Gold Nanostars-AIE Theranostic Nanodots with Enhanced Fluorescence and Photosensitization Towards Effective Image-Guided Photodynamic Therapy
Corresponding Author: Yen Nee Tan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 58
Abstract
Dual-functional aggregation-induced photosensitizers (AIE-PSs) with singlet oxygen generation (SOG) ability and bright fluorescence in aggregated state have received much attention in image-guided photodynamic therapy (PDT). However, designing an AIE-PS with both high SOG and intense fluorescence via molecular design is still challenging. In this work, we report a new nanohybrid consisting of gold nanostar (AuNS) and AIE-PS dots with enhanced fluorescence and photosensitization for theranostic applications. The spectral overlap between the extinction of AuNS and fluorescence emission of AIE-PS dots (665 nm) is carefully selected using five different AuNSs with distinct localized surface plasmon (LSPR) peaks. Results show that all the AuNSs can enhance the 1O2 production of AIE-PS dots, among which the AuNS with LSPR peak at 585 nm exhibited the highest 1O2 enhancement factor of 15-fold with increased fluorescence brightness. To the best of our knowledge, this is the highest enhancement factor reported for the metal-enhanced singlet oxygen generation systems. The Au585@AIE-PS nanodots were applied for simultaneous fluorescence imaging and photodynamic ablation of HeLa cancer cells with strongly enhanced PDT efficiency in vitro. This study provides a better understanding of the metal-enhanced AIE-PS nanohybrid systems, opening up new avenue towards advanced image-guided PDT with greatly improved efficacy.
Highlights:
1 Development of Au nanostar@AIE nanodots photosensitizers for theranostic applications.
2 Achieving excellent metal-enhanced fluorescence and singlet oxygen generation efficiency simultaneously.
3 Mechanism study of the role of FRET on metal-enhanced singlet oxygen generation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Agostinis, K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti et al., Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61(4), 250–281 (2011). https://doi.org/10.3322/caac.20114
- J.P. Celli, B.Q. Spring, I. Rizvi, C.L. Evans, K.S. Samkoe et al., Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110(5), 2795–2838 (2010). https://doi.org/10.1021/cr900300p
- Z. Huang, A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 4(3), 283–293 (2005). https://doi.org/10.1177/153303460500400308
- P.R. Ogilby, Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39(8), 3181–3209 (2010). https://doi.org/10.1039/B926014P
- S. Nonell, C. Flors, Singlet Oxygen: Applications in Biosciences and Nanosciences (Royal Society of Chemistry, London, 2016).
- S. Ho Hong, H. Kim, Y. Choi, Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent. Nanotechnology 28(18), 185102 (2017). https://doi.org/10.1088/1361-6528/aa66b0
- M.H. Cho, Y. Li, P.-C. Lo, H. Lee, Y. Choi, Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Lett. 12(1), 47 (2020). https://doi.org/10.1007/s40820-020-0384-8
- X.T. Zheng, Y.C. Lai, Y.N. Tan, Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy. Nanoscale Adv. 1(6), 2250–2257 (2019). https://doi.org/10.1039/C9NA00058E
- Y. Yu, J. Geng, E.Y.X. Ong, V. Chellappan, Y.N. Tan, Bovine serum albulmin protein-templated silver nanocluster (BSA-Ag13): an effective singlet oxygen generator for photodynamic cancer therapy. Adv. Healthc. Mater. 5(19), 2528–2535 (2016). https://doi.org/10.1002/adhm.201600312
- M. Tavakkoli Yaraki, S. Daqiqeh Rezaei, Y.N. Tan, Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and sers applications. Phys. Chem. Chem. Phys. 22(10), 5673–5687 (2020). https://doi.org/10.1039/C9CP06029D
- Y. Yu, W.D. Lee, Y.N. Tan, Protein-protected gold/silver alloy nanoclusters in metal-enhanced singlet oxygen generation and their correlation with photoluminescence. Mater. Sci. Eng. C 109, 110525 (2020). https://doi.org/10.1016/j.msec.2019.110525
- J.B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).
