Synergistic Interfacial and Doping Engineering of Heterostructured NiCo(OH)x-CoyW as an Efficient Alkaline Hydrogen Evolution Electrocatalyst
Corresponding Author: Bo Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 120
Abstract
To achieve high efficiency of water electrolysis to produce hydrogen (H2), developing non-noble metal-based catalysts with considerable performance have been considered as a crucial strategy, which is correlated with both the interphase properties and multi-metal synergistic effects. Herein, as a proof of concept, a delicate NiCo(OH)x-CoyW catalyst with a bush-like heterostructure was realized via gas-template-assisted electrodeposition, followed by an electrochemical etching-growth process, which ensured a high active area and fast gas release kinetics for a superior hydrogen evolution reaction, with an overpotential of 21 and 139 mV at 10 and 500 mA cm−2, respectively. Physical and electrochemical analyses demonstrated that the synergistic effect of the NiCo(OH)x/CoyW heterogeneous interface resulted in favorable electron redistribution and faster electron transfer efficiency. The amorphous NiCo(OH)x strengthened the water dissociation step, and metal phase of CoW provided sufficient sites for moderate H immediate adsorption/H2 desorption. In addition, NiCo(OH)x-CoyW exhibited desirable urea oxidation reaction activity for matching H2 generation with a low voltage of 1.51 V at 50 mA cm−2. More importantly, the synthesis and testing of the NiCo(OH)x-CoyW catalyst in this study were all solar-powered, suggesting a promising environmentally friendly process for practical applications.
Highlights:
1 A promising solar-powered environmentally friendly process for the synthesis and application of catalysts for hydrogen evolution reaction has been proposed.
2 A delicate NiCo(OH)x-CoyW catalyst with a bush-like heterostructure was realized via gas-template-assisted electrodeposition, followed by electrochemical etching process.
3 The excellent catalytic effect of NiCo(OH)x-CoyW for the hydrogen evolution reaction was systematically investigated through various physical and electrochemical analyses.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ball, M. Wietschel, The future of hydrogen - opportunities and challenges. Int. J. Hydrog. Energy 34(2), 615–627 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.014
- R.L. Arevalo, S.M. Aspera, M.C.S. Escano, H. Nakanishi, H. Kasai, Tuning methane decomposition on stepped Ni surface: the role of subsurface atoms in catalyst design. Sci. Rep. 7, 8 (2017). https://doi.org/10.1038/s41598-017-14050-3
- A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). https://doi.org/10.1002/adfm.201600566
- K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: Prospects and challenges. Renew Sust. Energy Rev. 16(5), 3024–3033 (2012). https://doi.org/10.1016/j.rser.2012.02.028
- X.X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
- E.L. Hu, Y.F. Feng, J.W. Nai, D. Zhao, Y. Hu et al., Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11(4), 872–880 (2018). https://doi.org/10.1039/c8ee00076j
- Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54(1), 52–65 (2015). https://doi.org/10.1002/anie.201407031
- M. Gong, W. Zhou, M.C. Tsai, J.G. Zhou, M.Y. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 6 (2014). https://doi.org/10.1038/ncomms5695
- R.P. Li, Y. Li, P.X. Yang, D. Wang, H. Xu et al., Electrodeposition: synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J. Energy Chem. 57, 547–566 (2020). https://doi.org/10.1016/j.jechem.2020.08.040
