Machine Learning Approach to Enhance the Performance of MNP-Labeled Lateral Flow Immunoassay
Corresponding Author: Daxiang Cui
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 7
Abstract
The use of magnetic nanoparticle (MNP)-labeled immunochromatography test strips (ICTSs) is very important for point-of-care testing (POCT). However, common diagnostic methods cannot accurately analyze the weak magnetic signal from ICTSs, limiting the applications of POCT. In this study, an ultrasensitive multiplex biosensor was designed to overcome the limitations of capturing and normalization of the weak magnetic signal from MNPs on ICTSs. A machine learning model for sandwich assays was constructed and used to classify weakly positive and negative samples, which significantly enhanced the specificity and sensitivity. The potential clinical application was evaluated by detecting 50 human chorionic gonadotropin (HCG) samples and 59 myocardial infarction serum samples. The quantitative range for HCG was 1–1000 mIU mL−1 and the ideal detection limit was 0.014 mIU mL−1, which was well below the clinical threshold. Quantitative detection results of multiplex cardiac markers showed good linear correlations with standard values. The proposed multiplex assay can be readily adapted for identifying other biomolecules and also be used in other applications such as environmental monitoring, food analysis, and national security.
Highlights:
1 An ultrasensitive multiplex biosensor was designed to quantify magnetic nanoparticles on immunochromatography test strips.
2 A machine learning model was constructed and used to classify both weakly positive and negative samples, significantly enhancing specificity and sensitivity.
3 A waveform reconstruction method was developed to appropriately restore the distorted waveform for weak magnetic signals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.E. Delle, V. Pachauri, S. Sharma, O. Shaforost, H. Ma et al., Scfv-modified graphene-coated ide-arrays for ‘label-free’ screening of cardiovascular disease biomarkers in physiological saline. Biosens. Bioelectron. 102, 574–581 (2018). https://doi.org/10.1016/j.bios.2017.12.005
- X.J. Qiao, K.X. Li, J.Q. Xu, N. Cheng, Q.L. Sheng, W. Cao, T.L. Yue, J.B. Zheng, Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-mos2 nanoconjugates. Biosens. Bioelectron. 113, 142–147 (2018). https://doi.org/10.1016/j.bios.2018.05.003
- D. Desai, A. Kumar, D. Bose, M. Datta, Ultrasensitive sensor for detection of early stage chronic kidney disease in human. Biosens. Bioelectron. 105, 90–94 (2018). https://doi.org/10.1016/j.bios.2018.01.031
- C. Li, Y.C. Yang, D. Wu, T.Q. Li, Y.M. Yin, G.X. Li, Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chem. Sci. 7(5), 3011–3016 (2016). https://doi.org/10.1039/c5sc04256a
- Z.Y. Guo, T.T. Hao, S.P. Du, B.B. Chen, Z.B. Wang, X. Li, S. Wang, Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene as conducting bridge. Biosens. Bioelectron. 44, 101–107 (2013). https://doi.org/10.1016/j.bios.2013.01.025
- R.I. Staden Stefan-van, I.R. Comnea-Stancu, C.C. Surdu-Bob, M. Badulescu, Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen. Nanoscale 7(38), 15689–15694 (2015). https://doi.org/10.1039/c5nr04476f
- T. Xu, X.L. Jia, X. Chen, Z.F. Ma, Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold. Biosens. Bioelectron. 56, 174–179 (2014). https://doi.org/10.1016/j.bios.2014.01.006
- O. Akinfieva, I. Nabiev, A. Sukhanova, New directions in quantum dot-based cytometry detection of cancer serum markers and tumor cells. Crit. Rev. Oncol. Hemat. 86(1), 1–14 (2013). https://doi.org/10.1016/j.critrevonc.2012.09.004
