureus using hybrid photosensitizers based on amphiphilic block copolymer-functionalized gold nanops. ACS Omega 2(9), 5364–5369 (2017). https://doi.org/10.1021/acsomega.7b00738
Y. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanops. Nano Lett. 7(3), 690–696 (2007). https://doi.org/10.1021/nl062795z
M.P. Singh, G.F. Strouse, Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanop. J. Am. Chem. Soc. 132(27), 9383–9391 (2010). https://doi.org/10.1021/ja1022128
E.I. Sagun, E.I. Zenkevich, V.N. Knyukshto, A.M. Shulga, D.A. Starukhin et al., Interaction of multiporphyrin systems with molecular oxygen in liquid solutions: extra-ligation and screening effects. Chem. Phys. 275(1–3), 211–230 (2002). https://doi.org/10.1016/S0301-0104(01)00517-1
N. Macia, V. Kabanov, M. Côté-Cyr, B. Heyne, Roles of near-and far-fields in plasmon-enhanced singlet oxygen production. J. Phys. Chem. Lett. 10(13), 3654–3660 (2019). https://doi.org/10.1021/acs.jpclett.9b01165
K.G. Thomas, P.V. Kamat, Chromophore-functionalized gold nanops. Acc. Chem. Res. 36(12), 888–898 (2003). https://doi.org/10.1021/ar030030h
B.I. Ipe, K.G. Thomas, S. Barazzouk, S. Hotchandani, P.V. Kamat, Photoinduced charge separation in a fluorophore− gold nanoassembly. J. Phys. Chem. B 106(1), 18–21 (2002). https://doi.org/10.1021/jp0134695
S. Brown, Photodynamic therapy: two photons are better than one. Nat. Photonics 2(7), 394 (2008). https://doi.org/10.1038/nphoton.2008.112
Z. Li, C. Kübel, V.I. Pârvulescu, R. Richards, Size tunable gold nanorods evenly distributed in the channels of mesoporous silica. ACS Nano 2(6), 1205–1212 (2008). https://doi.org/10.1021/nn800137x
H.H. Chang, C.J. Murphy, Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chem. Mater. 30(4), 1427–1435 (2018). https://doi.org/10.1021/acs.chemmater.7b05310
G. Su, C. Yang, J.J. Zhu, Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Langmuir 31(2), 817–823 (2015). https://doi.org/10.1021/la504041f
M.B. Cortie, A.M. McDonagh, Synthesis and optical properties of hybrid and alloy plasmonic nanops. Chem. Rev. 111(6), 3713–3735 (2011). https://doi.org/10.1021/cr1002529
A.R. Halpern, R.M. Corn, Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 7(2), 1755–1762 (2013). https://doi.org/10.1021/nn3058505
J. Lee, W. Hasan, C.L. Stender, T.W. Odom, Pyramids: a platform for designing multifunctional plasmonic ps. Acc. Chem. Res. 41(12), 1762–1771 (2008). https://doi.org/10.1021/ar800126p
L. Gao, J. Fei, J. Zhao, H. Li, Y. Cui et al., Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 6(9), 8030–8040 (2012). https://doi.org/10.1021/nn302634m
M. Prieto, A.Y. Rwei, T. Alejo, T. Wei, M.T. Lopez-Franco et al., Light-emitting photon-upconversion nanops in the generation of transdermal reactive-oxygen species. ACS Appl. Mater. Interfaces 9(48), 41737–41747 (2017). https://doi.org/10.1021/acsami.7b14812
Y. Li, Z. Di, J. Gao, P. Cheng, C. Di et al., Heterodimers made of upconversion nanops and metal-organic frameworks. J. Am. Chem. Soc. 139(39), 13804–13810 (2017). https://doi.org/10.1021/jacs.7b07302
P. Zhang, W. Steelant, M. Kumar, M. S