Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding
Corresponding Author: Yaopeng Zhang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 75
Abstract
Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds. Despite great progress in the preparation of a variety of colored silks, fluorescent silk with enhanced mechanical properties has yet to be explored. In this study, we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots (CNDs). The CNDs were incorporated into silk fibroin, hindering the conformation transformation, confining crystallization, and inducing orientation of mesophase. The resultant silk exhibited super-strong mechanical properties with breaking strength of 521.9 ± 82.7 MPa and breaking elongation of 19.2 ± 4.3%, improvements of 55.1% and 53.6%, respectively, in comparison with regular silk. The CNDs-reinforced silk displayed intrinsic blue fluorescence when exposed to 405 nm laser and exhibited no cytotoxic effect on cells, suggesting that multi-functional silks would be potentially useful in bioimaging and other applications.
Highlights:
1 Intrinsically, super-strong fluorescent silk was fabricated via feeding Bombyx mori silkworms with carbon nanodots.
2 The multi-functional silks showed no cytotoxicity to Schwann cells and exhibited great potential in bioimaging.
3 The reinforcing mechanism of multi-functional silks was proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.P. Mondia, J.J. Amsden, D. Lin, L.D. Negro, D.L. Kaplan, F.G. Omenetto, Rapid nanoimprinting of doped silk films for enhanced fluorescent emission. Adv. Mater. 22, 4596–4599 (2010). https://doi.org/10.1002/adma.201001238
- N.C. Tansil, L.D. Koh, M. Han, Functional silk: colored and luminescent. Adv. Mater. 24, 1388–1397 (2012). https://doi.org/10.1002/adma.201104118
- D.W. Kim, O.J. Lee, S.-W. Kim, C.S. Ki, J.R. Chao et al., Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 70, 48–56 (2015). https://doi.org/10.1016/j.biomaterials.2015.08.025
- T.S. Kusurkar, I. Tandon, N.K. Sethy, K. Bhargava, S. Sarkar, S.K. Singh, M. Das, Fluorescent silk cocoon creating fluorescent diatom using a “water glass-fluorophore ferry”. Sci. Rep. 3, 3290 (2013). https://doi.org/10.1038/srep03290
- S.J. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16
- H. Somashekarappa, V. Annadurai, Sangappa, G. Subramanya, R. Somashekar, Structure-property relation in varieties of acid dye processed silk fibers. Mater. Lett. 53, 415–420 (2002). https://doi.org/10.1016/S0167-577X(01)00517-1
- Y. Zhou, J. Zhang, R. Tang, J. Zhang, Simultaneous dyeing and functionalization of silk with three natural yellow dyes. Ind. Crops Prod. 64, 224–232 (2015). https://doi.org/10.1016/j.indcrop.2014.09.041
- M. Tomita, H. Munetsuna, T. Sato, T. Adachi, R. Hino et al., Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat. Biotechnol. 21, 52–56 (2002). https://doi.org/10.1038/nbt771
- T. Iizuka, H. Sezutsu, K.-I. Tatematsu, I. Kobayashi, N. Yonemura et al., Colored fluorescent silk made by transgenic silkworms. Adv. Funct. Mater. 23, 5232–5239 (2013). https://doi.org/10.1002/adfm.201300365
- J.W. Leem, S.H. Choi, S.R. Kim, S.W. Kim, K.H. Choi, Y.L. Kim, Scalable and continuous nanomaterial integration with transgenic fibers for enhanced photoluminescence. Mater. Horiz. 4, 281–289 (2017). https://doi.org/10.1039/c6mh00423g
- S.W. Kim, E.Y. Yun, K.-H. Choi, S.R. Kim, S.W. Park, S.W. Kang, O.Y. Kwon, T.W. Goo, Construction of fluorescent red silk using fibroin H-chain expression system. J. Seric. Entomol. Sci. 50, 87–92 (2012). https://doi.org/10.7852/jses.2012.50.2.87
- J. Xu, Q. Dong, Y. Yu, B. Niu, D. Ji et al., Mass spider silk production through targeted gene replacement in Bombyx mori. PNAS USA 115, 8757–8762 (2018). https://doi.org/10.1073/pnas.1806805115