- E.Q. Song, M.Q. Yu, Y.Y. Wang, W.H. Hu, D. Cheng, M.T. Swihart, Y. Song, Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens. Bioelectron. 72, 320–325 (2015). https://doi.org/10.1016/j.bios.2015.05.018
- S.S. Cheng, S. Hideshima, S. Kuroiwa, T. Nakanishi, T. Osaka, Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sens. Actuator B-Chem. 212, 329–334 (2015). https://doi.org/10.1016/j.snb.2015.02.038
- P. Li, B. Zhang, T.H. Cui, Towards intrinsic graphene biosensor: a label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Biosens. Bioelectron. 72, 168–174 (2015). https://doi.org/10.1016/j.bios.2015.05.007
- P. Brangel, A. Sobarzo, C. Parolo, B.S. Miller, P.D. Howes et al., A serological point-of-care test for the detection of IgG antibodies against ebola virus in human survivors. ACS Nano 12(1), 63–73 (2018). https://doi.org/10.1021/acsnano.7b07021
- X.C. Li, F. Yang, J.X.H. Wong, H.Z. Yu, Integrated smartphone-app-chip system for on-site parts-per-billion-level colorimetric quantitation of aflatoxins. Anal. Chem. 89(17), 8908–8916 (2017). https://doi.org/10.1021/acs.analchem.7b01379
- J. Hu, Y.Z. Jiang, L.L. Wu, Z. Wu, Y.H. Bi et al., Dual-signal readout nanospheres for rapid point-of-care detection of ebola virus glycoprotein. Anal. Chem. 89(24), 13105–13111 (2017). https://doi.org/10.1021/acs.analchem.7b02222
- K. Wang, W. Qin, Y. Hou, K. Xiao, W. Yan, The application of lateral flow immunoassay in point of care testing: a review. Nano Biom. Eng. 8(3), 172–183 (2016). https://doi.org/10.5101/nbe.v8i3.p172-183
- P. Wang, L.J. Kricka, Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation. Clin. Chem. 64(10), 1439–1452 (2018). https://doi.org/10.1373/clinchem.2018.287052
- Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9, 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
- C.C. Bao, L. Chen, T. Wang, C. Lei, F.R. Tian, D.X. Cui, Y. Zhou, One step quick detection of cancer cell surface marker by integrated nife-based magnetic biosensing cell cultural chip. Nano-Micro Lett. 5(3), 213–222 (2013). https://doi.org/10.5101/nml.v5i3.p213-222
- X.E. Sun, B.W. Li, C.Y. Tian, F.B. Yu, N. Zhou, Y.H. Zhan, L.X. Chen, Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers. Anal. Chim. Acta 1007, 33–39 (2018). https://doi.org/10.1016/j.aca.2017.12.005
- X.L. Fu, L.X. Chen, J. Choo, Optical nanoprobes for ultrasensitive immunoassay. Anal. Chem. 89(1), 124–137 (2017). https://doi.org/10.1021/acs.analchem.6b02251
- D.D. Lou, L. Fan, Y. Cui, Y.F. Zhu, N. Gu, Y. Zhang, Fluorescent nanoprobes with oriented modified antibodies to improve lateral flow immunoassay of cardiac troponin I. Anal. Chem. 90(11), 6502–6508 (2018). https://doi.org/10.1021/acs.analchem.7b05410
- K. Serebrennikova, J. Samsonova, A. Osipov, Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett. 10(2), 24 (2018). https://doi.org/10.1007/s40820-017-0180-2
- B. Zhang, W.C. Gao, J.F. Piao, Y.J. Xiao, B. Wang et al., Effective bioactivity retention of low-concentration antibodies on HFBI-modified fluorescence ICTS for sensitive and rapid detection of PSA. ACS Appl. Mater. Interfaces 10(17), 14549–14558 (2018). https://doi.org/10.1021/acsami.8b02945
- B. Zhang, W.J. Ma, F.X. Li, W.C. Gao, Q. Zhao et al., Fluorescence quenching-based signal amplification on immunochromatography test strips for dual-mode sensing of two biomarkers of breast cancer. Nanoscale 9(47), 18711–18722 (2017). https://doi.org/10.1039/C7NR06781J
- X. Wang, N. Choi, Z. Cheng, J. Ko, L.X. Chen, J. Choo, Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal. Chem. 89(2), 1163–1169 (2017). https://doi.org/10.1021/acs.analchem.6b03536
- J. Hwang, S. Lee, J. Choo, Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 8(22), 11418–11425 (2016). https://doi.org/10.1039/c5nr07243c