- F. Hu, S. Xu, B. Liu, Photosensitizers with aggregation-induced emission: materials and biomedical applications. Adv. Mater. 30(45), 1801350 (2018). https://doi.org/10.1002/adma.201801350
- X. Ni, X. Zhang, X. Duan, H.-L. Zheng, X.-S. Xue et al., Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19(1), 318–330 (2019). https://doi.org/10.1021/acs.nanolett.8b03936
- M. Tavakkoli Yaraki, F. Hu, S. Daqiqeh Rezaei, B. Liu et al., Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. Nanoscale Adv. 2(7), 2859–2869 (2020). https://doi.org/10.1039/D0NA00182A
- M. Tavakkoli Yaraki, Y. Pan, F. Hu, Y. Yu, B. Liu et al., Nanosilver-enhanced aie photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front. 4, 3074–3085 (2020). https://doi.org/10.1039/D0QM00469C
- X. Wang, D. Wang, Y. Guo, C. Yang, A. Iqbal et al., Imidazole derivative-functionalized carbon dots: using as a fluorescent probe for detecting water and imaging of live cells. Dalton Trans. 44(12), 5547–5554 (2015). https://doi.org/10.1039/C5DT00128E
- W. Wu, D. Mao, F. Hu, S. Xu, C. Chen et al., A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy. Adv. Mater. 29(33), 1700548 (2017). https://doi.org/10.1002/adma.201700548
- C. Chen, X. Ni, S. Jia, Y. Liang, X. Wu et al., Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an aie luminogen with a twisted molecular structure. Adv. Mater. 31(52), 1904914 (2019). https://doi.org/10.1002/adma.201904914
- C. Chen, X. Ni, H.-W. Tian, Q. Liu, D.-S. Guo et al., Calixarene-based supramolecular aie dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew. Chem. Int. Ed. 59(25), 10008–10012 (2020). https://doi.org/10.1002/anie.201916430
- J.F. Lovell, T.W.B. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy. Chem. Rev. 110(5), 2839–2857 (2010). https://doi.org/10.1021/cr900236h
- B. Hu, X. Cao, K. Nahan, J. Caruso, H. Tang et al., Surface plasmon-photosensitizer resonance coupling: an enhanced singlet oxygen production platform for broad-spectrum photodynamic inactivation of bacteria. J. Mater. Chem. B 2(40), 7073–7081 (2014). https://doi.org/10.1039/C4TB01139B
- W. Wu, D. Mao, S. Xu, Kenry, F. Hu et al., Polymerization-enhanced photosensitization. Chem 4(8), 1937–1951 (2018). https://doi.org/10.1016/j.chempr.2018.06.003
- M. Tavakkoli Yaraki, S. Daqiqeh Rezaei, E. Middha, Y.N. Tan, Synthesis and simulation study of right silver bipyramids via seed-mediated growth cum selective oxidative etching approach. Part. Part. Syst. Charact. 37(5), 2000027 (2020). https://doi.org/10.1002/ppsc.202000027
- M. Tavakkoli Yaraki, Y.N. Tan, Recent advances in metallic nanobiosensors development: colorimetric, dynamic light scattering and fluorescence detection. Sens. Intern. 1, 100049 (2020). https://doi.org/10.1016/j.sintl.2020.100049
- M.T. Yaraki, Y.N. Tan, Metal nanoparticles-enhanced biosensors: synthesis, design and applications in fluorescence enhancement and surface-enhanced raman scattering. Chem. Asian J. 15(20), 3180–3208 (2020). https://doi.org/10.1002/asia.202000847
- S. Dinda, F.L. Yap, V. Suresh, R.K. Gupta, D. Das et al., Quantitative detection with surface enhanced raman scattering (sers) using self-assembled gold nanoparticle cluster arrays. Aust. J. Chem. 66(9), 1034–1038 (2013). https://doi.org/10.1071/CH13222
- P. García Calavia, G. Bruce, L. Pérez-García, D.A. Russell, Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci. 17(11), 1534–1552 (2018). https://doi.org/10.1039/C8PP00271A
