Interfacial Voids Trigger Carbon-Based, All-Inorganic CsPbIBr2 Perovskite Solar Cells with Photovoltage Exceeding 1.33 V
Corresponding Author: Chunfu Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 87
Abstract
A novel interface design is proposed for carbon-based, all-inorganic CsPbIBr2 perovskite solar cells (PSCs) by introducing interfacial voids between TiO2 electron transport layer and CsPbIBr2 absorber. Compared with the general interfacial engineering strategies, this design exempts any extra modification layer in final PSC. More importantly, the interfacial voids produced by thermal decomposition of 2-phenylethylammonium iodide trigger three beneficial effects. First, they promote the light scattering in CsPbIBr2 film and thereby boost absorption ability of the resulting CsPbIBr2 PSCs. Second, they suppress recombination of charge carriers and thus reduce dark saturation current density (J0) of the PSCs. Third, interfacial voids enlarge built-in potential (Vbi) of the PSCs, awarding increased driving force for dissociating photo-generated charge carriers. Consequently, the PSC yields the optimized efficiency of 10.20% coupled with an open-circuit voltage (Voc) of 1.338 V. The Voc achieved herein represents the best value among CsPbIBr2 PSCs reported earlier. Meanwhile, the non-encapsulated PSCs exhibit an excellent stability against light, thermal, and humidity stresses, since it remains ~ 97% or ~ 94% of its initial efficiency after being heated at 85 °C for 12 h or stored in ambient atmosphere with relative humidity of 30–40% for 60 days, respectively.
Highlights:
1 A novel interface design of producing interfacial voids is proposed for CsPbIBr2 perovskite solar cells (PSCs), which is free of any extra modification layer.
2 Interfacial voids improve absorption of CsPbIBr2 film, reduce saturation current density, and enlarge built-in potential of the PSCs.
3 The PSC yields a superior efficiency of 10.20% with a record-high photovoltage of 1.338 V.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- H.S. Jung, N.G. Park, Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015). https://doi.org/10.1002/smll.201402767
- Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018). https://doi.org/10.1126/science.aat8235
- M. Saliba, J.P. Correa-Baena, M. Grätzel, A. Hagfeldt, A. Abate, Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 2554–2569 (2018). https://doi.org/10.1002/anie.201703226
- Cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed: Aug 2019
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
- J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139, 14009–14012 (2017). https://doi.org/10.1021/jacs.7b07949
- J. Duan, Y. Zhao, B. He, Q. Tang, High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angew. Chem. Int. Ed. 57, 3787–3791 (2018). https://doi.org/10.1002/anie.201800019
- J. Zhang, G. Hodes, Z. Jin, S. Liu, All-inorganic CsPbX3 perovksite solar cells: progress and prospects. Angew. Chem. Int. Ed. 58, 15596–15618 (2019). https://doi.org/10.1002/anie.201901081
- A. Ho-Baillie, M. Zhang, C.F.J. Lau, F.-J. Ma, S. Huang, Untapped potentials of inorganic metal halide perovskite solar cells. Joule 3, 938–955 (2019). https://doi.org/10.1016/j.joule.2019.02.002
- S. Xiang, Z. Fu, W. Li, Y. Wei, J. Liu et al., Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett. 3, 1824–1831 (2018). https://doi.org/10.1021/acsenergylett.8b00820
- S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, S. Yang, H. Chen, Natrium doping pushes the efficiency of carbon-based CsPbI3 perovskite solar cells to 10.7%. iScience 15, 156 (2019). https://doi.org/10.1016/j.isci.2019.04.025
- X. Zhang, Y. Zhou, Y. Li, J. Sun, X. Lu et al., Efficient and carbon-based hole transport layer-free CsPbI2Br planar perovskite solar cells using PMMA modification. J. Mater. Chem. C 7, 3852–3861 (2019). https://doi.org/10.1039/C9TC00374F
- Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, Z. Hu, J. Chu, Efficient and hole-transporting-layer-free CsPbI2Br planar heterojunction perovskite solar cells through rubidium passivation. ChemSusChem 12, 983–989 (2019). https://doi.org/10.1002/cssc.201802690
- X. Meng, Z. Wang, W. Qian, Z. Zhu, T. Zhang et al., Excess cesium iodide induces spinodal decomposition of CsPbI2Br perovskite films. J. Phys. Chem. Lett. 10, 194–199 (2019). https://doi.org/10.1021/acs.jpclett.8b03742