- X. Fu, Z. Cheng, J. Yu, P. Choo, L. Chen, J. Choo, A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens. Bioelectron. 78, 530–537 (2016). https://doi.org/10.1016/j.bios.2015.11.099
- C.C. Fang, C.C. Chou, Y.Q. Yang, T. Wei-Kai, Y.T. Wang, Y.H. Chan, Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal. Chem. 90(3), 2134–2140 (2018). https://doi.org/10.1021/acs.analchem.7b04411
- Y. Hou, K. Wang, M. Yang, W. Qin, K. Xiao, W. Yan, Smartphone-based fluorescent diagnostic system for immunochromatographic chip. Nano Biom. Eng. 9(1), 21–26 (2017). https://doi.org/10.5101/nbe.v9i1.p21-26
- J.W. Choi, G.J. Kim, S. Lee, J. Kim, A.J. deMello, S.I. Chang, A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosens. Bioelectron. 67, 497–502 (2015). https://doi.org/10.1016/j.bios.2014.09.013
- H. Duan, X.L. Chen, W. Xu, J.H. Fu, Y.H. Xiong, A. Wang, Quantum-dot submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone. Talanta 132, 126–131 (2015). https://doi.org/10.1016/j.talanta.2014.08.076
- C.Y. Liu, W. Ma, Z.Y. Gao, J.Y. Huang, Y. Hou, C.L. Xu, W.S. Yang, M.Y. Gao, Upconversion luminescence nanoparticles-based lateral flow immunochromatographic assay for cephalexin detection. J. Mater. Chem. C 2(45), 9637–9642 (2014). https://doi.org/10.1039/C4TC02034K
- Y. Xu, Y.H. Liu, Y. Wu, X.H. Xia, Y.Q. Liao, Q.G. Li, Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal. Chem. 86(12), 5611–5614 (2014). https://doi.org/10.1021/ac5010458
- M.L. Ren, H.Y. Xu, X.L. Huang, M. Kuang, Y.H. Xiong et al., Immunochromatographic assay for ultrasensitive detection of aflatoxin B-1 in maize by highly luminescent quantum dot beads. ACS Appl. Mater. Interfaces 6(16), 14215–14222 (2014). https://doi.org/10.1021/am503517s
- N.A. Taranova, A.N. Berlina, A.V. Zherdev, B.B. Dzantiev, ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens. Bioelectron. 63, 255–261 (2015). https://doi.org/10.1016/j.bios.2014.07.049
- C.Y. Wang, F. Hou, Y.C. Ma, Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens. Bioelectron. 68, 156–162 (2015). https://doi.org/10.1016/j.bios.2014.12.051
- X. Li, W.B. Li, Q.H. Yang, X.Q. Gong, W.S. Guo et al., Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl. Mater. Interfaces 6(9), 6406–6414 (2014). https://doi.org/10.1021/am5012782
- X.L. Huang, Z.P. Aguilar, H.Y. Xu, W.H. Lai, Y.H. Xiong, Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens. Bioelectron. 75, 166–180 (2016). https://doi.org/10.1016/j.bios.2015.08.032
- K. Xiao, K. Wang, W.J. Qin, Y.F. Hou, W.T. Lu, H. Xu, Y. Wo, D.X. Cui, Use of quantum dot beads-labeled monoclonal antibody to improve the sensitivity of a quantitative and simultaneous immunochromatographic assay for neuron specific enolase and carcinoembryonic antigen. Talanta 164, 463–469 (2017). https://doi.org/10.1016/j.talanta.2016.12.003
- S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, A. Ozcan, Immunochromatographic diagnostic test analysis using google glass. ACS Nano 8(3), 3069–3079 (2014). https://doi.org/10.1021/nn500614k
- Y.F. Hou, K. Wang, K. Xiao, W.J. Qin, W.T. Lu, W. Tao, D.X. Cui, Smartphone-based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res. Lett. 12(1), 291 (2017). https://doi.org/10.1186/s11671-017-2078-9
- W.J. Qin, K. Wang, K. Xiao, Y.F. Hou, W.T. Lu et al., Carcinoembryonic antigen detection with “handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens. Bioelectron. 90, 508–515 (2017). https://doi.org/10.1016/j.bios.2016.10.052
- A.V. Orlov, S.L. Znoyko, V.R. Cherkasov, M.P. Nikitin, P.I. Nikitin, Multiplex biosensing based on highly sensitive magnetic nanolabel quantification: rapid detection of botulinum neurotoxins A, B, and E in liquids. Anal. Chem. 88(21), 10419–10426 (2016). https://doi.org/10.1021/acs.analchem.6b02066
