Optimizing the Performance of CsPbI3-Based Perovskite Solar Cells via Doping a ZnO Electron Transport Layer Coupled with Interface Engineering
Corresponding Author: Jie Su
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 91
Abstract
Interface engineering has been regarded as an effective and noninvasive means to optimize the performance of perovskite solar cells (PSCs). Here, doping engineering of a ZnO electron transport layer (ETL) and CsPbI3/ZnO interface engineering via introduction of an interfacial layer are employed to improve the performances of CsPbI3-based PSCs. The results show that when introducing a TiO2 buffer layer while increasing the ZnO layer doping concentration, the open-circuit voltage, power conversion efficiency, and fill factor of the CsPbI3-based PSCs can be improved to 1.31 V, 21.06%, and 74.07%, respectively, which are superior to those of PSCs only modified by the TiO2 buffer layer or high-concentration doping of ZnO layer. On the one hand, the buffer layer relieves the band bending and structural disorder of CsPbI3. On the other hand, the increased doping concentration of the ZnO layer improves the conductivity of the TiO2/ZnO bilayer ETL because of the strong interaction between the TiO2 and ZnO layers. However, such phenomena are not observed for those of a PCBM/ZnO bilayer ETL because of the weak interlayer interaction of the PCBM/ZnO interface. These results provide a comprehensive understanding of the CsPbI3/ZnO interface and suggest a guideline to design high-performance PSCs.
Highlights:
1 Device simulations and first-principle calculations are employed to derive a guideline for the optimization of CsPbI3-based perovskite solar cells (PSCs).
2 The open voltage and power conversion efficiency of the PSCs are, respectively, improved to 1.31 V and 21.06% by simultaneously introducing an ultra-thin TiO2 buffer layer and increasing the doping concentration of the ZnO electron transport layer.
3 The influence of the interfacial buffer layer and doping of the CsPbI3/ZnO interface on PSC performance is discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang et al., High-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 8, 1703432 (2018). https://doi.org/10.1002/aenm.201703432
- X. Zhu, D. Yang, R. Yang, B. Yang, Z. Yang et al., Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale 9, 12316–12323 (2017). https://doi.org/10.1039/C7NR04501H
- J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
- P. Zhao, M. Yue, C. Lei, Z. Lin, J. Su et al., Device simulation of organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cell with various antireflection materials. IEEE J. Photovolt. 8, 1685–1691 (2018). https://doi.org/10.1109/JPHOTOV.2018.2869743
- M. Jaysankar, M. Filipič, B. Zielinski, R. Schmager, W. Song et al., Perovskite–silicon tandem solar modules with optimised light harvesting. Energy Environ. Sci. 11, 1489–1498 (2018). https://doi.org/10.1039/C8EE00237A
- C.-H. Lin, B. Cheng, T.-Y. Li, J.R.D. Retamal et al., Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano 13(2), 1168–1176 (2018). https://doi.org/10.1021/ph4001108
- C.C. Vidyasagar, B.M. Muñoz Flores, V.M. Jiménez Pérez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
- NREL, Best Research-Cell Efficiency Chart, Photovoltaic Research, NREL. Natl. Renew. Energy Lab. (2019). https://www.nrel.gov/pv/cellefficiency.html
- B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen et al., Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015). https://doi.org/10.1002/aenm.201500477
- Z. Song, A. Abate, S.C. Watthage, G.K. Liyanage, A.B. Phillips, U. Steiner, M. Graetzel, M.J. Heben, Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2–CH3NH3I–H2O system. Adv. Energy Mater. 6, 1600846 (2016). https://doi.org/10.1002/aenm.201600846
- Z. Zhang, J. Su, J. Hou, Z. Lin, Z. Hu et al., Potential applications of halide double perovskite Cs2AgInX6 (X = Cl, Br) in flexible optoelectronics: unusual effects of uniaxial strains. J. Phys. Chem. Lett. 10, 1120–1125 (2019). https://doi.org/10.1021/acs.jpclett.9b00134
- J. Zhang, J. Su, Z. Lin, M. Liu, J. Chang, Y. Hao, Disappeared deep charge-states transition levels in the p-type intrinsic CsSnCl3 perovskite. Appl. Phys. Lett. 114, 181902 (2019). https://doi.org/10.1063/1.5090420
