Bioinspired Self-Assembly-Reinforced Ion Transport and Interface Regulation Enables Sustainable Metal-Ion Batteries for Wearable Electronics
Corresponding Author: Kai Tao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 222
Abstract
The rapid growth of wearable electronics demands power sources that are not only flexible and durable but also inherently safe. Conventional lithium-ion batteries pose safety risks due to toxic and flammable electrolytes. Aqueous metal-ion batteries offer a promising alternative, yet their application remains limited by poor mechanical compliance, leading to interfacial instability and electrolyte leakage. Here, we report a bionic self-assembly strategy for aqueous zinc-ion batteries using a lipopeptide electrolyte additive named C16K, enabling bulk self-assembly into supramolecular nanohelices to accelerate ion transport and interfacial organization into a dynamic bilayer for interphase regulation. This dual-function synergistically suppresses the formation of Zn dendrites or side reactions, enabling stable Zn plating/stripping. This achieves an ultralong cycling stability and ultrahigh cumulative plating capacity along with a high coulombic efficiency. Therefore, the synergistic reinforcement endows the pouch cell to deliver a high initial capacity, allowing to power electronics in a safe manner. In a following manner, a scorpion tail-inspired bionic flexible battery structure is designed to deliver sustainable energy outputs across various mechanical states using the reinforced systems, effectively powering the wearable multimodal sensors. Our results present a self-assembly strategy using a lipopeptide additive to synergistically reinforce the ions transport and interfacial stability, coordination with a bionic structural design, potentially offering a bioinspired routine for high-performance flexible batteries for wearable electronics.
Highlights:
1 Bionic self-assembly strategy forms bulk supramolecular nanohelices and interfacial dynamic bilayers to enhance ion transport and interfacial stability.
2 Reinforced asymmetric cells exhibit a high coulombic efficiency of 99.66% over 2400 cycles, while the corresponding full cells retain 86% of their initial capacity after 1000 cycles, demonstrating outstanding electrochemical stability and durability.
3 Scorpion tail-inspired flexible battery design provides stable energy output under various mechanical states and powers wearable sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Shin, J.W. Song, M.T. Flavin, S. Cho, S. Li et al., A non-contact wearable device for monitoring epidermal molecular flux. Nature 640(8058), 375–383 (2025). https://doi.org/10.1038/s41586-025-08825-2
- S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
- H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
- C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu et al., Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014). https://doi.org/10.1038/ncomms5496
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- T.P. Nguyen, A.D. Easley, N. Kang, S. Khan, S.-M. Lim et al., Polypeptide organic radical batteries. Nature 593(7857), 61–66 (2021). https://doi.org/10.1038/s41586-021-03399-1
- J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). https://doi.org/10.1002/aenm.201300816
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- S. Huang, P. Zhang, J. Lu, J.S. Kim, D.H. Min et al., Molecularly engineered multifunctional imide derivatives for practical Zn metal full cells. Energy Environ. Sci. 17(20), 7870–7881 (2024). https://doi.org/10.1039/d4ee02867h
- H. Lu, X. Zhang, M. Luo, K. Cao, Y. Lu et al., Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv. Funct. Mater. 31(45), 2103514 (2021). https://doi.org/10.1002/adfm.202103514
- Y. Chen, T. Xue, C. Chen, S. Jang, P.V. Braun et al., Helical peptide structure improves conductivity and stability of solid electrolytes. Nat. Mater. 23(11), 1539–1546 (2024). https://doi.org/10.1038/s41563-024-01966-1