- Y. Zhao, M. Yang, Q. Fu, H. Ouyang, W. Wen, Y. Song, C. Zhu, Y. Lin, D. Du, A nanozyme- and ambient light-based smartphone platform for simultaneous detection of dual biomarkers from exposure to organophosphorus pesticides. Anal. Chem. 90(12), 7391–7398 (2018). https://doi.org/10.1021/acs.analchem.8b00837
- C.P. Lee, M.F. Lai, H.T. Huang, C.W. Lin, Z.H. Wei, Wheatstone bridge giant-magnetoresistance based cell counter. Biosens. Bioelectron. 57, 48–53 (2014). https://doi.org/10.1016/j.bios.2014.01.028
- A. Manteca, M. Mujika, S. Arana, GMR sensors: magnetoresistive behaviour optimization for biological detection by means of superparamagnetic nanoparticles. Biosens. Bioelectron. 26(8), 3705–3709 (2011). https://doi.org/10.1016/j.bios.2011.02.013
- C. Marquina, J.M. de Teresa, D. Serrate, J. Marzo, F.A. Cardoso, D. Saurel, S. Cardoso, P.P. Freitas, M.R. Ibarra, GMR sensors and magnetic nanoparticles for immuno-chromatographic assays. J. Magn. Magn. Mater. 324(21), 3495–3498 (2012). https://doi.org/10.1016/j.jmmm.2012.02.074
- J.W. Park, Superparamagnetic nanoparticle quantification using a giant magnetoresistive sensor and permanent magnets. J. Magn. Magn. Mater. 389, 56–60 (2015). https://doi.org/10.1016/j.jmmm.2015.04.049
- H.M. Lei, K. Wang, X.J. Ji, D.X. Cui, Contactless measurement of magnetic nanoparticles on lateral flow strips using tunneling magnetoresistance (TMR) sensors in differential configuration. Sens. Basel 16(12), 2130 (2016). https://doi.org/10.3390/s16122130
- A.V. Orlov, V.A. Bragina, M.P. Nikitin, P.I. Nikitin, Rapid dry-reagent immunomagnetic biosensing platform based on volumetric detection of nanoparticles on 3d structures. Biosens. Bioelectron. 79, 423–429 (2016). https://doi.org/10.1016/j.bios.2015.12.049
- D.B. Wang, B. Tian, Z.P. Zhang, J.Y. Deng, Z.Q. Cui, R.F. Yang, X.Y. Wang, H.P. Wei, X.E. Zhang, Rapid detection of bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. Biosens. Bioelectron. 42, 661–667 (2013). https://doi.org/10.1016/j.bios.2012.10.088
- L. Shi, F. Wu, Y.M. Wen, F. Zhao, J.J. Xiang, L. Ma, A novel method to detect listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal. Bioanal. Chem. 407(2), 529–535 (2015). https://doi.org/10.1007/s00216-014-8276-8
- S. Workman, S.K. Wells, C.P. Pau, S.M. Owen, X.F. Dong, R. LaBorde, T.C. Granade, Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT). J. Virol. Methods 160(1–2), 14–21 (2009). https://doi.org/10.1016/j.jviromet.2009.04.003
- C. Zheng, X.C. Wang, Y. Lu, Y. Liu, Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control 26(2), 446–452 (2012). https://doi.org/10.1016/j.foodcont.2012.01.040
- M.C. Li, L. Ma, T. Blaschke, L. Cheng, D. Tiede, A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. 49, 87–98 (2016). https://doi.org/10.1016/j.jag.2016.01.011
- Y.T. Xu, L.S. Wang, A weighted twin support vector regression. Knowl.-Based Syst. 33, 92–101 (2012). https://doi.org/10.1016/j.knosys.2012.03.013
- R.L. Dong, S.Z. Weng, L.B. Yang, J.H. Liu, Detection and direct readout of drugs in human urine using dynamic surface-enhanced raman spectroscopy and support vector machines. Anal. Chem. 87(5), 2937–2944 (2015). https://doi.org/10.1021/acs.analchem5b00137
- P.D. Harrington, Support vector machine classification trees. Anal. Chem. 87(21), 11065–11071 (2015). https://doi.org/10.1021/acs.analchem.5b03113
- M.R. Arbabshirani, S. Plis, J. Sui, V.D. Calhoun, Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145, 137–165 (2017). https://doi.org/10.1016/j.neuroimage.2016.02.079
- G. Chaloner-Larsson, R. Anderson, A. Egan, M.A. Da Fonseca Costa Filho, J.F. Gomez Herrera, V. Supply, World Health Organization: A WHO guide to good manufacturing practice (GMP) requirements (No. WHO/VSQ/97.01). Geneva, 1999.