- L. Zhou, X. Guo, Z. Lin, J. Ma, J. Su et al., Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy 60, 583–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.081
- A.E. Maughan, A.M. Ganose, D.O. Scanlon, J.R. Neilson, Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chem. Mater. 31, 1184–1195 (2019). https://doi.org/10.1021/acs.chemmater.8b05036
- F. Igbari, Z. Wang, L. Liao, Progress of lead-free halide double perovskites. Adv. Energy Mater. 9, 1803150 (2019). https://doi.org/10.1002/aenm.201803150
- T. Zhang, M.I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017). https://doi.org/10.1126/sciadv.1700841
- L.A. Frolova, D.V. Anokhin, A.A. Piryazev, S.Y. Luchkin, N.N. Dremova, K.J. Stevenson, P.A. Troshin, Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67–72 (2017). https://doi.org/10.1021/acs.jpclett.6b02594
- M. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015). https://doi.org/10.1021/acs.jpclett.5b00968
- Q. Ma, S. Huang, X. Wen, M.A. Green, A.W.Y. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6, 1502202 (2016). https://doi.org/10.1002/aenm.201502202
- S. Xiang, Z. Fu, W. Li, Y. Wei, J. Liu et al., Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett. 3, 1824–1831 (2018). https://doi.org/10.1021/acsenergylett.8b00820
- Y. Zhang, S. Li, W. Yang, M.K. Joshi, X. Fang, Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector. J. Phys. Chem. Lett. 10, 2400–2407 (2019). https://doi.org/10.1021/acs.jpclett.9b00960
- Y. Zhang, W. Xu, X. Xu, J. Cai, W. Yang, X. Fang, Self-powered dual-color UV–green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions. J. Phys. Chem. Lett. 10, 836–841 (2019). https://doi.org/10.1021/acs.jpclett.9b00154
- W. Ahmad, J. Khan, G. Niu, J. Tang, Inorganic CsPbI3 perovskite-based solar cells: a choice for a tandem device. Sol. RRL 1, 1700048 (2017). https://doi.org/10.1002/solr.201700048
- G. Murtaza, I. Ahmad, First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M = Cl, Br, I). Phys. B: Condens. Matter 406, 3222–3229 (2011). https://doi.org/10.1016/j.physb.2011.05.028
- M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management. Nano-Micro Lett. 11, 58 (2019). https://doi.org/10.1007/s40820-019-0287-8
- H. Fu, V. Ramalingam, H. Kim, C. Lin, X. Fang, H.N. Alshareef, J. He, MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9, 190 (2019). https://doi.org/10.1002/aenm.201900180
- X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, H. Chen, Carbon-based CsPbBr3 perovskite solar cells: all-ambient processes and high thermal stability. ACS Appl. Mater. Interfaces 8, 33649–33655 (2016). https://doi.org/10.1021/acsami.6b11393
- Y. Wang, T. Zhang, M. Kan, Y. Zhao, Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018). https://doi.org/10.1021/jacs.8b07927
- X. Guo, B. Zhang, Z. Lin, J. Ma, J. Su et al., Interface engineering of TiO2/perovskite interface via fullerene derivatives for high performance planar perovskite solar cells. Org. Electron. 62, 459–467 (2018). https://doi.org/10.1016/j.orgel.2018.08.039
- P. Zhang, J. Wu, T. Zhang, Y. Wang, D. Liu et al., Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 30, 1703737 (2018). https://doi.org/10.1002/adma.201703737
- P. Zhao, Z. Liu, Z. Lin, D. Chen, J. Su et al., Device simulation of inverted CH3NH3PbI3–xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol. Energy 169, 11–18 (2018). https://doi.org/10.1016/j.solener.2018.04.027
- W. Ouyang, F. Teng, J.-H. He, X. Fang, Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 29, 1807672 (2019). https://doi.org/10.1002/adfm.201807672
- M. Dehghan, A. Behjat, Deposition of zinc oxide as an electron transport layer in planar perovskite solar cells by spray and SILAR methods comparable with spin coating. RSC Adv. 9, 20917–20924 (2019). https://doi.org/10.1039/C9RA01839E
- S. Zhuang, X. Ma, D. Hu, X. Dong, B. Zhang, Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure. Ceram. Int. 44, 4685–4688 (2018). https://doi.org/10.1016/j.ceramint.2017.12.048
- J. Ma, Z. Lin, X. Guo, L. Zhou, J. Su et al., Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol. RRL 3, 1900096 (2019). https://doi.org/10.1002/solr.201900096