- N.C. Tansil, Y. Li, C. Teng, S. Zhang, K. Win, X. Chen, X. Liu, M. Han, Intrinsically colored and luminescent silk. Adv. Mater. 23, 1463–1466 (2011). https://doi.org/10.1002/adma.201003860
- S.W. Cranford, A. Tarakanova, N.M. Pugno, M.J. Buehler, Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012). https://doi.org/10.1038/nature10739
- F.G. Omenetto, D.L. Kaplan, New opportunities for an ancient material. Science 329, 528–531 (2010). https://doi.org/10.1126/science.1188936
- S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953–3957 (2013). https://doi.org/10.1002/anie.201300519
- S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010). https://doi.org/10.1002/anie.200906623
- H. Liu, T. Ye, C. Mao, Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46, 6473–6475 (2007). https://doi.org/10.1002/anie.200701271
- L. Wang, S. Zhu, H. Wang, S. Qu, Y. Zhang et al., Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8, 2541–2547 (2014). https://doi.org/10.1021/nn500368m
- V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018). https://doi.org/10.1002/adma.201704449
- A.M. Chizhik, S. Stein, M.O. Dekaliuk, C. Battle, W. Li et al., Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 16, 237–242 (2015). https://doi.org/10.1021/acs.nanolett.5b03609
- D. Wang, Z. Wang, Q. Zhan, Y. Pu, J. Wang, N.R. Foster, L. Dai, Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering 3, 402–408 (2017). https://doi.org/10.1016/j.eng.2017.03.014
- L. Cai, H. Shao, X. Hu, Y. Zhang, Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain. Chem. Eng. 3, 2551–2557 (2015). https://doi.org/10.1021/acssuschemeng.5b00749
- Y. Tashiro, T. Morimoto, S. Matsuura, S. Nagata, Studies on the posterior silk gland of the silkworm, Bombyx mori I. Growth of posterior silk gland cells and biosynthesis of fibroin during the fifth larval instar. J. Cell Biol. 38, 574–588 (1968). https://doi.org/10.1083/jcb.38.3.574
- S. Ling, Z. Qi, D.P. Knight, Z. Shao, X. Chen, Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 12, 3344–3349 (2011). https://doi.org/10.1021/bm2006032
- X. Chen, D.P. Knight, Z. Shao, β-turn formation during the conformation transition in silk fibroin. Soft Matter 5, 2777–2781 (2009). https://doi.org/10.1039/b900908f
- H. Pan, Y. Zhang, H. Shao, X. Hu, X. Li, F. Tian, J. Wang, Nanoconfined crystallites toughen artificial silk. J. Mater. Chem. B 2, 1408–1414 (2014). https://doi.org/10.1039/C3TB21148G
- T. Asakura, K. Umemura, Y. Nakazawa, H. Hirose, J. Higham, D. Knight, Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Biomacromolecules 8, 175–181 (2007). https://doi.org/10.1021/bm060874z
- L. Cheng, H. Huang, S. Chen, W. Wang, F. Dai, H. Zhao, Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater. Des. 129, 125–134 (2017). https://doi.org/10.1016/j.matdes.2017.04.096
- D. Nicodemo, J.E. Oliveira, A.A. Sedano, J.M. Marconcini, G.H.D. Tonoli, Impact of different silkworm dietary supplements on its silk performance. J. Mater. Sci. 49, 6302–6310 (2014). https://doi.org/10.1007/s10853-014-8355-4
- Z. Guo, W. Xie, Q. Gao, D. Wang, F. Gao, S. Li, L. Zhao, In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. Int. J. Biol. Macromol. 109, 21–26 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.029
- Z.Z. Shao, F. Vollrath, Surprising strength of silkworm silk. Nature 418, 741 (2002). https://doi.org/10.1038/418741a
- Q. Wang, C. Wang, M. Zhang, M. Jian, Y. Zhang, Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 16, 6695–6700 (2016). https://doi.org/10.1021/acs.nanolett.6b03597
- J. Sirichaisit, V.L. Brookes, R.J. Young, F. Vollrath, Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 4, 387–394 (2003). https://doi.org/10.1021/bm0256956
- S.J. Ling, Q. Wang, D. Zhang, Y.Y. Zhang, X. Mu, D.L. Kaplan, M.J. Buehler, Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater. 28, 1705291 (2018). https://doi.org/10.1002/adfm.201705291