- N. Macia, R. Bresoli-Obach, S. Nonell, B. Heyne, Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 141(1), 684–692 (2019). https://doi.org/10.1021/jacs.8b12206
- P.V. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2), 279–290 (2009). https://doi.org/10.1021/nn800596w
- Y.-H. Hsin, C.-F. Chen, S. Huang, T.-S. Shih, P.-S. Lai et al., The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179(3), 130–139 (2008). https://doi.org/10.1016/j.toxlet.2008.04.015
- N. Macia, V. Kabanov, M. Côté-Cyr, B. Heyne, Roles of near and far fields in plasmon-enhanced singlet oxygen production. J. Phys. Chem. Lett. 10(13), 3654–3660 (2019). https://doi.org/10.1021/acs.jpclett.9b01165
- M.K. Khaing Oo, Y. Yang, Y. Hu, M. Gomez, H. Du et al., Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 6(3), 1939–1947 (2012). https://doi.org/10.1021/nn300327c
- Y. Zhang, K. Aslan, M.J. Previte, C.D. Geddes, Plasmonic engineering of singlet oxygen generation. Proc. Natl. Acad. Sci. USA 105(6), 1798–1802 (2008). https://doi.org/10.1073/pnas.0709501105
- N. Macia, R. Bresoli-Obach, S. Nonell, B. Heyne, Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 141(1), 684–692 (2018). https://doi.org/10.1021/jacs.8b12206
- O. Planas, N. Macia, M. Agut, S. Nonell, B. Heyne, Distance-dependent plasmon-enhanced singlet oxygen production and emission for bacterial inactivation. J. Am. Chem. Soc. 138(8), 2762–2768 (2016). https://doi.org/10.1021/jacs.5b12704
- V. Kabanov, B. Heyne, Impact of incoherent coupling within localized surface plasmon resonance on singlet oxygen production in rose bengal-modified silica-coated silver nanoshells (SiO2@Ag@SiO2-Rb). ACS Appl. Nano Mater. 3(8), 8126–8137 (2020). https://doi.org/10.1021/acsanm.0c01544
- C. Mendoza, A. Désert, D. Chateau, C. Monnereau, L. Khrouz et al., Au nanobipyramids@mSiO2 core–shell nanoparticles for plasmon-enhanced singlet oxygen photooxygenations in segmented flow microreactors. Nanoscale Adv. 2(11), 5280–5287 (2020). https://doi.org/10.1039/D0NA00533A
- F. Hong, C. Tang, Q. Xue, L. Zhao, H. Shi et al., Simultaneously enhanced singlet oxygen and fluorescence production of nanoplatform by surface plasmon resonance coupling for biomedical applications. Langmuir 35(46), 14833–14839 (2019). https://doi.org/10.1021/acs.langmuir.9b01727
- W. Wu, S. Xu, G. Qi, H. Zhu, F. Hu et al., A cross-linked conjugated polymer photosensitizer enables efficient sunlight-induced photooxidation. Angew. Chem. Int. Ed. 131(10), 3094–3098 (2019). https://doi.org/10.1002/ange.201811067
- K. Chandra, K.S.B. Culver, S.E. Werner, R.C. Lee, T.W. Odom, Manipulating the anisotropic structure of gold nanostars using good’s buffers. Chem. Mater. 28(18), 6763–6769 (2016). https://doi.org/10.1021/acs.chemmater.6b03242
- H. de Puig, J.O. Tam, C.-W. Yen, L. Gehrke, K. Hamad-Schifferli, Extinction coefficient of gold nanostars. J. Phys. Chem. C 119(30), 17408–17415 (2015). https://doi.org/10.1021/acs.jpcc.5b03624
- N.A. Kuznetsova, N.S. Gretsova, O.A. Yuzhakova, V.M. Negrimovskii, O.L. Kaliya et al., New reagents for determination of the quantum efficiency of singlet oxygen generation in aqueous media. Russ. J. Gen. Chem. 71(1), 36–41 (2001). https://doi.org/10.1023/A:1012369120376
- J.M. Fernandez, M.D. Bilgin, L.I. Grossweiner, Singlet oxygen generation by photodynamic agents. J. Photochem. Photobiol. B Biol. 37(1), 131–140 (1997). https://doi.org/10.1016/S1011-1344(96)07349-6