- Z. Guo, S. Teo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase, T. Ma, Achievable high Voc of carbon based all-inorganic CsPbIBr2 perovskite solar cells through interface engineering. J. Mater. Chem. A 7, 1227–1232 (2019). https://doi.org/10.1039/C8TA09838G
- W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen et al., Band alignment engineering towards 10.71%-efficiency carbon-based, all-inorganic planar CsPbIBr2 perovskite solar cells. ChemSusChem 12, 2318 (2019). https://doi.org/10.1002/cssc.201900611
- W. Zhu, Q. Zhang, C. Zhang, Z. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, Y. Hao, Aged precursor solution toward low-temperature fabrication of efficient carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells. ACS Appl. Energy Mater. 1, 4991–4997 (2018). https://doi.org/10.1021/acsaem.8b00972
- J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng et al., Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 8, 1800504 (2018). https://doi.org/10.1002/aenm.201800504
- X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy 56, 184–195 (2019). https://doi.org/10.1016/j.nanoen.2018.11.053
- J. Liu, L. Zhu, S. Xiang, Y. Wei, M. Xie, H. Liu, W. Li, H. Chen, Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells. Sustain. Energy Fuels 3, 184–194 (2019). https://doi.org/10.1039/C8SE00442K
- J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V. Adv. Energy Mater. 8, 1802346 (2018). https://doi.org/10.1002/aenm.201802346
- Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495 (2019). https://doi.org/10.1039/C8EE03559H
- Z. Wang, A.K. Baranwal, M.A. Kamarudin, C.H. Ng, M. Pandey, T. Ma, S. Hayase, Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy 59, 258–267 (2019). https://doi.org/10.1016/j.nanoen.2019.02.049
- J. Lin, M. Lai, L. Dou, C.S. Kley, H. Chen et al., Thermochromic halide perovskite solar cells. Nat. Mater. 17, 261 (2018). https://doi.org/10.1038/s41563-017-0006-0
- B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 57, 718–727 (2019). https://doi.org/10.1016/j.nanoen.2018.12.097
- M. Moniruddin, B. Ilyassov, X. Zhao, E. Smith, T. Serikov, N. Ibrayev, R. Asmatulu, N. Nuraje, Recent progress on perovskite materials in photovoltaic and water splitting applications. Mater. Today Energy 7, 246–259 (2018). https://doi.org/10.1016/j.mtener.2017.10.005
- F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952–2959 (2006). https://doi.org/10.1016/j.solmat.2006.06.002
- W.S. Subhani, K. Wang, M. Du, X. Wang, S. Liu, Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201803785
- W.S. Subhani, K. Wang, M. Du, S.F. Liu, Gold Schmidt-rule-deviated perovskite CsPbIBr2 by barium substitution for efficient solar cells. Nano Energy 61, 165–172 (2019). https://doi.org/10.1016/j.nanoen.2019.04.066
- F. Meng, A. Liu, L. Gao, J. Cao, Y. Yan et al., Current progress in interfacial engineering of carbon-based perovskite solar cells. J. Mater. Chem. A 7, 8690–8699 (2019). https://doi.org/10.1039/C9TA01364D
- D.B. Khadka, Y. Shirai, M. Yanagida, K. Miyano, Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration. J. Mater. Chem. C 6, 162–170 (2018). https://doi.org/10.1039/C7TC03733C
- B. Roose, Q. Wang, A. Abate, The role of charge selective contacts in perovskite solar cell stability. Adv. Energy Mater. 9, 1803140 (2019). https://doi.org/10.1002/aenm.201803140
- C. Liu, W. Li, J. Chen, J. Fan, Y. Mai, R.E. Schropp, Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy 41, 75–83 (2017). https://doi.org/10.1016/j.nanoen.2017.08.048
- C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30, 1803422 (2018). https://doi.org/10.1002/adma.201803422
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- Y. Wang, T. Zhang, M. Kan, Y. Zhao, Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018). https://doi.org/10.1021/jacs.8b07927
- A. Dualeh, P. Gao, S.I. Seok, M.K. Nazeeruddin, M. Grätzel, Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160–6164 (2014). https://doi.org/10.1021/cm502468k
- N.N. Shlenskaya, N.A. Belich, M. Grätzel, E.A. Goodilin, A.B. Tarasov, Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. J. Mater. Chem. A 6, 1780–1786 (2018). https://doi.org/10.1039/C7TA10217H