- C. Wang, C. Hsieh, J. Hwang, Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 23, 1630–1634 (2011). https://doi.org/10.1002/adma.201004071
- G. Fang, Z. Zheng, J. Yao, M. Chen, Y. Tang et al., Tough protein-carbon nanotube hybrid fibers comparable to natural spider silks. J. Mater. Chem. B 3, 3940–3947 (2015). https://doi.org/10.1039/c5tb00448a
- C. Zhang, Y. Zhang, H. Shao, X. Hu, Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl. Mater. Interfaces 8, 3349–3358 (2016). https://doi.org/10.1021/acsami.5b11245
- C. Bao, Y. Guo, L. Song, Y. Hu, Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. J. Mater. Chem. 21, 13942–13950 (2011). https://doi.org/10.1039/c1jm11662b
- J.O. Warwicker, Comparative studies of fibroins II. The crystal structures of various fibroins. J. Mol. Biol. 2, 350–362 (1960). https://doi.org/10.1016/S0022-2836(60)80046-0
- Y. Liu, L. Yin, H. Zhao, G. Song, F. Tang, L. Wang, H. Shao, Y. Zhang, Insights into process-structure-property relationships of poly(ethylene terephthalate) industrial yarns by synchrotron radiation WAXD and SAXS. J. Appl. Polym. Sci. 132, 42512 (2015). https://doi.org/10.1002/app.42512
- T. Uemura, S. Kitagawa, Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J. Am. Chem. Soc. 125, 7814–7815 (2003). https://doi.org/10.1021/ja0356582
- S. Hermes, T. Witte, T. Hikov, D. Zacher, S. Bahnmuller, G. Langstein, K. Huber, R.A. Fischer, Trapping metal-organic framework nanocrystals: an in situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 129, 5324–5325 (2007). https://doi.org/10.1021/ja068835i
- J. Ren, Y. Liu, D.L. Kaplan, S. Ling, Interplay of structure and mechanics in silk/carbon nanocomposites. MRS Bull. 44, 53–58 (2019). https://doi.org/10.1557/mrs.2018.320
- S. Gogoi, M. Kumar, B.B. Mandal, N. Karak, High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with in vitro cytocompatibility. Compos. Sci. Technol. 118, 39–46 (2015). https://doi.org/10.1016/j.compscitech.2015.08.010
- M. Hu, X. Gu, Y. Hu, T. Wang, J. Huang, C. Wang, Low chemically cross-linked PAM/C-dot hydrogel with robustness and superstretchability in both as-prepared and swelling equilibrium states. Macromolecules 49, 3174–3183 (2016). https://doi.org/10.1021/acs.macromol.5b02352
- S. Wu, M. Qiu, Z. Tang, J. Liu, B. Guo, Carbon nanodots as high-functionality cross-linkers for bioinspired engineering of multiple sacrificial units toward strong yet tough elastomers. Macromolecules 50, 3244–3253 (2017). https://doi.org/10.1021/acs.macromol.7b00483
- N.B. Erdal, M. Hakkarainen, Construction of bioactive and reinforced bioresorbable nanocomposites by reduced nano-graphene oxide carbon dots. Biomacromolecules 19, 1074–1081 (2018). https://doi.org/10.1021/acs.biomac.8b00207
References
J.P. Mondia, J.J. Amsden, D. Lin, L.D. Negro, D.L. Kaplan, F.G. Omenetto, Rapid nanoimprinting of doped silk films for enhanced fluorescent emission. Adv. Mater. 22, 4596–4599 (2010). https://doi.org/10.1002/adma.201001238
N.C. Tansil, L.D. Koh, M. Han, Functional silk: colored and luminescent. Adv. Mater. 24, 1388–1397 (2012). https://doi.org/10.1002/adma.201104118
D.W. Kim, O.J. Lee, S.-W. Kim, C.S. Ki, J.R. Chao et al., Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 70, 48–56 (2015). https://doi.org/10.1016/j.biomaterials.2015.08.025
T.S. Kusurkar, I. Tandon, N.K. Sethy, K. Bhargava, S. Sarkar, S.K. Singh, M. Das, Fluorescent silk cocoon creating fluorescent diatom using a “water glass-fluorophore ferry”. Sci. Rep. 3, 3290 (2013). https://doi.org/10.1038/srep03290
S.J. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16
H. Somashekarappa, V. Annadurai, Sangappa, G. Subramanya, R. Somashekar, Structure-property relation in varieties of acid dye processed silk fibers. Mater. Lett. 53, 415–420 (2002). https://doi.org/10.1016/S0167-577X(01)00517-1