- P. Zhang, F. Yang, G. Kapil, Q. Shen, T. Toyoda et al., Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation. Org. Electron. 62, 615–620 (2018). https://doi.org/10.1016/j.orgel.2018.06.038
- D. Zhang, X. Zhang, S. Bai, C. Liu, Z. Li, W. Guo, F. Gao, Surface chlorination of ZnO for perovskite solar cells with enhanced efficiency and stability. Sol. RRL (2019). https://doi.org/10.1002/solr.201900154
- C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 140, 3825–3828 (2018). https://doi.org/10.1021/jacs.7b13229
- L. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian et al., Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv. Mater. 30, 1802509 (2018). https://doi.org/10.1002/adma.201802509
- L. Zhu, C. Chen, Y. Weng, F. Li, Q. Lou, Enhancing the performance of inverted perovskite solar cells by inserting a ZnO:TIPD film between PCBM layer and Ag electrode. Sol. Energy Mater. Sol. Cells 198, 11–18 (2019). https://doi.org/10.1016/j.solmat.2019.04.007
- B. Jeong, H. Han, Y.J. Choi, S.H. Cho, E.H. Kim et al., All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 28, 1706401 (2018). https://doi.org/10.1002/adfm.201706401
- Q. Dong, C.H.Y. Ho, H. Yu, A. Salehi, F. So, Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 31(17), 6833–6840 (2019). https://doi.org/10.1021/acs.chemmater.9b01292
- J. Song, E. Zheng, L. Liu, X. Wang, G. Chen, W. Tian, T. Miyasaka, Magnesium-doped zinc oxide as electron selective contact layers for efficient perovskite solar cells. ChemSusChem 9, 2640–2647 (2016). https://doi.org/10.1002/cssc.201600860
- M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, A.M. Soufiani, M. Wright, C. Xu, F. Haque, A. Uddin, Solution-processed lithium-doped ZnO electron transport layer for efficient triple cation (Rb, MA, FA) perovskite solar cells. ACS Appl. Mater. Interfaces 9, 33841–33854 (2017). https://doi.org/10.1021/acsami.7b09153
- M.M. Shabat, H.J. El-Khozondar, A.A. AlShembari, R.J. El-Khozondar, Transfer matrix method application on semiconductor-based solar cell characteristics measurements. Mod. Phys. Lett. B 32, 1850346 (2018). https://doi.org/10.1142/S0217984918503463
- S. Sajid, A.M. Elseman, J. Ji, S. Dou, D. Wei et al., Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10, 51 (2018). https://doi.org/10.1007/s40820-018-0205-5
- P. Zhao, L. Feng, Z. Lin, J. Wang, J. Su et al., Theoretical analysis of two-terminal and four-terminal perovskite/copper indium gallium selenide tandem solar cells. Sol. RRL (2019). https://doi.org/10.1002/solr.201900303
- K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl, P. Heremans, 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014). https://doi.org/10.1038/ncomms4406
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- X. Wei, X. Wang, H. Jiang, Y. Huang, A. Han, Q. Gao, J. Bian, Z. Liu, Numerical simulation and experimental validation of inverted planar perovskite solar cells based on NiOx hole transport layer. Superlattices Microstruct. 112, 383–393 (2017). https://doi.org/10.1016/j.spmi.2017.09.048
- E.M. Hutter, T.J. Savenije, Thermally activated second-order recombination hints toward indirect recombination in fully inorganic CsPbI3 perovskites. ACS Energy Lett. 3, 2068–2069 (2018). https://doi.org/10.1021/acsenergylett.8b01106
- B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9, 1076 (2018). https://doi.org/10.1038/s41467-018-03169-0
- A.-A. Kanoun, M.B. Kanoun, A.E. Merad, S. Goumri-Said, Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Sol. Energy 182, 237–244 (2019). https://doi.org/10.1016/j.solener.2019.02.041
- K. Mahmood, A. Khalid, M.T. Mehran, Nanostructured ZnO electron transporting materials for hysteresis-free perovskite solar cells. Sol. Energy 173, 496–503 (2018). https://doi.org/10.1016/j.solener.2018.08.004
- D.A. Neamen, Nanoscale transistors. Mater. Today 9, 57 (2006). https://doi.org/10.1016/S1369-7021(06)71449-3
- J. Ma, J. Chang, Z. Lin, X. Guo, L. Zhou et al., Elucidating the roles of TiCl4 and PCBM fullerene treatment on TiO2 electron transporting layer for highly efficient planar perovskite solar cells. J. Phys. Chem. C 122, 1044–1053 (2018). https://doi.org/10.1021/acs.jpcc.7b09537
- H.-J. Feng, J. Huang, X.C. Zeng, Photovoltaic diode effect induced by positive bias poling of organic layer-mediated interface in perovskite heterostructure α-HC(NH2)2PbI3/TiO2. Adv. Mater. Interfaces 3, 1600267 (2016). https://doi.org/10.1002/admi.201600267