- W. Zhu, C. Bao, B. Lv, F. Li, Y. Yi et al., Dramatically promoted crystallization control of organolead triiodide perovskite film by a homogeneous cap for high efficiency planar-heterojunction solar cells. J. Mater. Chem. A 4, 12535–12542 (2016). https://doi.org/10.1039/C6TA04332A
- G. Gottstein, A. King, L. Shvindlerman, The effect of triple-junction drag on grain growth. Acta Mater. 48, 397–403 (2000). https://doi.org/10.1016/S1359-6454(99)00373-0
- C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747
- F. Chen, Q. Shen, F. Yan, L. Zhang, Pressureless sintering of α-Si3N4 porous ceramics using a H3PO4 pore-forming agent. J. Am. Ceram. Soc. 90, 2379–2383 (2007). https://doi.org/10.1111/j.1551-2916.2007.01800.x
- C. Galassi, Processing of porous ceramics: piezoelectric materials. J. Eur. Ceram. Soc. 26, 2951–2958 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.02.011
- D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016). https://doi.org/10.1021/acsenergylett.6b00495
- W. Li, M.U. Rothmann, A. Liu, Z. Wang, Y. Zhang et al., Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv. Energy Mater. 7, 1700946 (2017). https://doi.org/10.1002/aenm.201700946
- N. Li, Z. Zhu, J. Li, A.K.Y. Jen, L. Wang, Inorganic CsPb1−xSnxIBr2 for efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 8, 1800525 (2018). https://doi.org/10.1002/aenm.201800525
- I. Gelmetti, N. Montcada, A. Perez-Rodriguez, E. Barrena, C. Ocal et al., Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage. Energy Environ. Sci. 12, 1309–1316 (2019). https://doi.org/10.1039/C9EE00528E
- S.M. Kang, S. Jang, J.K. Lee, J. Yoon, D.E. Yoo, J.W. Lee, M. Choi, N.G. Park, Moth-Eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small 12, 2443–2449 (2016). https://doi.org/10.1002/smll.201600428
- Q. Zhang, W. Zhu, D. Chen, Z. Zhang, Z. Lin et al., Light processing enables efficient carbon-based, all-inorganic planar CsPbIBr2 solar cells with high photovoltages. ACS Appl. Mater. Interfaces 11, 2997–3005 (2018). https://doi.org/10.1021/acsami.8b17839
- Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan, J. Chen, Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2, 1356–1368 (2018). https://doi.org/10.1016/j.joule.2018.05.004
- J. Lu, S.-C. Chen, Q. Zheng, Defect passivation of CsPbIBr2 perovskites for high-performance solar cells with large open-circuit voltage of 1.28 V. ACS Appl. Energy Mater. 1, 5872–5878 (2018). https://doi.org/10.1021/acsaem.8b01430
- C.F.J. Lau, X. Deng, Q. Ma, J. Zheng, J.S. Yun, M.A. Green, S. Huang, A.W. Ho-Baillie, CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett. 1, 573–577 (2016). https://doi.org/10.1021/acsenergylett.6b00341
- M. Aamir, T. Adhikari, M. Sher, N. Revaprasadu, W. Khalid, J. Akhtar, J.-M. Nunzi, Fabrication of planar heterojunction CsPbBr2I perovskite solar cells using ZnO as an electron transport layer and improved solar energy conversion efficiency. New J. Chem. 42, 14104–14110 (2018). https://doi.org/10.1039/C8NJ02238K
- Q. Ma, S. Huang, X. Wen, M.A. Green, A.W. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6, 1502202 (2016). https://doi.org/10.1002/aenm.201502202
- C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi et al., Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin-lead halide perovskite solar cells. Adv. Energy Mater. 9(3), 1803135 (2019). https://doi.org/10.1002/aenm.201803135
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
H.S. Jung, N.G. Park, Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015). https://doi.org/10.1002/smll.201402767
Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018). https://doi.org/10.1126/science.aat8235
M. Saliba, J.P. Correa-Baena, M. Grätzel, A. Hagfeldt, A. Abate, Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 2554–2569 (2018). https://doi.org/10.1002/anie.201703226
Cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed: Aug 2019
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139, 14009–14012 (2017). https://doi.org/10.1021/jacs.7b07949
J. Duan, Y. Zhao, B. He, Q. Tang, High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angew. Chem. Int. Ed. 57, 3787–3791 (2018). https://doi.org/10.1002/anie.201800019
J. Zhang, G. Hodes, Z. Jin, S. Liu, All-inorganic CsPbX3 perovksite solar cells: progress and prospects. Angew. Chem. Int. Ed. 58, 15596–15618 (2019). https://doi.org/10.1002/anie.201901081
A. Ho-Baillie, M. Zhang, C.F.J. Lau, F.-J. Ma, S. Huang, Untapped potentials of inorganic metal halide perovskite solar cells. Joule 3, 938–955 (2019). https://doi.org/10.1016/j.joule.2019.02.002