- X.K. Huang, X.P. Xu, X.X. Luan, D.J. Cheng, Cop nanowires coupled with comop nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 68, 9 (2020). https://doi.org/10.1016/j.nanoen.2019.104332
- H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng et al., Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32(3), 18 (2020). https://doi.org/10.1002/adma.201806326
- H.Y. Jin, C.X. Guo, X. Liu, J.L. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
- Z.H. Dong, F. Lin, Y.H. Yao, L.F. Jiao, Crystalline Ni(OH)2/amorphous NiMoOx mixed-catalyst with pt-like performance for hydrogen production. Adv. Energy Mater. 9(46), 7 (2019). https://doi.org/10.1002/aenm.201902703
- W.J. Liu, J. Bao, M.L. Guan, Y. Zhao, J.B. Lian et al., Nickel-cobalt-layered double hydroxide nanosheet arrays on Ni foam as a bifunctional electrocatalyst for overall water splitting. Dalton Trans. 46(26), 8372–8376 (2017). https://doi.org/10.1039/c7dt00906b
- C. Lv, X. Wang, L. Gao, A. Wang, S. Wang et al., Triple functions of Ni(OH)2 on the surface of Wn nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal. 10(22), 13323–13333 (2020). https://doi.org/10.1021/acscatal.0c02891
- H. Han, H. Choi, S. Mhin, Y.R. Hong, K.M. Kim et al., Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 12(8), 12 (2019). https://doi.org/10.1039/c9ee00950g
- J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10(4), 15 (2018). https://doi.org/10.1007/s40820-018-0229-x
- T.T. Ruan, B. Wang, Y.B. Yang, X. Zhang, R.S. Song et al., Interfacial and electronic modulation via localized sulfurization for boosting lithium storage kinetics. Adv. Mater. 32(17), 2000151 (2020). https://doi.org/10.1002/adma.202000151
- H.J. Yin, S.L. Zhao, K. Zhao, A. Muqsit, H.J. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 8 (2015). https://doi.org/10.1038/ncomms7430
- J. Hu, S. Li, Y. Li, J. Wang, Y. Du et al., A crystalline–amorphous Ni–Ni(OH)2 core–shell catalyst for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 8(44), 23323–23329 (2020). https://doi.org/10.1039/D0TA08735A
- J.W. Zhao, M.F. Shao, D.P. Yan, S.T. Zhang, Z.Z. Lu et al., A hierarchical heterostructure based on Pd nanoparticles/layered double hydroxide nanowalls for enhanced ethanol electrooxidation. J. Mater. Chem. A 1(19), 5840–5846 (2013). https://doi.org/10.1039/c3ta10588a
- S.C. Sun, Y.B. Feng, L. Pan, X.W. Zhang, J.J. Zou, Integrating Pt@Ni(OH)2 nanowire and pt nanoparticle on C3N4 with fast surface kinetics and charge transfer towards highly efficient photocatalytic water splitting. Appl. Catal. B Environ. 259, 9 (2019). https://doi.org/10.1016/j.apcatb.2019.118028
- Y.Z. Wang, Y.Y. Zhou, M.Z. Han, Y.K. Xi, H.H. You et al., Environmentally-friendly exfoliate and active site self-assembly: Thin 2d/2d heterostructure amorphous nickel-iron alloy on 2d materials for efficient oxygen evolution reaction. Small 15(16), 8 (2019). https://doi.org/10.1002/smll.201805435
- J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang et al., In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B Environ. 281, 119510 (2021). https://doi.org/10.1016/j.apcatb.2020.119510
- Z. Jia, T. Yang, L.G. Sun, Y.L. Zhao, W.P. Li et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32(21), 9 (2020). https://doi.org/10.1002/adma.202000385
- J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, H.B. Gray, Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3(2), 166–169 (2013). https://doi.org/10.1021/cs300691m