- M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110(5), 2641–2684 (2010). https://doi.org/10.1021/cr900343z
- P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370
- X. Han, Q. Bai, L. Yao, H. Liu, Y. Gao et al., Highly efficient solid-state near-infrared emitting material based on triphenylamine and diphenylfumaronitrile with an eqe of 2.58% in nondoped organic light-emitting diode. Adv. Funct. Mater. 25(48), 7521–7529 (2015). https://doi.org/10.1002/adfm.201503344
- Y. Wang, X. Han, W. Xi, J. Li, A.W. Roe et al., Bright aie nanoparticles with F127 encapsulation for deep-tissue three-photon intravital brain angiography. Adv. Healthc. Mater. 6(21), 1700685 (2017). https://doi.org/10.1002/adhm.201700685
- S. Schubert, J.J.T. Delaney, U.S. Schubert, Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter 7(5), 1581–1588 (2011). https://doi.org/10.1039/c0sm00862a
- K. Miladi, S. Sfar, H. Fessi, A. Elaissari, in Nanoprecipitation Process: From Particle Preparation to In Vivo Applications. ed. by C. Vauthier, G. Ponchel (Springer, Cham, 2016), pp. 17–53
- P.M. Valencia, O.C. Farokhzad, R. Karnik, R. Langer, Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7(10), 623–629 (2012). https://doi.org/10.1038/nnano.2012.168
- D. Liu, S. Cito, Y. Zhang, C.-F. Wang, T.M. Sikanen et al., A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv. Mater. 27(14), 2298–2304 (2015). https://doi.org/10.1002/adma.201405408
- E. Middha, P.N. Manghnani, D.Z.L. Ng, H. Chen, S.A. Khan et al., Direct visualization of the ouzo zone through aggregation-induced dye emission for the synthesis of highly monodispersed polymeric nanoparticles. Mater. Chem. Front. 3, 1375–1384 (2019). https://doi.org/10.1039/C9QM00020H
- Z. Wang, B. Guo, E. Middha, Z. Huang, Q. Hu et al., Microfluidics prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Appl. Mater. Interfaces 11(12), 11167–11176 (2019). https://doi.org/10.1021/acsami.8b22579
- J.F. Lovell, J. Chen, M.T. Jarvi, W.-G. Cao, A.D. Allen et al., Fret quenching of photosensitizer singlet oxygen generation. J. Phys. Chem. B 113(10), 3203–3211 (2009). https://doi.org/10.1021/jp810324v
- J. Yuan, R. Chen, X. Tang, Y. Tao, S. Xu et al., Direct population of triplet excited states through singlet–triplet transition for visible-light excitable organic afterglow. Chem. Sci. 10(19), 5031–5038 (2019). https://doi.org/10.1039/C8SC05198D
- T. Northey, T. Keane, J. Eng, T.J. Penfold, Understanding the potential for efficient triplet harvesting with hot excitons. Faraday Discuss. 216, 395–413 (2019). https://doi.org/10.1039/C8FD00174J
References
P. Agostinis, K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti et al., Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61(4), 250–281 (2011). https://doi.org/10.3322/caac.20114
J.P. Celli, B.Q. Spring, I. Rizvi, C.L. Evans, K.S. Samkoe et al., Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110(5), 2795–2838 (2010). https://doi.org/10.1021/cr900300p
Z. Huang, A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 4(3), 283–293 (2005). https://doi.org/10.1177/153303460500400308
P.R. Ogilby, Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39(8), 3181–3209 (2010). https://doi.org/10.1039/B926014P
S. Nonell, C. Flors, Singlet Oxygen: Applications in Biosciences and Nanosciences (Royal Society of Chemistry, London, 2016).