S. Xiang, Z. Fu, W. Li, Y. Wei, J. Liu et al., Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett. 3, 1824–1831 (2018). https://doi.org/10.1021/acsenergylett.8b00820
S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, S. Yang, H. Chen, Natrium doping pushes the efficiency of carbon-based CsPbI3 perovskite solar cells to 10.7%. iScience 15, 156 (2019). https://doi.org/10.1016/j.isci.2019.04.025
X. Zhang, Y. Zhou, Y. Li, J. Sun, X. Lu et al., Efficient and carbon-based hole transport layer-free CsPbI2Br planar perovskite solar cells using PMMA modification. J. Mater. Chem. C 7, 3852–3861 (2019). https://doi.org/10.1039/C9TC00374F
Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, Z. Hu, J. Chu, Efficient and hole-transporting-layer-free CsPbI2Br planar heterojunction perovskite solar cells through rubidium passivation. ChemSusChem 12, 983–989 (2019). https://doi.org/10.1002/cssc.201802690
X. Meng, Z. Wang, W. Qian, Z. Zhu, T. Zhang et al., Excess cesium iodide induces spinodal decomposition of CsPbI2Br perovskite films. J. Phys. Chem. Lett. 10, 194–199 (2019). https://doi.org/10.1021/acs.jpclett.8b03742
Z. Guo, S. Teo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase, T. Ma, Achievable high Voc of carbon based all-inorganic CsPbIBr2 perovskite solar cells through interface engineering. J. Mater. Chem. A 7, 1227–1232 (2019). https://doi.org/10.1039/C8TA09838G
W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen et al., Band alignment engineering towards 10.71%-efficiency carbon-based, all-inorganic planar CsPbIBr2 perovskite solar cells. ChemSusChem 12, 2318 (2019). https://doi.org/10.1002/cssc.201900611
W. Zhu, Q. Zhang, C. Zhang, Z. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, Y. Hao, Aged precursor solution toward low-temperature fabrication of efficient carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells. ACS Appl. Energy Mater. 1, 4991–4997 (2018). https://doi.org/10.1021/acsaem.8b00972
J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng et al., Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 8, 1800504 (2018). https://doi.org/10.1002/aenm.201800504
X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy 56, 184–195 (2019). https://doi.org/10.1016/j.nanoen.2018.11.053
J. Liu, L. Zhu, S. Xiang, Y. Wei, M. Xie, H. Liu, W. Li, H. Chen, Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells. Sustain. Energy Fuels 3, 184–194 (2019). https://doi.org/10.1039/C8SE00442K
J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V. Adv. Energy Mater. 8, 1802346 (2018). https://doi.org/10.1002/aenm.201802346
Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495 (2019). https://doi.org/10.1039/C8EE03559H
Z. Wang, A.K. Baranwal, M.A. Kamarudin, C.H. Ng, M. Pandey, T. Ma, S. Hayase, Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy 59, 258–267 (2019). https://doi.org/10.1016/j.nanoen.2019.02.049
J. Lin, M. Lai, L. Dou, C.S. Kley, H. Chen et al., Thermochromic halide perovskite solar cells. Nat. Mater. 17, 261 (2018). https://doi.org/10.1038/s41563-017-0006-0
B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 57, 718–727 (2019). https://doi.org/10.1016/j.nanoen.2018.12.097
M. Moniruddin, B. Ilyassov, X. Zhao, E. Smith, T. Serikov, N. Ibrayev, R. Asmatulu, N. Nuraje, Recent progress on perovskite materials in photovoltaic and water splitting applications. Mater. Today Energy 7, 246–259 (2018). https://doi.org/10.1016/j.mtener.2017.10.005
F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952–2959 (2006). https://doi.org/10.1016/j.solmat.2006.06.002
W.S. Subhani, K. Wang, M. Du, X. Wang, S. Liu, Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201803785
W.S. Subhani, K. Wang, M. Du, S.F. Liu, Gold Schmidt-rule-deviated perovskite CsPbIBr2 by barium substitution for efficient solar cells. Nano Energy 61, 165–172 (2019). https://doi.org/10.1016/j.nanoen.2019.04.066
F. Meng, A. Liu, L. Gao, J. Cao, Y. Yan et al., Current progress in interfacial engineering of carbon-based perovskite solar cells. J. Mater. Chem. A 7, 8690–8699 (2019). https://doi.org/10.1039/C9TA01364D
D.B. Khadka, Y. Shirai, M. Yanagida, K. Miyano, Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration. J. Mater. Chem. C 6, 162–170 (2018). https://doi.org/10.1039/C7TC03733C