- C. Han, D.W. Wang, Q. Li, Z.C. Xing, X.R. Yang, Ni17W3 nanoparticles decorated WO2 nanohybrid electrocatalyst for highly efficient hydrogen evolution reaction. ACS Appl. Energ. Mater. 2(4), 2409–2413 (2019). https://doi.org/10.1021/acsaem.9b00170
- M. Wang, Z. Wang, Z. Guo, Z. Li, The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravity field for hydrogen evolution reaction. Intern. J. Hydrogen Energy 36(5), 3305–3312 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.116
- H. Wu, L.Q. Kong, Y.J. Ji, J.Q. Yan, Y.M. Ding et al., Double-site Ni-W nanosheet for best alkaline her performance at high current density >500 mA cm-2. Adv. Mater. Interfaces 6(10), 9 (2019). https://doi.org/10.1002/admi.201900308
- Y.-K. Li, G. Zhang, H. Huang, W.-T. Lu, F.-F. Cao et al., Ni17W3-w interconnected hybrid prepared by atmosphere- and thermal-induced phase separation for efficient electrocatalysis of alkaline hydrogen evolution. Small (2020). https://doi.org/10.1002/smll.202005184
- G.H. Han, H. Kim, J. Kim, J. Kim, S.Y. Kim et al., Micro-nanoporous MoO2@CoMo heterostructure catalyst for hydrogen evolution reaction. Appl. Catal. B Environ. 270, 118895 (2020). https://doi.org/10.1016/j.apcatb.2020.118895
- A. Nairan, P.C. Zou, C.W. Liang, J.X. Liu, D. Wu et al., NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 29(44), 8 (2019). https://doi.org/10.1002/adfm.201903747
- S. Chen, J.J. Duan, A. Vasileff, S.Z. Qiao, Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem. Int. Ed. 55(11), 3804–3808 (2016). https://doi.org/10.1002/anie.201600387
- D. Khalafallah, X.Y. Li, M.J. Zhi, Z.L. Hong, 3d hierarchical NiCo layered double hydroxide nanosheet arrays decorated with noble metal nanoparticles for enhanced urea electrocatalysis. ChemElectroChem 7(1), 163–174 (2020). https://doi.org/10.1002/celc.201901423
- Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu et al., Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11(7), 1890–1897 (2018). https://doi.org/10.1039/c8ee00521d
- H. Shi, Y.T. Zhou, R.Q. Yao, W.B. Wan, X. Ge et al., Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun. 11(1), 10 (2020). https://doi.org/10.1038/s41467-020-16769-6
- J. Zhang, T. Wang, P. Liu, Z.Q. Liao, S.H. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 8 (2017). https://doi.org/10.1038/ncomms15437
- J. Yan, W. Sun, T. Wei, Q. Zhang, Z.J. Fan et al., Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 22(23), 11494–11502 (2012). https://doi.org/10.1039/c2jm30221g
- L. Zhang, P.F. Liu, Y.H. Li, C.W. Wang, M.Y. Zu et al., Accelerating neutral hydrogen evolution with tungsten modulated amorphous metal hydroxides. ACS Catal. 8(6), 5200–5205 (2018). https://doi.org/10.1021/acscatal.8b01076
- Z.Q. Xue, X. Li, Q.L. Liu, M.K. Cai, K. Liu et al., Interfacial electronic structure modulation of nite nanoarrays with nis nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 31(21), 7 (2019). https://doi.org/10.1002/adma.201900430
- C.W. Liang, P.C. Zou, A. Nairan, Y.Q. Zhang, J.X. Liu et al., Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13(1), 86–95 (2020). https://doi.org/10.1039/c9ee02388g
- J.W. Li, W.M. Xu, R.C. Li, J.X. Luo, D. Zhou et al., A tremella-like Ni76Co24 layered double hydroxides nanosheets as an efficient catalyst for oxygen evolution reaction. J. Mater. Sci. 51(20), 9287–9295 (2016). https://doi.org/10.1007/s10853-016-0175-2
- C.L. Xiang, Q.Y. Wang, Y.J. Zou, P.R. Huang, H.L. Chu et al., Simple synthesis of graphene-doped flower-like cobalt-nickel-tungsten-boron oxides with self-oxidation for high-performance supercapacitors. J. Mater. Chem. A 5(20), 9907–9916 (2017). https://doi.org/10.1039/c7ta00234c