S. Ho Hong, H. Kim, Y. Choi, Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent. Nanotechnology 28(18), 185102 (2017). https://doi.org/10.1088/1361-6528/aa66b0
M.H. Cho, Y. Li, P.-C. Lo, H. Lee, Y. Choi, Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Lett. 12(1), 47 (2020). https://doi.org/10.1007/s40820-020-0384-8
X.T. Zheng, Y.C. Lai, Y.N. Tan, Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy. Nanoscale Adv. 1(6), 2250–2257 (2019). https://doi.org/10.1039/C9NA00058E
Y. Yu, J. Geng, E.Y.X. Ong, V. Chellappan, Y.N. Tan, Bovine serum albulmin protein-templated silver nanocluster (BSA-Ag13): an effective singlet oxygen generator for photodynamic cancer therapy. Adv. Healthc. Mater. 5(19), 2528–2535 (2016). https://doi.org/10.1002/adhm.201600312
M. Tavakkoli Yaraki, S. Daqiqeh Rezaei, Y.N. Tan, Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and sers applications. Phys. Chem. Chem. Phys. 22(10), 5673–5687 (2020). https://doi.org/10.1039/C9CP06029D
Y. Yu, W.D. Lee, Y.N. Tan, Protein-protected gold/silver alloy nanoclusters in metal-enhanced singlet oxygen generation and their correlation with photoluminescence. Mater. Sci. Eng. C 109, 110525 (2020). https://doi.org/10.1016/j.msec.2019.110525
J.B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).
F. Hu, S. Xu, B. Liu, Photosensitizers with aggregation-induced emission: materials and biomedical applications. Adv. Mater. 30(45), 1801350 (2018). https://doi.org/10.1002/adma.201801350
X. Ni, X. Zhang, X. Duan, H.-L. Zheng, X.-S. Xue et al., Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19(1), 318–330 (2019). https://doi.org/10.1021/acs.nanolett.8b03936
M. Tavakkoli Yaraki, F. Hu, S. Daqiqeh Rezaei, B. Liu et al., Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. Nanoscale Adv. 2(7), 2859–2869 (2020). https://doi.org/10.1039/D0NA00182A
M. Tavakkoli Yaraki, Y. Pan, F. Hu, Y. Yu, B. Liu et al., Nanosilver-enhanced aie photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front. 4, 3074–3085 (2020). https://doi.org/10.1039/D0QM00469C
X. Wang, D. Wang, Y. Guo, C. Yang, A. Iqbal et al., Imidazole derivative-functionalized carbon dots: using as a fluorescent probe for detecting water and imaging of live cells. Dalton Trans. 44(12), 5547–5554 (2015). https://doi.org/10.1039/C5DT00128E
W. Wu, D. Mao, F. Hu, S. Xu, C. Chen et al., A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy. Adv. Mater. 29(33), 1700548 (2017). https://doi.org/10.1002/adma.201700548
C. Chen, X. Ni, S. Jia, Y. Liang, X. Wu et al., Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an aie luminogen with a twisted molecular structure. Adv. Mater. 31(52), 1904914 (2019). https://doi.org/10.1002/adma.201904914
C. Chen, X. Ni, H.-W. Tian, Q. Liu, D.-S. Guo et al., Calixarene-based supramolecular aie dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew. Chem. Int. Ed. 59(25), 10008–10012 (2020). https://doi.org/10.1002/anie.201916430
J.F. Lovell, T.W.B. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy. Chem. Rev. 110(5), 2839–2857 (2010). https://doi.org/10.1021/cr900236h
B. Hu, X. Cao, K. Nahan, J. Caruso, H. Tang et al., Surface plasmon-photosensitizer resonance coupling: an enhanced singlet oxygen production platform for broad-spectrum photodynamic inactivation of bacteria. J. Mater. Chem. B 2(40), 7073–7081 (2014). https://doi.org/10.1039/C4TB01139B
W. Wu, D. Mao, S. Xu, Kenry, F. Hu et al., Polymerization-enhanced photosensitization. Chem 4(8), 1937–1951 (2018). https://doi.org/10.1016/j.chempr.2018.06.003