Y. Zhou, J. Zhang, R. Tang, J. Zhang, Simultaneous dyeing and functionalization of silk with three natural yellow dyes. Ind. Crops Prod. 64, 224–232 (2015). https://doi.org/10.1016/j.indcrop.2014.09.041
M. Tomita, H. Munetsuna, T. Sato, T. Adachi, R. Hino et al., Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat. Biotechnol. 21, 52–56 (2002). https://doi.org/10.1038/nbt771
T. Iizuka, H. Sezutsu, K.-I. Tatematsu, I. Kobayashi, N. Yonemura et al., Colored fluorescent silk made by transgenic silkworms. Adv. Funct. Mater. 23, 5232–5239 (2013). https://doi.org/10.1002/adfm.201300365
J.W. Leem, S.H. Choi, S.R. Kim, S.W. Kim, K.H. Choi, Y.L. Kim, Scalable and continuous nanomaterial integration with transgenic fibers for enhanced photoluminescence. Mater. Horiz. 4, 281–289 (2017). https://doi.org/10.1039/c6mh00423g
S.W. Kim, E.Y. Yun, K.-H. Choi, S.R. Kim, S.W. Park, S.W. Kang, O.Y. Kwon, T.W. Goo, Construction of fluorescent red silk using fibroin H-chain expression system. J. Seric. Entomol. Sci. 50, 87–92 (2012). https://doi.org/10.7852/jses.2012.50.2.87
J. Xu, Q. Dong, Y. Yu, B. Niu, D. Ji et al., Mass spider silk production through targeted gene replacement in Bombyx mori. PNAS USA 115, 8757–8762 (2018). https://doi.org/10.1073/pnas.1806805115
N.C. Tansil, Y. Li, C. Teng, S. Zhang, K. Win, X. Chen, X. Liu, M. Han, Intrinsically colored and luminescent silk. Adv. Mater. 23, 1463–1466 (2011). https://doi.org/10.1002/adma.201003860
S.W. Cranford, A. Tarakanova, N.M. Pugno, M.J. Buehler, Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012). https://doi.org/10.1038/nature10739
F.G. Omenetto, D.L. Kaplan, New opportunities for an ancient material. Science 329, 528–531 (2010). https://doi.org/10.1126/science.1188936
S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953–3957 (2013). https://doi.org/10.1002/anie.201300519
S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010). https://doi.org/10.1002/anie.200906623
H. Liu, T. Ye, C. Mao, Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46, 6473–6475 (2007). https://doi.org/10.1002/anie.200701271
L. Wang, S. Zhu, H. Wang, S. Qu, Y. Zhang et al., Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8, 2541–2547 (2014). https://doi.org/10.1021/nn500368m
V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018). https://doi.org/10.1002/adma.201704449
A.M. Chizhik, S. Stein, M.O. Dekaliuk, C. Battle, W. Li et al., Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 16, 237–242 (2015). https://doi.org/10.1021/acs.nanolett.5b03609
D. Wang, Z. Wang, Q. Zhan, Y. Pu, J. Wang, N.R. Foster, L. Dai, Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering 3, 402–408 (2017). https://doi.org/10.1016/j.eng.2017.03.014
L. Cai, H. Shao, X. Hu, Y. Zhang, Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain. Chem. Eng. 3, 2551–2557 (2015). https://doi.org/10.1021/acssuschemeng.5b00749
Y. Tashiro, T. Morimoto, S. Matsuura, S. Nagata, Studies on the posterior silk gland of the silkworm, Bombyx mori I. Growth of posterior silk gland cells and biosynthesis of fibroin during the fifth larval instar. J. Cell Biol. 38, 574–588 (1968). https://doi.org/10.1083/jcb.38.3.574
S. Ling, Z. Qi, D.P. Knight, Z. Shao, X. Chen, Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 12, 3344–3349 (2011). https://doi.org/10.1021/bm2006032
X. Chen, D.P. Knight, Z. Shao, β-turn formation during the conformation transition in silk fibroin. Soft Matter 5, 2777–2781 (2009). https://doi.org/10.1039/b900908f
H. Pan, Y. Zhang, H. Shao, X. Hu, X. Li, F. Tian, J. Wang, Nanoconfined crystallites toughen artificial silk. J. Mater. Chem. B 2, 1408–1414 (2014). https://doi.org/10.1039/C3TB21148G
T. Asakura, K. Umemura, Y. Nakazawa, H. Hirose, J. Higham, D. Knight, Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Biomacromolecules 8, 175–181 (2007). https://doi.org/10.1021/bm060874z
L. Cheng, H. Huang, S. Chen, W. Wang, F. Dai, H. Zhao, Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater. Des. 129, 125–134 (2017). https://doi.org/10.1016/j.matdes.2017.04.096