- H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J.Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014). https://doi.org/10.1016/j.nanoen.2014.04.017
- P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu et al., Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 7, 3603–3608 (2016). https://doi.org/10.1021/acs.jpclett.6b01576
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). https://doi.org/10.1126/science.aag2700
- Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang, Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017). https://doi.org/10.1016/j.joule.2017.07.017
- C.F.J. Lau, Z. Wang, N. Sakai, J. Zheng, C.H. Liao et al., Fabrication of efficient and stable CsPbI3 perovskite solar cells through cation exchange process. Adv. Energy Mater. 1901685, 1901685 (2019). https://doi.org/10.1002/aenm.201901685
- Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies > 18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
References
Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang et al., High-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 8, 1703432 (2018). https://doi.org/10.1002/aenm.201703432
X. Zhu, D. Yang, R. Yang, B. Yang, Z. Yang et al., Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale 9, 12316–12323 (2017). https://doi.org/10.1039/C7NR04501H
J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
P. Zhao, M. Yue, C. Lei, Z. Lin, J. Su et al., Device simulation of organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cell with various antireflection materials. IEEE J. Photovolt. 8, 1685–1691 (2018). https://doi.org/10.1109/JPHOTOV.2018.2869743
M. Jaysankar, M. Filipič, B. Zielinski, R. Schmager, W. Song et al., Perovskite–silicon tandem solar modules with optimised light harvesting. Energy Environ. Sci. 11, 1489–1498 (2018). https://doi.org/10.1039/C8EE00237A
C.-H. Lin, B. Cheng, T.-Y. Li, J.R.D. Retamal et al., Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano 13(2), 1168–1176 (2018). https://doi.org/10.1021/ph4001108
C.C. Vidyasagar, B.M. Muñoz Flores, V.M. Jiménez Pérez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
NREL, Best Research-Cell Efficiency Chart, Photovoltaic Research, NREL. Natl. Renew. Energy Lab. (2019). https://www.nrel.gov/pv/cellefficiency.html
B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen et al., Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015). https://doi.org/10.1002/aenm.201500477
Z. Song, A. Abate, S.C. Watthage, G.K. Liyanage, A.B. Phillips, U. Steiner, M. Graetzel, M.J. Heben, Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2–CH3NH3I–H2O system. Adv. Energy Mater. 6, 1600846 (2016). https://doi.org/10.1002/aenm.201600846
Z. Zhang, J. Su, J. Hou, Z. Lin, Z. Hu et al., Potential applications of halide double perovskite Cs2AgInX6 (X = Cl, Br) in flexible optoelectronics: unusual effects of uniaxial strains. J. Phys. Chem. Lett. 10, 1120–1125 (2019). https://doi.org/10.1021/acs.jpclett.9b00134
J. Zhang, J. Su, Z. Lin, M. Liu, J. Chang, Y. Hao, Disappeared deep charge-states transition levels in the p-type intrinsic CsSnCl3 perovskite. Appl. Phys. Lett. 114, 181902 (2019). https://doi.org/10.1063/1.5090420
L. Zhou, X. Guo, Z. Lin, J. Ma, J. Su et al., Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy 60, 583–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.081
A.E. Maughan, A.M. Ganose, D.O. Scanlon, J.R. Neilson, Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chem. Mater. 31, 1184–1195 (2019). https://doi.org/10.1021/acs.chemmater.8b05036
F. Igbari, Z. Wang, L. Liao, Progress of lead-free halide double perovskites. Adv. Energy Mater. 9, 1803150 (2019). https://doi.org/10.1002/aenm.201803150
T. Zhang, M.I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017). https://doi.org/10.1126/sciadv.1700841
L.A. Frolova, D.V. Anokhin, A.A. Piryazev, S.Y. Luchkin, N.N. Dremova, K.J. Stevenson, P.A. Troshin, Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67–72 (2017). https://doi.org/10.1021/acs.jpclett.6b02594
M. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015). https://doi.org/10.1021/acs.jpclett.5b00968