- G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
- X. Fan, C. Zhong, J. Liu, J. Ding, Y. Deng et al., Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 122(23), 17155–17239 (2022). https://doi.org/10.1021/acs.chemrev.2c00196
- T. Yang, H. Chen, Z. Jia, Z. Deng, L. Chen et al., A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish, Protoreaster nodosus. Science 375(6581), 647–652 (2022). https://doi.org/10.1126/science.abj9472
- N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Thermal physiology. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
- Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291
- C.C.M. Sproncken, P. Liu, J. Monney, W.S. Fall, C. Pierucci et al., Large-area, self-healing block copolymer membranes for energy conversion. Nature 630(8018), 866–871 (2024). https://doi.org/10.1038/s41586-024-07481-2
- N.H. Joh, T. Wang, M.P. Bhate, R. Acharya, Y. Wu et al., De novo design of a transmembrane Zn2⁺-transporting four-helix bundle. Science 346(6216), 1520–1524 (2014). https://doi.org/10.1126/science.1261172
- Y. Chen, T. Yang, Y. Lin, C.M. Evans, Ion transport in helical-helical polypeptide polymerized ionic liquid block copolymers. Nat. Commun. 16(1), 2451 (2025). https://doi.org/10.1038/s41467-025-57784-9
- S. Chen, Y. Xia, R. Zeng, Z. Luo, X. Wu et al., Ordered planar plating/stripping enables deep cycling zinc metal batteries. Sci. Adv. 10(10), eadn2265 (2024). https://doi.org/10.1126/sciadv.adn2265
- C. Vicente-Garcia, I. Colomer, Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat. Rev. Chem. 7(10), 710–731 (2023). https://doi.org/10.1038/s41570-023-00532-8
- I.W. Hamley, A. Adak, V. Castelletto, Influence of chirality and sequence in lysine-rich lipopeptide biosurfactants and micellar model colloid systems. Nat. Commun. 15(1), 6785 (2024). https://doi.org/10.1038/s41467-024-51234-8
- S.K. Mitchell, X. Wang, E. Acome, T. Martin, K. Ly et al., An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots. Adv. Sci. 6(14), 1900178 (2019). https://doi.org/10.1002/advs.201900178
- D. Jia, K. Tao, J. Wang, C. Wang, X. Zhao et al., Dynamic adsorption and structure of interfacial bilayers adsorbed from lipopeptide surfactants at the hydrophilic silicon/water interface: effect of the headgroup length. Langmuir 27(14), 8798–8809 (2011). https://doi.org/10.1021/la105129m
- D. Jia, K. Tao, J. Wang, C. Wang, X. Zhao et al., Interfacial adsorption of lipopeptide surfactants at the silica/water interface studied by neutron reflection. Soft Matter 7(5), 1777–1788 (2011). https://doi.org/10.1039/C0SM00581A
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009). https://doi.org/10.1021/jp810292n
- W.R.P. Scott, P.H. Hünenberger, I.G. Tironi, A.E. Mark, S.R. Billeter et al., The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999). https://doi.org/10.1021/jp984217f
- U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
- K. Ma, S. Chen, R. Zeng, Z. Luo, Y. Wang et al., Self-assembled supramolecular pillared arrays as bionic interface to stabilize zinc metal anodes. Chem. Eng. J. 503, 158660 (2025). https://doi.org/10.1016/j.cej.2024.158660
- M.K. Banjare, R. Kurrey, T. Yadav, S. Sinha, M.L. Satnami et al., A comparative study on the effect of imidazolium-based ionic liquid on self-aggregation of cationic, anionic and nonionic surfactants studied by surface tension, conductivity, fluorescence and FTIR spectroscopy. J. Mol. Liq. 241, 622–632 (2017). https://doi.org/10.1016/j.molliq.2017.06.009
- T. Zemb, M. Dubois, B. Deme, T. Gulik-Krzywicki, Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 283(5403), 816–819 (1999). https://doi.org/10.1126/science.283.5403.816
- Y. Yang, H. Sai, S.A. Egner, R. Qiu, L.C. Palmer et al., Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 634(8035), 833–841 (2024). https://doi.org/10.1038/s41586-024-08041-4
- L. Ziserman, H.-Y. Lee, S.R. Raghavan, A. Mor, D. Danino, Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J. Am. Chem. Soc. 133(8), 2511–2517 (2011). https://doi.org/10.1021/ja107069f