- Q. Xu, H. Jiang, H. Zhang, Y. Hu, C. Li, Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl. Catalysis B Environ. 242, 60–66 (2019). https://doi.org/10.1016/j.apcatb.2018.09.064
- Q.Q. Cheng, C.G. Hu, G.L. Wang, Z.Q. Zou, H. Yang et al., Carbon-defect-driven electroless deposition of pt atomic clusters for highly efficient hydrogen evolution. J. Am. Chem. Soc. 142(12), 5594–5601 (2020). https://doi.org/10.1021/jacs.9b11524
- H.Y. Yang, Z.L. Chen, P.F. Guo, B. Fei, R.B. Wu, B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B Environ. 261, 9 (2020). https://doi.org/10.1016/j.apcatb.2019.118240
- Y.T. Luo, L. Tang, U. Khan, Q.M. Yu, H.M. Cheng et al., Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 9 (2019). https://doi.org/10.1038/s41467-018-07792-9
- W. Yan, D. Wang, G.G. Botte, Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim. Acta 61, 25–30 (2012). https://doi.org/10.1016/j.electacta.2011.11.044
- L.N. Sha, K. Ye, J.L. Yin, K. Zhu, K. Cheng et al., In situ grown 3D hierarchical MnCo2O4.5@Ni(OH)2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation. Chem. Eng. J. 381, 7 (2020). https://doi.org/10.1016/j.cej.2019.122603
References
M. Ball, M. Wietschel, The future of hydrogen - opportunities and challenges. Int. J. Hydrog. Energy 34(2), 615–627 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.014
R.L. Arevalo, S.M. Aspera, M.C.S. Escano, H. Nakanishi, H. Kasai, Tuning methane decomposition on stepped Ni surface: the role of subsurface atoms in catalyst design. Sci. Rep. 7, 8 (2017). https://doi.org/10.1038/s41598-017-14050-3
A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). https://doi.org/10.1002/adfm.201600566
K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: Prospects and challenges. Renew Sust. Energy Rev. 16(5), 3024–3033 (2012). https://doi.org/10.1016/j.rser.2012.02.028
X.X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
E.L. Hu, Y.F. Feng, J.W. Nai, D. Zhao, Y. Hu et al., Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11(4), 872–880 (2018). https://doi.org/10.1039/c8ee00076j
Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54(1), 52–65 (2015). https://doi.org/10.1002/anie.201407031
M. Gong, W. Zhou, M.C. Tsai, J.G. Zhou, M.Y. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 6 (2014). https://doi.org/10.1038/ncomms5695
R.P. Li, Y. Li, P.X. Yang, D. Wang, H. Xu et al., Electrodeposition: synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J. Energy Chem. 57, 547–566 (2020). https://doi.org/10.1016/j.jechem.2020.08.040
X.K. Huang, X.P. Xu, X.X. Luan, D.J. Cheng, Cop nanowires coupled with comop nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 68, 9 (2020). https://doi.org/10.1016/j.nanoen.2019.104332
H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng et al., Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32(3), 18 (2020). https://doi.org/10.1002/adma.201806326
H.Y. Jin, C.X. Guo, X. Liu, J.L. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
Z.H. Dong, F. Lin, Y.H. Yao, L.F. Jiao, Crystalline Ni(OH)2/amorphous NiMoOx mixed-catalyst with pt-like performance for hydrogen production. Adv. Energy Mater. 9(46), 7 (2019). https://doi.org/10.1002/aenm.201902703
W.J. Liu, J. Bao, M.L. Guan, Y. Zhao, J.B. Lian et al., Nickel-cobalt-layered double hydroxide nanosheet arrays on Ni foam as a bifunctional electrocatalyst for overall water splitting. Dalton Trans. 46(26), 8372–8376 (2017). https://doi.org/10.1039/c7dt00906b
C. Lv, X. Wang, L. Gao, A. Wang, S. Wang et al., Triple functions of Ni(OH)2 on the surface of Wn nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal. 10(22), 13323–13333 (2020). https://doi.org/10.1021/acscatal.0c02891