- N. Xia, X. Wang, L. Liu, A graphene oxide-based fluorescent method for the detection of human chorionic gonadotropin. Sens. Basel 16(10), 1699 (2016). https://doi.org/10.3390/s16101699
- J.Q. Lei, T. Jing, T.T. Zhou, Y.S. Zhou, W. Wu, S.R. Mei, Y.K. Zhou, A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer. Biosens. Bioelectron. 54, 72–77 (2014). https://doi.org/10.1016/j.bios.2013.10.03363
- G.Q. Wen, X.J. Liang, Q.Y. Liu, A.H. Liang, Z.L. Jiang, A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free vitoria blue 4r as molecular probe. Biosens. Bioelectron. 85, 450–456 (2016). https://doi.org/10.1016/j.bios.2016.05.024
- E. Fu, T. Liang, J. Houghtaling, S. Ramachandran, S.A. Ramsey, B. Lutz, P. Yager, Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal. Chem. 83(20), 7941–7946 (2011). https://doi.org/10.1021/ac201950g
- C.H. Zhou, H. Yuan, H.B. Shen, Y. Guo, X.M. Li et al., Synthesis of size-tunable photoluminescent aqueous cdse/zns microspheres via a phase transfer method with amphiphilic oligomer and their application for detection of hcg antigen. J. Mater. Chem. 21(20), 7393–7400 (2011). https://doi.org/10.1039/c1jm10090d
- J. Hampl, M. Hall, N.A. Mufti, Y.M.M. Yao, D.B. MacQueen, W.H. Wright, D.E. Cooper, Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem. 288(2), 176–187 (2001). https://doi.org/10.1006/abio.2000.4902
- M.J. Jacinto, J.R.C. Trabuco, B.V. Vu, G. Garvey, M. Khodadady et al., Enhancement of lateral flow assay performance by electromagnetic relocation of reporter particles. PLoS ONE 13(1), e0186782 (2018). https://doi.org/10.1371/journal.pone.0186782
References
L.E. Delle, V. Pachauri, S. Sharma, O. Shaforost, H. Ma et al., Scfv-modified graphene-coated ide-arrays for ‘label-free’ screening of cardiovascular disease biomarkers in physiological saline. Biosens. Bioelectron. 102, 574–581 (2018). https://doi.org/10.1016/j.bios.2017.12.005
X.J. Qiao, K.X. Li, J.Q. Xu, N. Cheng, Q.L. Sheng, W. Cao, T.L. Yue, J.B. Zheng, Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-mos2 nanoconjugates. Biosens. Bioelectron. 113, 142–147 (2018). https://doi.org/10.1016/j.bios.2018.05.003
D. Desai, A. Kumar, D. Bose, M. Datta, Ultrasensitive sensor for detection of early stage chronic kidney disease in human. Biosens. Bioelectron. 105, 90–94 (2018). https://doi.org/10.1016/j.bios.2018.01.031
C. Li, Y.C. Yang, D. Wu, T.Q. Li, Y.M. Yin, G.X. Li, Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chem. Sci. 7(5), 3011–3016 (2016). https://doi.org/10.1039/c5sc04256a
Z.Y. Guo, T.T. Hao, S.P. Du, B.B. Chen, Z.B. Wang, X. Li, S. Wang, Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene as conducting bridge. Biosens. Bioelectron. 44, 101–107 (2013). https://doi.org/10.1016/j.bios.2013.01.025
R.I. Staden Stefan-van, I.R. Comnea-Stancu, C.C. Surdu-Bob, M. Badulescu, Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen. Nanoscale 7(38), 15689–15694 (2015). https://doi.org/10.1039/c5nr04476f
T. Xu, X.L. Jia, X. Chen, Z.F. Ma, Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold. Biosens. Bioelectron. 56, 174–179 (2014). https://doi.org/10.1016/j.bios.2014.01.006
O. Akinfieva, I. Nabiev, A. Sukhanova, New directions in quantum dot-based cytometry detection of cancer serum markers and tumor cells. Crit. Rev. Oncol. Hemat. 86(1), 1–14 (2013). https://doi.org/10.1016/j.critrevonc.2012.09.004
E.Q. Song, M.Q. Yu, Y.Y. Wang, W.H. Hu, D. Cheng, M.T. Swihart, Y. Song, Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens. Bioelectron. 72, 320–325 (2015). https://doi.org/10.1016/j.bios.2015.05.018
S.S. Cheng, S. Hideshima, S. Kuroiwa, T. Nakanishi, T. Osaka, Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sens. Actuator B-Chem. 212, 329–334 (2015). https://doi.org/10.1016/j.snb.2015.02.038
P. Li, B. Zhang, T.H. Cui, Towards intrinsic graphene biosensor: a label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Biosens. Bioelectron. 72, 168–174 (2015). https://doi.org/10.1016/j.bios.2015.05.007