- X. Shi, J. Xie, J. Wang, S. Xie, Z. Yang et al., A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15, 302 (2024). https://doi.org/10.1038/s41467-023-44615-y
- L. Bin, S. He, W. Feng, H. Wu, M. Kang et al., Lipid analogues enhance the lifespans of reversible Zn-based aqueous batteries via optimal interfacial assembly. Adv. Funct. Mater. 35(35), 2502041 (2025). https://doi.org/10.1002/adfm.202502041
- X. Liu, J.-W. Qian, J.-W. Chen, Y.-K. Xu, W.-Y. Wang et al., A sustainable and scalable approach for in situ induction of gradient nucleation sites in biomass-derived interface layers for ultra-stable aqueous zinc metal batteries. Angew. Chem. Int. Ed. 64(26), e202504613 (2025). https://doi.org/10.1002/anie.202504613
- X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
- X. Li, Z. Li, C. Li, F. Tian, Z. Qiao et al., Facilitating uniform lithium-ion transport via polymer-assisted formation of unique interfaces to achieve a stable 4.7 V Li metal battery. Natl. Sci. Rev. 12(6), nwaf182 (2025). https://doi.org/10.1093/nsr/nwaf182
- M. Xia, J. Zhou, B. Lu, Comprehensive insights into aqueous potassium-ion batteries. Adv. Energy Mater. 15(12), 2404032 (2025). https://doi.org/10.1002/aenm.202404032
- D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6(11), 1474–1484 (2023). https://doi.org/10.1038/s41893-023-01172-y
- Z. Luo, Y. Xia, S. Chen, X. Wu, E. Akinlabi et al., A homogeneous plating/stripping mode with fine grains for highly reversible Zn anodes. Energy Environ. Sci. 17(18), 6787–6798 (2024). https://doi.org/10.1039/D4EE02264E
- W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
- R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16(6), 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
- X. Wang, W. Zhou, L. Wang, Y. Zhang, S. Li et al., Benchmarking corrosion with anionic polarity index for stable and fast aqueous batteries even in low-concentration electrolyte. Adv. Mater. 37(14), e2501049 (2025). https://doi.org/10.1002/adma.202501049
- Y. Lv, C. Huang, M. Zhao, M. Fang, Q. Dong et al., Synergistic anion-cation chemistry enables highly stable Zn metal anodes. J. Am. Chem. Soc. 147(10), 8523–8533 (2025). https://doi.org/10.1021/jacs.4c16932
- K. Wang, H. Zhan, W. Su, X.-X. Liu, X. Sun, Ordered interface regulation at Zn electrodes induced by trace gum additives for high-performance aqueous batteries. Energy Environ. Sci. 18(3), 1398–1407 (2025). https://doi.org/10.1039/D4EE04100C
- J. Luo, L. Xu, Y. Zhou, T. Yan, Y. Shao et al., Regulating the inner Helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 62(21), e202302302 (2023). https://doi.org/10.1002/anie.202302302
- S.-J. Zhang, J. Hao, H. Wu, Q. Chen, C. Ye et al., Protein interfacial gelation toward shuttle-free and dendrite-free Zn-iodine batteries. Adv. Mater. 36(35), e2404011 (2024). https://doi.org/10.1002/adma.202404011
- L. Zheng, H. Li, X. Wang, Z. Chen, C. Hu et al., Competitive solvation-induced interphases enable highly reversible Zn anodes. ACS Energy Lett. 8(5), 2086–2096 (2023). https://doi.org/10.1021/acsenergylett.3c00650
- S. Chen, Y. Ying, L. Ma, D. Zhu, H. Huang et al., An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 14, 2925 (2023). https://doi.org/10.1038/s41467-023-38492-8
- Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14, 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
- X. Hu, H. Dong, N. Gao, T. Wang, H. He et al., Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries. Nat. Commun. 16(1), 2316 (2025). https://doi.org/10.1038/s41467-025-57666-0
- F. Zhao, J. Feng, H. Dong, R. Chen, T. Munshi et al., Ultrathin protection layer via rapid sputtering strategy for stable aqueous zinc ion batteries. Adv. Funct. Mater. 34(51), 2409400 (2024). https://doi.org/10.1002/adfm.202409400
- D. Wang, S. Hu, T. Li, C. Chang, S. Li et al., Anti-dendrite separator interlayer enabling staged zinc deposition for enhanced cycling stability of aqueous zinc batteries. Nat. Commun. 16(1), 259 (2025). https://doi.org/10.1038/s41467-024-55153-6