Q. Ma, S. Huang, X. Wen, M.A. Green, A.W.Y. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6, 1502202 (2016). https://doi.org/10.1002/aenm.201502202
S. Xiang, Z. Fu, W. Li, Y. Wei, J. Liu et al., Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett. 3, 1824–1831 (2018). https://doi.org/10.1021/acsenergylett.8b00820
Y. Zhang, S. Li, W. Yang, M.K. Joshi, X. Fang, Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector. J. Phys. Chem. Lett. 10, 2400–2407 (2019). https://doi.org/10.1021/acs.jpclett.9b00960
Y. Zhang, W. Xu, X. Xu, J. Cai, W. Yang, X. Fang, Self-powered dual-color UV–green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions. J. Phys. Chem. Lett. 10, 836–841 (2019). https://doi.org/10.1021/acs.jpclett.9b00154
W. Ahmad, J. Khan, G. Niu, J. Tang, Inorganic CsPbI3 perovskite-based solar cells: a choice for a tandem device. Sol. RRL 1, 1700048 (2017). https://doi.org/10.1002/solr.201700048
G. Murtaza, I. Ahmad, First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M = Cl, Br, I). Phys. B: Condens. Matter 406, 3222–3229 (2011). https://doi.org/10.1016/j.physb.2011.05.028
M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management. Nano-Micro Lett. 11, 58 (2019). https://doi.org/10.1007/s40820-019-0287-8
H. Fu, V. Ramalingam, H. Kim, C. Lin, X. Fang, H.N. Alshareef, J. He, MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9, 190 (2019). https://doi.org/10.1002/aenm.201900180
X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, H. Chen, Carbon-based CsPbBr3 perovskite solar cells: all-ambient processes and high thermal stability. ACS Appl. Mater. Interfaces 8, 33649–33655 (2016). https://doi.org/10.1021/acsami.6b11393
Y. Wang, T. Zhang, M. Kan, Y. Zhao, Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018). https://doi.org/10.1021/jacs.8b07927
X. Guo, B. Zhang, Z. Lin, J. Ma, J. Su et al., Interface engineering of TiO2/perovskite interface via fullerene derivatives for high performance planar perovskite solar cells. Org. Electron. 62, 459–467 (2018). https://doi.org/10.1016/j.orgel.2018.08.039
P. Zhang, J. Wu, T. Zhang, Y. Wang, D. Liu et al., Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 30, 1703737 (2018). https://doi.org/10.1002/adma.201703737
P. Zhao, Z. Liu, Z. Lin, D. Chen, J. Su et al., Device simulation of inverted CH3NH3PbI3–xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol. Energy 169, 11–18 (2018). https://doi.org/10.1016/j.solener.2018.04.027
W. Ouyang, F. Teng, J.-H. He, X. Fang, Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 29, 1807672 (2019). https://doi.org/10.1002/adfm.201807672
M. Dehghan, A. Behjat, Deposition of zinc oxide as an electron transport layer in planar perovskite solar cells by spray and SILAR methods comparable with spin coating. RSC Adv. 9, 20917–20924 (2019). https://doi.org/10.1039/C9RA01839E
S. Zhuang, X. Ma, D. Hu, X. Dong, B. Zhang, Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure. Ceram. Int. 44, 4685–4688 (2018). https://doi.org/10.1016/j.ceramint.2017.12.048
J. Ma, Z. Lin, X. Guo, L. Zhou, J. Su et al., Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol. RRL 3, 1900096 (2019). https://doi.org/10.1002/solr.201900096
P. Zhang, F. Yang, G. Kapil, Q. Shen, T. Toyoda et al., Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation. Org. Electron. 62, 615–620 (2018). https://doi.org/10.1016/j.orgel.2018.06.038
D. Zhang, X. Zhang, S. Bai, C. Liu, Z. Li, W. Guo, F. Gao, Surface chlorination of ZnO for perovskite solar cells with enhanced efficiency and stability. Sol. RRL (2019). https://doi.org/10.1002/solr.201900154
C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 140, 3825–3828 (2018). https://doi.org/10.1021/jacs.7b13229
L. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian et al., Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv. Mater. 30, 1802509 (2018). https://doi.org/10.1002/adma.201802509
L. Zhu, C. Chen, Y. Weng, F. Li, Q. Lou, Enhancing the performance of inverted perovskite solar cells by inserting a ZnO:TIPD film between PCBM layer and Ag electrode. Sol. Energy Mater. Sol. Cells 198, 11–18 (2019). https://doi.org/10.1016/j.solmat.2019.04.007
B. Jeong, H. Han, Y.J. Choi, S.H. Cho, E.H. Kim et al., All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 28, 1706401 (2018). https://doi.org/10.1002/adfm.201706401