H. Han, H. Choi, S. Mhin, Y.R. Hong, K.M. Kim et al., Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 12(8), 12 (2019). https://doi.org/10.1039/c9ee00950g
J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10(4), 15 (2018). https://doi.org/10.1007/s40820-018-0229-x
T.T. Ruan, B. Wang, Y.B. Yang, X. Zhang, R.S. Song et al., Interfacial and electronic modulation via localized sulfurization for boosting lithium storage kinetics. Adv. Mater. 32(17), 2000151 (2020). https://doi.org/10.1002/adma.202000151
H.J. Yin, S.L. Zhao, K. Zhao, A. Muqsit, H.J. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 8 (2015). https://doi.org/10.1038/ncomms7430
J. Hu, S. Li, Y. Li, J. Wang, Y. Du et al., A crystalline–amorphous Ni–Ni(OH)2 core–shell catalyst for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 8(44), 23323–23329 (2020). https://doi.org/10.1039/D0TA08735A
J.W. Zhao, M.F. Shao, D.P. Yan, S.T. Zhang, Z.Z. Lu et al., A hierarchical heterostructure based on Pd nanoparticles/layered double hydroxide nanowalls for enhanced ethanol electrooxidation. J. Mater. Chem. A 1(19), 5840–5846 (2013). https://doi.org/10.1039/c3ta10588a
S.C. Sun, Y.B. Feng, L. Pan, X.W. Zhang, J.J. Zou, Integrating Pt@Ni(OH)2 nanowire and pt nanoparticle on C3N4 with fast surface kinetics and charge transfer towards highly efficient photocatalytic water splitting. Appl. Catal. B Environ. 259, 9 (2019). https://doi.org/10.1016/j.apcatb.2019.118028
Y.Z. Wang, Y.Y. Zhou, M.Z. Han, Y.K. Xi, H.H. You et al., Environmentally-friendly exfoliate and active site self-assembly: Thin 2d/2d heterostructure amorphous nickel-iron alloy on 2d materials for efficient oxygen evolution reaction. Small 15(16), 8 (2019). https://doi.org/10.1002/smll.201805435
J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang et al., In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B Environ. 281, 119510 (2021). https://doi.org/10.1016/j.apcatb.2020.119510
Z. Jia, T. Yang, L.G. Sun, Y.L. Zhao, W.P. Li et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32(21), 9 (2020). https://doi.org/10.1002/adma.202000385
J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, H.B. Gray, Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3(2), 166–169 (2013). https://doi.org/10.1021/cs300691m
C. Han, D.W. Wang, Q. Li, Z.C. Xing, X.R. Yang, Ni17W3 nanoparticles decorated WO2 nanohybrid electrocatalyst for highly efficient hydrogen evolution reaction. ACS Appl. Energ. Mater. 2(4), 2409–2413 (2019). https://doi.org/10.1021/acsaem.9b00170
M. Wang, Z. Wang, Z. Guo, Z. Li, The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravity field for hydrogen evolution reaction. Intern. J. Hydrogen Energy 36(5), 3305–3312 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.116
H. Wu, L.Q. Kong, Y.J. Ji, J.Q. Yan, Y.M. Ding et al., Double-site Ni-W nanosheet for best alkaline her performance at high current density >500 mA cm-2. Adv. Mater. Interfaces 6(10), 9 (2019). https://doi.org/10.1002/admi.201900308
Y.-K. Li, G. Zhang, H. Huang, W.-T. Lu, F.-F. Cao et al., Ni17W3-w interconnected hybrid prepared by atmosphere- and thermal-induced phase separation for efficient electrocatalysis of alkaline hydrogen evolution. Small (2020). https://doi.org/10.1002/smll.202005184
G.H. Han, H. Kim, J. Kim, J. Kim, S.Y. Kim et al., Micro-nanoporous MoO2@CoMo heterostructure catalyst for hydrogen evolution reaction. Appl. Catal. B Environ. 270, 118895 (2020). https://doi.org/10.1016/j.apcatb.2020.118895