M. Tavakkoli Yaraki, S. Daqiqeh Rezaei, E. Middha, Y.N. Tan, Synthesis and simulation study of right silver bipyramids via seed-mediated growth cum selective oxidative etching approach. Part. Part. Syst. Charact. 37(5), 2000027 (2020). https://doi.org/10.1002/ppsc.202000027
M. Tavakkoli Yaraki, Y.N. Tan, Recent advances in metallic nanobiosensors development: colorimetric, dynamic light scattering and fluorescence detection. Sens. Intern. 1, 100049 (2020). https://doi.org/10.1016/j.sintl.2020.100049
M.T. Yaraki, Y.N. Tan, Metal nanoparticles-enhanced biosensors: synthesis, design and applications in fluorescence enhancement and surface-enhanced raman scattering. Chem. Asian J. 15(20), 3180–3208 (2020). https://doi.org/10.1002/asia.202000847
S. Dinda, F.L. Yap, V. Suresh, R.K. Gupta, D. Das et al., Quantitative detection with surface enhanced raman scattering (sers) using self-assembled gold nanoparticle cluster arrays. Aust. J. Chem. 66(9), 1034–1038 (2013). https://doi.org/10.1071/CH13222
P. García Calavia, G. Bruce, L. Pérez-García, D.A. Russell, Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci. 17(11), 1534–1552 (2018). https://doi.org/10.1039/C8PP00271A
N. Macia, R. Bresoli-Obach, S. Nonell, B. Heyne, Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 141(1), 684–692 (2019). https://doi.org/10.1021/jacs.8b12206
P.V. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2), 279–290 (2009). https://doi.org/10.1021/nn800596w
Y.-H. Hsin, C.-F. Chen, S. Huang, T.-S. Shih, P.-S. Lai et al., The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179(3), 130–139 (2008). https://doi.org/10.1016/j.toxlet.2008.04.015
N. Macia, V. Kabanov, M. Côté-Cyr, B. Heyne, Roles of near and far fields in plasmon-enhanced singlet oxygen production. J. Phys. Chem. Lett. 10(13), 3654–3660 (2019). https://doi.org/10.1021/acs.jpclett.9b01165
M.K. Khaing Oo, Y. Yang, Y. Hu, M. Gomez, H. Du et al., Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 6(3), 1939–1947 (2012). https://doi.org/10.1021/nn300327c
Y. Zhang, K. Aslan, M.J. Previte, C.D. Geddes, Plasmonic engineering of singlet oxygen generation. Proc. Natl. Acad. Sci. USA 105(6), 1798–1802 (2008). https://doi.org/10.1073/pnas.0709501105
N. Macia, R. Bresoli-Obach, S. Nonell, B. Heyne, Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 141(1), 684–692 (2018). https://doi.org/10.1021/jacs.8b12206
O. Planas, N. Macia, M. Agut, S. Nonell, B. Heyne, Distance-dependent plasmon-enhanced singlet oxygen production and emission for bacterial inactivation. J. Am. Chem. Soc. 138(8), 2762–2768 (2016). https://doi.org/10.1021/jacs.5b12704
V. Kabanov, B. Heyne, Impact of incoherent coupling within localized surface plasmon resonance on singlet oxygen production in rose bengal-modified silica-coated silver nanoshells (SiO2@Ag@SiO2-Rb). ACS Appl. Nano Mater. 3(8), 8126–8137 (2020). https://doi.org/10.1021/acsanm.0c01544
C. Mendoza, A. Désert, D. Chateau, C. Monnereau, L. Khrouz et al., Au nanobipyramids@mSiO2 core–shell nanoparticles for plasmon-enhanced singlet oxygen photooxygenations in segmented flow microreactors. Nanoscale Adv. 2(11), 5280–5287 (2020). https://doi.org/10.1039/D0NA00533A
F. Hong, C. Tang, Q. Xue, L. Zhao, H. Shi et al., Simultaneously enhanced singlet oxygen and fluorescence production of nanoplatform by surface plasmon resonance coupling for biomedical applications. Langmuir 35(46), 14833–14839 (2019). https://doi.org/10.1021/acs.langmuir.9b01727
W. Wu, S. Xu, G. Qi, H. Zhu, F. Hu et al., A cross-linked conjugated polymer photosensitizer enables efficient sunlight-induced photooxidation. Angew. Chem. Int. Ed. 131(10), 3094–3098 (2019). https://doi.org/10.1002/ange.201811067