B. Roose, Q. Wang, A. Abate, The role of charge selective contacts in perovskite solar cell stability. Adv. Energy Mater. 9, 1803140 (2019). https://doi.org/10.1002/aenm.201803140
C. Liu, W. Li, J. Chen, J. Fan, Y. Mai, R.E. Schropp, Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy 41, 75–83 (2017). https://doi.org/10.1016/j.nanoen.2017.08.048
C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30, 1803422 (2018). https://doi.org/10.1002/adma.201803422
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
Y. Wang, T. Zhang, M. Kan, Y. Zhao, Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018). https://doi.org/10.1021/jacs.8b07927
A. Dualeh, P. Gao, S.I. Seok, M.K. Nazeeruddin, M. Grätzel, Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160–6164 (2014). https://doi.org/10.1021/cm502468k
N.N. Shlenskaya, N.A. Belich, M. Grätzel, E.A. Goodilin, A.B. Tarasov, Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. J. Mater. Chem. A 6, 1780–1786 (2018). https://doi.org/10.1039/C7TA10217H
W. Zhu, C. Bao, B. Lv, F. Li, Y. Yi et al., Dramatically promoted crystallization control of organolead triiodide perovskite film by a homogeneous cap for high efficiency planar-heterojunction solar cells. J. Mater. Chem. A 4, 12535–12542 (2016). https://doi.org/10.1039/C6TA04332A
G. Gottstein, A. King, L. Shvindlerman, The effect of triple-junction drag on grain growth. Acta Mater. 48, 397–403 (2000). https://doi.org/10.1016/S1359-6454(99)00373-0
C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747
F. Chen, Q. Shen, F. Yan, L. Zhang, Pressureless sintering of α-Si3N4 porous ceramics using a H3PO4 pore-forming agent. J. Am. Ceram. Soc. 90, 2379–2383 (2007). https://doi.org/10.1111/j.1551-2916.2007.01800.x
C. Galassi, Processing of porous ceramics: piezoelectric materials. J. Eur. Ceram. Soc. 26, 2951–2958 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.02.011
D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016). https://doi.org/10.1021/acsenergylett.6b00495
W. Li, M.U. Rothmann, A. Liu, Z. Wang, Y. Zhang et al., Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv. Energy Mater. 7, 1700946 (2017). https://doi.org/10.1002/aenm.201700946
N. Li, Z. Zhu, J. Li, A.K.Y. Jen, L. Wang, Inorganic CsPb1−xSnxIBr2 for efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 8, 1800525 (2018). https://doi.org/10.1002/aenm.201800525
I. Gelmetti, N. Montcada, A. Perez-Rodriguez, E. Barrena, C. Ocal et al., Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage. Energy Environ. Sci. 12, 1309–1316 (2019). https://doi.org/10.1039/C9EE00528E
S.M. Kang, S. Jang, J.K. Lee, J. Yoon, D.E. Yoo, J.W. Lee, M. Choi, N.G. Park, Moth-Eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small 12, 2443–2449 (2016). https://doi.org/10.1002/smll.201600428
Q. Zhang, W. Zhu, D. Chen, Z. Zhang, Z. Lin et al., Light processing enables efficient carbon-based, all-inorganic planar CsPbIBr2 solar cells with high photovoltages. ACS Appl. Mater. Interfaces 11, 2997–3005 (2018). https://doi.org/10.1021/acsami.8b17839
Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan, J. Chen, Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2, 1356–1368 (2018). https://doi.org/10.1016/j.joule.2018.05.004
J. Lu, S.-C. Chen, Q. Zheng, Defect passivation of CsPbIBr2 perovskites for high-performance solar cells with large open-circuit voltage of 1.28 V. ACS Appl. Energy Mater. 1, 5872–5878 (2018). https://doi.org/10.1021/acsaem.8b01430
C.F.J. Lau, X. Deng, Q. Ma, J. Zheng, J.S. Yun, M.A. Green, S. Huang, A.W. Ho-Baillie, CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett. 1, 573–577 (2016). https://doi.org/10.1021/acsenergylett.6b00341
M. Aamir, T. Adhikari, M. Sher, N. Revaprasadu, W. Khalid, J. Akhtar, J.-M. Nunzi, Fabrication of planar heterojunction CsPbBr2I perovskite solar cells using ZnO as an electron transport layer and improved solar energy conversion efficiency. New J. Chem. 42, 14104–14110 (2018). https://doi.org/10.1039/C8NJ02238K
Q. Ma, S. Huang, X. Wen, M.A. Green, A.W. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6, 1502202 (2016). https://doi.org/10.1002/aenm.201502202
C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi et al., Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin-lead halide perovskite solar cells. Adv. Energy Mater. 9(3), 1803135 (2019). https://doi.org/10.1002/aenm.201803135