A. Nairan, P.C. Zou, C.W. Liang, J.X. Liu, D. Wu et al., NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 29(44), 8 (2019). https://doi.org/10.1002/adfm.201903747
S. Chen, J.J. Duan, A. Vasileff, S.Z. Qiao, Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem. Int. Ed. 55(11), 3804–3808 (2016). https://doi.org/10.1002/anie.201600387
D. Khalafallah, X.Y. Li, M.J. Zhi, Z.L. Hong, 3d hierarchical NiCo layered double hydroxide nanosheet arrays decorated with noble metal nanoparticles for enhanced urea electrocatalysis. ChemElectroChem 7(1), 163–174 (2020). https://doi.org/10.1002/celc.201901423
Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu et al., Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11(7), 1890–1897 (2018). https://doi.org/10.1039/c8ee00521d
H. Shi, Y.T. Zhou, R.Q. Yao, W.B. Wan, X. Ge et al., Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun. 11(1), 10 (2020). https://doi.org/10.1038/s41467-020-16769-6
J. Zhang, T. Wang, P. Liu, Z.Q. Liao, S.H. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 8 (2017). https://doi.org/10.1038/ncomms15437
J. Yan, W. Sun, T. Wei, Q. Zhang, Z.J. Fan et al., Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 22(23), 11494–11502 (2012). https://doi.org/10.1039/c2jm30221g
L. Zhang, P.F. Liu, Y.H. Li, C.W. Wang, M.Y. Zu et al., Accelerating neutral hydrogen evolution with tungsten modulated amorphous metal hydroxides. ACS Catal. 8(6), 5200–5205 (2018). https://doi.org/10.1021/acscatal.8b01076
Z.Q. Xue, X. Li, Q.L. Liu, M.K. Cai, K. Liu et al., Interfacial electronic structure modulation of nite nanoarrays with nis nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 31(21), 7 (2019). https://doi.org/10.1002/adma.201900430
C.W. Liang, P.C. Zou, A. Nairan, Y.Q. Zhang, J.X. Liu et al., Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13(1), 86–95 (2020). https://doi.org/10.1039/c9ee02388g
J.W. Li, W.M. Xu, R.C. Li, J.X. Luo, D. Zhou et al., A tremella-like Ni76Co24 layered double hydroxides nanosheets as an efficient catalyst for oxygen evolution reaction. J. Mater. Sci. 51(20), 9287–9295 (2016). https://doi.org/10.1007/s10853-016-0175-2
C.L. Xiang, Q.Y. Wang, Y.J. Zou, P.R. Huang, H.L. Chu et al., Simple synthesis of graphene-doped flower-like cobalt-nickel-tungsten-boron oxides with self-oxidation for high-performance supercapacitors. J. Mater. Chem. A 5(20), 9907–9916 (2017). https://doi.org/10.1039/c7ta00234c
Q. Xu, H. Jiang, H. Zhang, Y. Hu, C. Li, Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl. Catalysis B Environ. 242, 60–66 (2019). https://doi.org/10.1016/j.apcatb.2018.09.064
Q.Q. Cheng, C.G. Hu, G.L. Wang, Z.Q. Zou, H. Yang et al., Carbon-defect-driven electroless deposition of pt atomic clusters for highly efficient hydrogen evolution. J. Am. Chem. Soc. 142(12), 5594–5601 (2020). https://doi.org/10.1021/jacs.9b11524
H.Y. Yang, Z.L. Chen, P.F. Guo, B. Fei, R.B. Wu, B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B Environ. 261, 9 (2020). https://doi.org/10.1016/j.apcatb.2019.118240
Y.T. Luo, L. Tang, U. Khan, Q.M. Yu, H.M. Cheng et al., Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 9 (2019). https://doi.org/10.1038/s41467-018-07792-9
W. Yan, D. Wang, G.G. Botte, Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim. Acta 61, 25–30 (2012). https://doi.org/10.1016/j.electacta.2011.11.044
L.N. Sha, K. Ye, J.L. Yin, K. Zhu, K. Cheng et al., In situ grown 3D hierarchical MnCo2O4.5@Ni(OH)2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation. Chem. Eng. J. 381, 7 (2020). https://doi.org/10.1016/j.cej.2019.122603