D. Nicodemo, J.E. Oliveira, A.A. Sedano, J.M. Marconcini, G.H.D. Tonoli, Impact of different silkworm dietary supplements on its silk performance. J. Mater. Sci. 49, 6302–6310 (2014). https://doi.org/10.1007/s10853-014-8355-4
Z. Guo, W. Xie, Q. Gao, D. Wang, F. Gao, S. Li, L. Zhao, In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. Int. J. Biol. Macromol. 109, 21–26 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.029
Z.Z. Shao, F. Vollrath, Surprising strength of silkworm silk. Nature 418, 741 (2002). https://doi.org/10.1038/418741a
Q. Wang, C. Wang, M. Zhang, M. Jian, Y. Zhang, Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 16, 6695–6700 (2016). https://doi.org/10.1021/acs.nanolett.6b03597
J. Sirichaisit, V.L. Brookes, R.J. Young, F. Vollrath, Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 4, 387–394 (2003). https://doi.org/10.1021/bm0256956
S.J. Ling, Q. Wang, D. Zhang, Y.Y. Zhang, X. Mu, D.L. Kaplan, M.J. Buehler, Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater. 28, 1705291 (2018). https://doi.org/10.1002/adfm.201705291
C. Wang, C. Hsieh, J. Hwang, Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 23, 1630–1634 (2011). https://doi.org/10.1002/adma.201004071
G. Fang, Z. Zheng, J. Yao, M. Chen, Y. Tang et al., Tough protein-carbon nanotube hybrid fibers comparable to natural spider silks. J. Mater. Chem. B 3, 3940–3947 (2015). https://doi.org/10.1039/c5tb00448a
C. Zhang, Y. Zhang, H. Shao, X. Hu, Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl. Mater. Interfaces 8, 3349–3358 (2016). https://doi.org/10.1021/acsami.5b11245
C. Bao, Y. Guo, L. Song, Y. Hu, Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. J. Mater. Chem. 21, 13942–13950 (2011). https://doi.org/10.1039/c1jm11662b
J.O. Warwicker, Comparative studies of fibroins II. The crystal structures of various fibroins. J. Mol. Biol. 2, 350–362 (1960). https://doi.org/10.1016/S0022-2836(60)80046-0
Y. Liu, L. Yin, H. Zhao, G. Song, F. Tang, L. Wang, H. Shao, Y. Zhang, Insights into process-structure-property relationships of poly(ethylene terephthalate) industrial yarns by synchrotron radiation WAXD and SAXS. J. Appl. Polym. Sci. 132, 42512 (2015). https://doi.org/10.1002/app.42512
T. Uemura, S. Kitagawa, Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J. Am. Chem. Soc. 125, 7814–7815 (2003). https://doi.org/10.1021/ja0356582
S. Hermes, T. Witte, T. Hikov, D. Zacher, S. Bahnmuller, G. Langstein, K. Huber, R.A. Fischer, Trapping metal-organic framework nanocrystals: an in situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 129, 5324–5325 (2007). https://doi.org/10.1021/ja068835i
J. Ren, Y. Liu, D.L. Kaplan, S. Ling, Interplay of structure and mechanics in silk/carbon nanocomposites. MRS Bull. 44, 53–58 (2019). https://doi.org/10.1557/mrs.2018.320
S. Gogoi, M. Kumar, B.B. Mandal, N. Karak, High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with in vitro cytocompatibility. Compos. Sci. Technol. 118, 39–46 (2015). https://doi.org/10.1016/j.compscitech.2015.08.010
M. Hu, X. Gu, Y. Hu, T. Wang, J. Huang, C. Wang, Low chemically cross-linked PAM/C-dot hydrogel with robustness and superstretchability in both as-prepared and swelling equilibrium states. Macromolecules 49, 3174–3183 (2016). https://doi.org/10.1021/acs.macromol.5b02352
S. Wu, M. Qiu, Z. Tang, J. Liu, B. Guo, Carbon nanodots as high-functionality cross-linkers for bioinspired engineering of multiple sacrificial units toward strong yet tough elastomers. Macromolecules 50, 3244–3253 (2017). https://doi.org/10.1021/acs.macromol.7b00483
N.B. Erdal, M. Hakkarainen, Construction of bioactive and reinforced bioresorbable nanocomposites by reduced nano-graphene oxide carbon dots. Biomacromolecules 19, 1074–1081 (2018). https://doi.org/10.1021/acs.biomac.8b00207