P. Brangel, A. Sobarzo, C. Parolo, B.S. Miller, P.D. Howes et al., A serological point-of-care test for the detection of IgG antibodies against ebola virus in human survivors. ACS Nano 12(1), 63–73 (2018). https://doi.org/10.1021/acsnano.7b07021
X.C. Li, F. Yang, J.X.H. Wong, H.Z. Yu, Integrated smartphone-app-chip system for on-site parts-per-billion-level colorimetric quantitation of aflatoxins. Anal. Chem. 89(17), 8908–8916 (2017). https://doi.org/10.1021/acs.analchem.7b01379
J. Hu, Y.Z. Jiang, L.L. Wu, Z. Wu, Y.H. Bi et al., Dual-signal readout nanospheres for rapid point-of-care detection of ebola virus glycoprotein. Anal. Chem. 89(24), 13105–13111 (2017). https://doi.org/10.1021/acs.analchem.7b02222
K. Wang, W. Qin, Y. Hou, K. Xiao, W. Yan, The application of lateral flow immunoassay in point of care testing: a review. Nano Biom. Eng. 8(3), 172–183 (2016). https://doi.org/10.5101/nbe.v8i3.p172-183
P. Wang, L.J. Kricka, Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation. Clin. Chem. 64(10), 1439–1452 (2018). https://doi.org/10.1373/clinchem.2018.287052
Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9, 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
C.C. Bao, L. Chen, T. Wang, C. Lei, F.R. Tian, D.X. Cui, Y. Zhou, One step quick detection of cancer cell surface marker by integrated nife-based magnetic biosensing cell cultural chip. Nano-Micro Lett. 5(3), 213–222 (2013). https://doi.org/10.5101/nml.v5i3.p213-222
X.E. Sun, B.W. Li, C.Y. Tian, F.B. Yu, N. Zhou, Y.H. Zhan, L.X. Chen, Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers. Anal. Chim. Acta 1007, 33–39 (2018). https://doi.org/10.1016/j.aca.2017.12.005
X.L. Fu, L.X. Chen, J. Choo, Optical nanoprobes for ultrasensitive immunoassay. Anal. Chem. 89(1), 124–137 (2017). https://doi.org/10.1021/acs.analchem.6b02251
D.D. Lou, L. Fan, Y. Cui, Y.F. Zhu, N. Gu, Y. Zhang, Fluorescent nanoprobes with oriented modified antibodies to improve lateral flow immunoassay of cardiac troponin I. Anal. Chem. 90(11), 6502–6508 (2018). https://doi.org/10.1021/acs.analchem.7b05410
K. Serebrennikova, J. Samsonova, A. Osipov, Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett. 10(2), 24 (2018). https://doi.org/10.1007/s40820-017-0180-2
B. Zhang, W.C. Gao, J.F. Piao, Y.J. Xiao, B. Wang et al., Effective bioactivity retention of low-concentration antibodies on HFBI-modified fluorescence ICTS for sensitive and rapid detection of PSA. ACS Appl. Mater. Interfaces 10(17), 14549–14558 (2018). https://doi.org/10.1021/acsami.8b02945
B. Zhang, W.J. Ma, F.X. Li, W.C. Gao, Q. Zhao et al., Fluorescence quenching-based signal amplification on immunochromatography test strips for dual-mode sensing of two biomarkers of breast cancer. Nanoscale 9(47), 18711–18722 (2017). https://doi.org/10.1039/C7NR06781J
X. Wang, N. Choi, Z. Cheng, J. Ko, L.X. Chen, J. Choo, Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal. Chem. 89(2), 1163–1169 (2017). https://doi.org/10.1021/acs.analchem.6b03536
J. Hwang, S. Lee, J. Choo, Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 8(22), 11418–11425 (2016). https://doi.org/10.1039/c5nr07243c
X. Fu, Z. Cheng, J. Yu, P. Choo, L. Chen, J. Choo, A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens. Bioelectron. 78, 530–537 (2016). https://doi.org/10.1016/j.bios.2015.11.099
C.C. Fang, C.C. Chou, Y.Q. Yang, T. Wei-Kai, Y.T. Wang, Y.H. Chan, Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal. Chem. 90(3), 2134–2140 (2018). https://doi.org/10.1021/acs.analchem.7b04411
Y. Hou, K. Wang, M. Yang, W. Qin, K. Xiao, W. Yan, Smartphone-based fluorescent diagnostic system for immunochromatographic chip. Nano Biom. Eng. 9(1), 21–26 (2017). https://doi.org/10.5101/nbe.v9i1.p21-26
J.W. Choi, G.J. Kim, S. Lee, J. Kim, A.J. deMello, S.I. Chang, A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosens. Bioelectron. 67, 497–502 (2015). https://doi.org/10.1016/j.bios.2014.09.013
H. Duan, X.L. Chen, W. Xu, J.H. Fu, Y.H. Xiong, A. Wang, Quantum-dot submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone. Talanta 132, 126–131 (2015). https://doi.org/10.1016/j.talanta.2014.08.076