- T. Li, H. Yang, X. Dong, H. Ma, J. Cai et al., Co-regulation of interface and bulk for enhanced localized high-concentration electrolytes in stable and practical zinc metal batteries. Angew. Chem. Int. Ed. 64(29), e202501183 (2025). https://doi.org/10.1002/anie.202501183
- W. Lyu, X. Yu, Y. Lv, A.M. Rao, J. Zhou et al., Building stable solid-state potassium metal batteries. Adv. Mater. 36(24), 2305795 (2024). https://doi.org/10.1002/adma.202305795
- Y. Zhang, H. Jiang, L. Xu, Z. Gao, C. Meng, Ammonium vanadium oxide [(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl. Energy Mater. 2(11), 7861–7869 (2019). https://doi.org/10.1021/acsaem.9b01299
- Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To et al., Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016). https://doi.org/10.1038/nenergy.2015.9
- J. Kim, J. Jeong, S.H. Ko, Electrochemical biosensors for point-of-care testing. Bio-des. Manuf. 7(4), 548–565 (2024). https://doi.org/10.1007/s42242-024-00301-6
- W. Guo, F. Tian, D. Fu, H. Cui, H. Song et al., High-performance aqueous calcium ion batteries enabled by Zn metal anodes with stable ion-conducting interphases. Nano Lett. 24(39), 12095–12101 (2024). https://doi.org/10.1021/acs.nanolett.4c02778
References
J. Shin, J.W. Song, M.T. Flavin, S. Cho, S. Li et al., A non-contact wearable device for monitoring epidermal molecular flux. Nature 640(8058), 375–383 (2025). https://doi.org/10.1038/s41586-025-08825-2
S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu et al., Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014). https://doi.org/10.1038/ncomms5496
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
T.P. Nguyen, A.D. Easley, N. Kang, S. Khan, S.-M. Lim et al., Polypeptide organic radical batteries. Nature 593(7857), 61–66 (2021). https://doi.org/10.1038/s41586-021-03399-1
J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). https://doi.org/10.1002/aenm.201300816
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
S. Huang, P. Zhang, J. Lu, J.S. Kim, D.H. Min et al., Molecularly engineered multifunctional imide derivatives for practical Zn metal full cells. Energy Environ. Sci. 17(20), 7870–7881 (2024). https://doi.org/10.1039/d4ee02867h
H. Lu, X. Zhang, M. Luo, K. Cao, Y. Lu et al., Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv. Funct. Mater. 31(45), 2103514 (2021). https://doi.org/10.1002/adfm.202103514
Y. Chen, T. Xue, C. Chen, S. Jang, P.V. Braun et al., Helical peptide structure improves conductivity and stability of solid electrolytes. Nat. Mater. 23(11), 1539–1546 (2024). https://doi.org/10.1038/s41563-024-01966-1
G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
X. Fan, C. Zhong, J. Liu, J. Ding, Y. Deng et al., Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 122(23), 17155–17239 (2022). https://doi.org/10.1021/acs.chemrev.2c00196
T. Yang, H. Chen, Z. Jia, Z. Deng, L. Chen et al., A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish, Protoreaster nodosus. Science 375(6581), 647–652 (2022). https://doi.org/10.1126/science.abj9472
N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Thermal physiology. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291
C.C.M. Sproncken, P. Liu, J. Monney, W.S. Fall, C. Pierucci et al., Large-area, self-healing block copolymer membranes for energy conversion. Nature 630(8018), 866–871 (2024). https://doi.org/10.1038/s41586-024-07481-2
N.H. Joh, T. Wang, M.P. Bhate, R. Acharya, Y. Wu et al., De novo design of a transmembrane Zn2⁺-transporting four-helix bundle. Science 346(6216), 1520–1524 (2014). https://doi.org/10.1126/science.1261172
Y. Chen, T. Yang, Y. Lin, C.M. Evans, Ion transport in helical-helical polypeptide polymerized ionic liquid block copolymers. Nat. Commun. 16(1), 2451 (2025). https://doi.org/10.1038/s41467-025-57784-9
S. Chen, Y. Xia, R. Zeng, Z. Luo, X. Wu et al., Ordered planar plating/stripping enables deep cycling zinc metal batteries. Sci. Adv. 10(10), eadn2265 (2024). https://doi.org/10.1126/sciadv.adn2265