Q. Dong, C.H.Y. Ho, H. Yu, A. Salehi, F. So, Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem. Mater. 31(17), 6833–6840 (2019). https://doi.org/10.1021/acs.chemmater.9b01292
J. Song, E. Zheng, L. Liu, X. Wang, G. Chen, W. Tian, T. Miyasaka, Magnesium-doped zinc oxide as electron selective contact layers for efficient perovskite solar cells. ChemSusChem 9, 2640–2647 (2016). https://doi.org/10.1002/cssc.201600860
M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, A.M. Soufiani, M. Wright, C. Xu, F. Haque, A. Uddin, Solution-processed lithium-doped ZnO electron transport layer for efficient triple cation (Rb, MA, FA) perovskite solar cells. ACS Appl. Mater. Interfaces 9, 33841–33854 (2017). https://doi.org/10.1021/acsami.7b09153
M.M. Shabat, H.J. El-Khozondar, A.A. AlShembari, R.J. El-Khozondar, Transfer matrix method application on semiconductor-based solar cell characteristics measurements. Mod. Phys. Lett. B 32, 1850346 (2018). https://doi.org/10.1142/S0217984918503463
S. Sajid, A.M. Elseman, J. Ji, S. Dou, D. Wei et al., Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10, 51 (2018). https://doi.org/10.1007/s40820-018-0205-5
P. Zhao, L. Feng, Z. Lin, J. Wang, J. Su et al., Theoretical analysis of two-terminal and four-terminal perovskite/copper indium gallium selenide tandem solar cells. Sol. RRL (2019). https://doi.org/10.1002/solr.201900303
K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl, P. Heremans, 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014). https://doi.org/10.1038/ncomms4406
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
X. Wei, X. Wang, H. Jiang, Y. Huang, A. Han, Q. Gao, J. Bian, Z. Liu, Numerical simulation and experimental validation of inverted planar perovskite solar cells based on NiOx hole transport layer. Superlattices Microstruct. 112, 383–393 (2017). https://doi.org/10.1016/j.spmi.2017.09.048
E.M. Hutter, T.J. Savenije, Thermally activated second-order recombination hints toward indirect recombination in fully inorganic CsPbI3 perovskites. ACS Energy Lett. 3, 2068–2069 (2018). https://doi.org/10.1021/acsenergylett.8b01106
B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9, 1076 (2018). https://doi.org/10.1038/s41467-018-03169-0
A.-A. Kanoun, M.B. Kanoun, A.E. Merad, S. Goumri-Said, Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Sol. Energy 182, 237–244 (2019). https://doi.org/10.1016/j.solener.2019.02.041
K. Mahmood, A. Khalid, M.T. Mehran, Nanostructured ZnO electron transporting materials for hysteresis-free perovskite solar cells. Sol. Energy 173, 496–503 (2018). https://doi.org/10.1016/j.solener.2018.08.004
D.A. Neamen, Nanoscale transistors. Mater. Today 9, 57 (2006). https://doi.org/10.1016/S1369-7021(06)71449-3
J. Ma, J. Chang, Z. Lin, X. Guo, L. Zhou et al., Elucidating the roles of TiCl4 and PCBM fullerene treatment on TiO2 electron transporting layer for highly efficient planar perovskite solar cells. J. Phys. Chem. C 122, 1044–1053 (2018). https://doi.org/10.1021/acs.jpcc.7b09537
H.-J. Feng, J. Huang, X.C. Zeng, Photovoltaic diode effect induced by positive bias poling of organic layer-mediated interface in perovskite heterostructure α-HC(NH2)2PbI3/TiO2. Adv. Mater. Interfaces 3, 1600267 (2016). https://doi.org/10.1002/admi.201600267
H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J.Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014). https://doi.org/10.1016/j.nanoen.2014.04.017
P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu et al., Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 7, 3603–3608 (2016). https://doi.org/10.1021/acs.jpclett.6b01576
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). https://doi.org/10.1126/science.aag2700
Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang, Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017). https://doi.org/10.1016/j.joule.2017.07.017
C.F.J. Lau, Z. Wang, N. Sakai, J. Zheng, C.H. Liao et al., Fabrication of efficient and stable CsPbI3 perovskite solar cells through cation exchange process. Adv. Energy Mater. 1901685, 1901685 (2019). https://doi.org/10.1002/aenm.201901685
Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies > 18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680