C.Y. Liu, W. Ma, Z.Y. Gao, J.Y. Huang, Y. Hou, C.L. Xu, W.S. Yang, M.Y. Gao, Upconversion luminescence nanoparticles-based lateral flow immunochromatographic assay for cephalexin detection. J. Mater. Chem. C 2(45), 9637–9642 (2014). https://doi.org/10.1039/C4TC02034K
Y. Xu, Y.H. Liu, Y. Wu, X.H. Xia, Y.Q. Liao, Q.G. Li, Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal. Chem. 86(12), 5611–5614 (2014). https://doi.org/10.1021/ac5010458
M.L. Ren, H.Y. Xu, X.L. Huang, M. Kuang, Y.H. Xiong et al., Immunochromatographic assay for ultrasensitive detection of aflatoxin B-1 in maize by highly luminescent quantum dot beads. ACS Appl. Mater. Interfaces 6(16), 14215–14222 (2014). https://doi.org/10.1021/am503517s
N.A. Taranova, A.N. Berlina, A.V. Zherdev, B.B. Dzantiev, ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens. Bioelectron. 63, 255–261 (2015). https://doi.org/10.1016/j.bios.2014.07.049
C.Y. Wang, F. Hou, Y.C. Ma, Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens. Bioelectron. 68, 156–162 (2015). https://doi.org/10.1016/j.bios.2014.12.051
X. Li, W.B. Li, Q.H. Yang, X.Q. Gong, W.S. Guo et al., Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl. Mater. Interfaces 6(9), 6406–6414 (2014). https://doi.org/10.1021/am5012782
X.L. Huang, Z.P. Aguilar, H.Y. Xu, W.H. Lai, Y.H. Xiong, Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens. Bioelectron. 75, 166–180 (2016). https://doi.org/10.1016/j.bios.2015.08.032
K. Xiao, K. Wang, W.J. Qin, Y.F. Hou, W.T. Lu, H. Xu, Y. Wo, D.X. Cui, Use of quantum dot beads-labeled monoclonal antibody to improve the sensitivity of a quantitative and simultaneous immunochromatographic assay for neuron specific enolase and carcinoembryonic antigen. Talanta 164, 463–469 (2017). https://doi.org/10.1016/j.talanta.2016.12.003
S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, A. Ozcan, Immunochromatographic diagnostic test analysis using google glass. ACS Nano 8(3), 3069–3079 (2014). https://doi.org/10.1021/nn500614k
Y.F. Hou, K. Wang, K. Xiao, W.J. Qin, W.T. Lu, W. Tao, D.X. Cui, Smartphone-based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res. Lett. 12(1), 291 (2017). https://doi.org/10.1186/s11671-017-2078-9
W.J. Qin, K. Wang, K. Xiao, Y.F. Hou, W.T. Lu et al., Carcinoembryonic antigen detection with “handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens. Bioelectron. 90, 508–515 (2017). https://doi.org/10.1016/j.bios.2016.10.052
A.V. Orlov, S.L. Znoyko, V.R. Cherkasov, M.P. Nikitin, P.I. Nikitin, Multiplex biosensing based on highly sensitive magnetic nanolabel quantification: rapid detection of botulinum neurotoxins A, B, and E in liquids. Anal. Chem. 88(21), 10419–10426 (2016). https://doi.org/10.1021/acs.analchem.6b02066
Y. Zhao, M. Yang, Q. Fu, H. Ouyang, W. Wen, Y. Song, C. Zhu, Y. Lin, D. Du, A nanozyme- and ambient light-based smartphone platform for simultaneous detection of dual biomarkers from exposure to organophosphorus pesticides. Anal. Chem. 90(12), 7391–7398 (2018). https://doi.org/10.1021/acs.analchem.8b00837
C.P. Lee, M.F. Lai, H.T. Huang, C.W. Lin, Z.H. Wei, Wheatstone bridge giant-magnetoresistance based cell counter. Biosens. Bioelectron. 57, 48–53 (2014). https://doi.org/10.1016/j.bios.2014.01.028
A. Manteca, M. Mujika, S. Arana, GMR sensors: magnetoresistive behaviour optimization for biological detection by means of superparamagnetic nanoparticles. Biosens. Bioelectron. 26(8), 3705–3709 (2011). https://doi.org/10.1016/j.bios.2011.02.013
C. Marquina, J.M. de Teresa, D. Serrate, J. Marzo, F.A. Cardoso, D. Saurel, S. Cardoso, P.P. Freitas, M.R. Ibarra, GMR sensors and magnetic nanoparticles for immuno-chromatographic assays. J. Magn. Magn. Mater. 324(21), 3495–3498 (2012). https://doi.org/10.1016/j.jmmm.2012.02.074
J.W. Park, Superparamagnetic nanoparticle quantification using a giant magnetoresistive sensor and permanent magnets. J. Magn. Magn. Mater. 389, 56–60 (2015). https://doi.org/10.1016/j.jmmm.2015.04.049