K. Chandra, K.S.B. Culver, S.E. Werner, R.C. Lee, T.W. Odom, Manipulating the anisotropic structure of gold nanostars using good’s buffers. Chem. Mater. 28(18), 6763–6769 (2016). https://doi.org/10.1021/acs.chemmater.6b03242
H. de Puig, J.O. Tam, C.-W. Yen, L. Gehrke, K. Hamad-Schifferli, Extinction coefficient of gold nanostars. J. Phys. Chem. C 119(30), 17408–17415 (2015). https://doi.org/10.1021/acs.jpcc.5b03624
N.A. Kuznetsova, N.S. Gretsova, O.A. Yuzhakova, V.M. Negrimovskii, O.L. Kaliya et al., New reagents for determination of the quantum efficiency of singlet oxygen generation in aqueous media. Russ. J. Gen. Chem. 71(1), 36–41 (2001). https://doi.org/10.1023/A:1012369120376
J.M. Fernandez, M.D. Bilgin, L.I. Grossweiner, Singlet oxygen generation by photodynamic agents. J. Photochem. Photobiol. B Biol. 37(1), 131–140 (1997). https://doi.org/10.1016/S1011-1344(96)07349-6
M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110(5), 2641–2684 (2010). https://doi.org/10.1021/cr900343z
P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370
X. Han, Q. Bai, L. Yao, H. Liu, Y. Gao et al., Highly efficient solid-state near-infrared emitting material based on triphenylamine and diphenylfumaronitrile with an eqe of 2.58% in nondoped organic light-emitting diode. Adv. Funct. Mater. 25(48), 7521–7529 (2015). https://doi.org/10.1002/adfm.201503344
Y. Wang, X. Han, W. Xi, J. Li, A.W. Roe et al., Bright aie nanoparticles with F127 encapsulation for deep-tissue three-photon intravital brain angiography. Adv. Healthc. Mater. 6(21), 1700685 (2017). https://doi.org/10.1002/adhm.201700685
S. Schubert, J.J.T. Delaney, U.S. Schubert, Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter 7(5), 1581–1588 (2011). https://doi.org/10.1039/c0sm00862a
K. Miladi, S. Sfar, H. Fessi, A. Elaissari, in Nanoprecipitation Process: From Particle Preparation to In Vivo Applications. ed. by C. Vauthier, G. Ponchel (Springer, Cham, 2016), pp. 17–53
P.M. Valencia, O.C. Farokhzad, R. Karnik, R. Langer, Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7(10), 623–629 (2012). https://doi.org/10.1038/nnano.2012.168
D. Liu, S. Cito, Y. Zhang, C.-F. Wang, T.M. Sikanen et al., A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv. Mater. 27(14), 2298–2304 (2015). https://doi.org/10.1002/adma.201405408
E. Middha, P.N. Manghnani, D.Z.L. Ng, H. Chen, S.A. Khan et al., Direct visualization of the ouzo zone through aggregation-induced dye emission for the synthesis of highly monodispersed polymeric nanoparticles. Mater. Chem. Front. 3, 1375–1384 (2019). https://doi.org/10.1039/C9QM00020H
Z. Wang, B. Guo, E. Middha, Z. Huang, Q. Hu et al., Microfluidics prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Appl. Mater. Interfaces 11(12), 11167–11176 (2019). https://doi.org/10.1021/acsami.8b22579
J.F. Lovell, J. Chen, M.T. Jarvi, W.-G. Cao, A.D. Allen et al., Fret quenching of photosensitizer singlet oxygen generation. J. Phys. Chem. B 113(10), 3203–3211 (2009). https://doi.org/10.1021/jp810324v
J. Yuan, R. Chen, X. Tang, Y. Tao, S. Xu et al., Direct population of triplet excited states through singlet–triplet transition for visible-light excitable organic afterglow. Chem. Sci. 10(19), 5031–5038 (2019). https://doi.org/10.1039/C8SC05198D
T. Northey, T. Keane, J. Eng, T.J. Penfold, Understanding the potential for efficient triplet harvesting with hot excitons. Faraday Discuss. 216, 395–413 (2019). https://doi.org/10.1039/C8FD00174J