H.M. Lei, K. Wang, X.J. Ji, D.X. Cui, Contactless measurement of magnetic nanoparticles on lateral flow strips using tunneling magnetoresistance (TMR) sensors in differential configuration. Sens. Basel 16(12), 2130 (2016). https://doi.org/10.3390/s16122130
A.V. Orlov, V.A. Bragina, M.P. Nikitin, P.I. Nikitin, Rapid dry-reagent immunomagnetic biosensing platform based on volumetric detection of nanoparticles on 3d structures. Biosens. Bioelectron. 79, 423–429 (2016). https://doi.org/10.1016/j.bios.2015.12.049
D.B. Wang, B. Tian, Z.P. Zhang, J.Y. Deng, Z.Q. Cui, R.F. Yang, X.Y. Wang, H.P. Wei, X.E. Zhang, Rapid detection of bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. Biosens. Bioelectron. 42, 661–667 (2013). https://doi.org/10.1016/j.bios.2012.10.088
L. Shi, F. Wu, Y.M. Wen, F. Zhao, J.J. Xiang, L. Ma, A novel method to detect listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal. Bioanal. Chem. 407(2), 529–535 (2015). https://doi.org/10.1007/s00216-014-8276-8
S. Workman, S.K. Wells, C.P. Pau, S.M. Owen, X.F. Dong, R. LaBorde, T.C. Granade, Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT). J. Virol. Methods 160(1–2), 14–21 (2009). https://doi.org/10.1016/j.jviromet.2009.04.003
C. Zheng, X.C. Wang, Y. Lu, Y. Liu, Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control 26(2), 446–452 (2012). https://doi.org/10.1016/j.foodcont.2012.01.040
M.C. Li, L. Ma, T. Blaschke, L. Cheng, D. Tiede, A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. 49, 87–98 (2016). https://doi.org/10.1016/j.jag.2016.01.011
Y.T. Xu, L.S. Wang, A weighted twin support vector regression. Knowl.-Based Syst. 33, 92–101 (2012). https://doi.org/10.1016/j.knosys.2012.03.013
R.L. Dong, S.Z. Weng, L.B. Yang, J.H. Liu, Detection and direct readout of drugs in human urine using dynamic surface-enhanced raman spectroscopy and support vector machines. Anal. Chem. 87(5), 2937–2944 (2015). https://doi.org/10.1021/acs.analchem5b00137
P.D. Harrington, Support vector machine classification trees. Anal. Chem. 87(21), 11065–11071 (2015). https://doi.org/10.1021/acs.analchem.5b03113
M.R. Arbabshirani, S. Plis, J. Sui, V.D. Calhoun, Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145, 137–165 (2017). https://doi.org/10.1016/j.neuroimage.2016.02.079
G. Chaloner-Larsson, R. Anderson, A. Egan, M.A. Da Fonseca Costa Filho, J.F. Gomez Herrera, V. Supply, World Health Organization: A WHO guide to good manufacturing practice (GMP) requirements (No. WHO/VSQ/97.01). Geneva, 1999.
N. Xia, X. Wang, L. Liu, A graphene oxide-based fluorescent method for the detection of human chorionic gonadotropin. Sens. Basel 16(10), 1699 (2016). https://doi.org/10.3390/s16101699
J.Q. Lei, T. Jing, T.T. Zhou, Y.S. Zhou, W. Wu, S.R. Mei, Y.K. Zhou, A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer. Biosens. Bioelectron. 54, 72–77 (2014). https://doi.org/10.1016/j.bios.2013.10.03363
G.Q. Wen, X.J. Liang, Q.Y. Liu, A.H. Liang, Z.L. Jiang, A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free vitoria blue 4r as molecular probe. Biosens. Bioelectron. 85, 450–456 (2016). https://doi.org/10.1016/j.bios.2016.05.024
E. Fu, T. Liang, J. Houghtaling, S. Ramachandran, S.A. Ramsey, B. Lutz, P. Yager, Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal. Chem. 83(20), 7941–7946 (2011). https://doi.org/10.1021/ac201950g
C.H. Zhou, H. Yuan, H.B. Shen, Y. Guo, X.M. Li et al., Synthesis of size-tunable photoluminescent aqueous cdse/zns microspheres via a phase transfer method with amphiphilic oligomer and their application for detection of hcg antigen. J. Mater. Chem. 21(20), 7393–7400 (2011). https://doi.org/10.1039/c1jm10090d
J. Hampl, M. Hall, N.A. Mufti, Y.M.M. Yao, D.B. MacQueen, W.H. Wright, D.E. Cooper, Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem. 288(2), 176–187 (2001). https://doi.org/10.1006/abio.2000.4902
M.J. Jacinto, J.R.C. Trabuco, B.V. Vu, G. Garvey, M. Khodadady et al., Enhancement of lateral flow assay performance by electromagnetic relocation of reporter particles. PLoS ONE 13(1), e0186782 (2018). https://doi.org/10.1371/journal.pone.0186782