C. Vicente-Garcia, I. Colomer, Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat. Rev. Chem. 7(10), 710–731 (2023). https://doi.org/10.1038/s41570-023-00532-8
I.W. Hamley, A. Adak, V. Castelletto, Influence of chirality and sequence in lysine-rich lipopeptide biosurfactants and micellar model colloid systems. Nat. Commun. 15(1), 6785 (2024). https://doi.org/10.1038/s41467-024-51234-8
S.K. Mitchell, X. Wang, E. Acome, T. Martin, K. Ly et al., An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots. Adv. Sci. 6(14), 1900178 (2019). https://doi.org/10.1002/advs.201900178
D. Jia, K. Tao, J. Wang, C. Wang, X. Zhao et al., Dynamic adsorption and structure of interfacial bilayers adsorbed from lipopeptide surfactants at the hydrophilic silicon/water interface: effect of the headgroup length. Langmuir 27(14), 8798–8809 (2011). https://doi.org/10.1021/la105129m
D. Jia, K. Tao, J. Wang, C. Wang, X. Zhao et al., Interfacial adsorption of lipopeptide surfactants at the silica/water interface studied by neutron reflection. Soft Matter 7(5), 1777–1788 (2011). https://doi.org/10.1039/C0SM00581A
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009). https://doi.org/10.1021/jp810292n
W.R.P. Scott, P.H. Hünenberger, I.G. Tironi, A.E. Mark, S.R. Billeter et al., The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999). https://doi.org/10.1021/jp984217f
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
K. Ma, S. Chen, R. Zeng, Z. Luo, Y. Wang et al., Self-assembled supramolecular pillared arrays as bionic interface to stabilize zinc metal anodes. Chem. Eng. J. 503, 158660 (2025). https://doi.org/10.1016/j.cej.2024.158660
M.K. Banjare, R. Kurrey, T. Yadav, S. Sinha, M.L. Satnami et al., A comparative study on the effect of imidazolium-based ionic liquid on self-aggregation of cationic, anionic and nonionic surfactants studied by surface tension, conductivity, fluorescence and FTIR spectroscopy. J. Mol. Liq. 241, 622–632 (2017). https://doi.org/10.1016/j.molliq.2017.06.009
T. Zemb, M. Dubois, B. Deme, T. Gulik-Krzywicki, Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 283(5403), 816–819 (1999). https://doi.org/10.1126/science.283.5403.816
Y. Yang, H. Sai, S.A. Egner, R. Qiu, L.C. Palmer et al., Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 634(8035), 833–841 (2024). https://doi.org/10.1038/s41586-024-08041-4
L. Ziserman, H.-Y. Lee, S.R. Raghavan, A. Mor, D. Danino, Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J. Am. Chem. Soc. 133(8), 2511–2517 (2011). https://doi.org/10.1021/ja107069f
X. Shi, J. Xie, J. Wang, S. Xie, Z. Yang et al., A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15, 302 (2024). https://doi.org/10.1038/s41467-023-44615-y
L. Bin, S. He, W. Feng, H. Wu, M. Kang et al., Lipid analogues enhance the lifespans of reversible Zn-based aqueous batteries via optimal interfacial assembly. Adv. Funct. Mater. 35(35), 2502041 (2025). https://doi.org/10.1002/adfm.202502041
X. Liu, J.-W. Qian, J.-W. Chen, Y.-K. Xu, W.-Y. Wang et al., A sustainable and scalable approach for in situ induction of gradient nucleation sites in biomass-derived interface layers for ultra-stable aqueous zinc metal batteries. Angew. Chem. Int. Ed. 64(26), e202504613 (2025). https://doi.org/10.1002/anie.202504613
X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
X. Li, Z. Li, C. Li, F. Tian, Z. Qiao et al., Facilitating uniform lithium-ion transport via polymer-assisted formation of unique interfaces to achieve a stable 4.7 V Li metal battery. Natl. Sci. Rev. 12(6), nwaf182 (2025). https://doi.org/10.1093/nsr/nwaf182
M. Xia, J. Zhou, B. Lu, Comprehensive insights into aqueous potassium-ion batteries. Adv. Energy Mater. 15(12), 2404032 (2025). https://doi.org/10.1002/aenm.202404032
D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6(11), 1474–1484 (2023). https://doi.org/10.1038/s41893-023-01172-y
Z. Luo, Y. Xia, S. Chen, X. Wu, E. Akinlabi et al., A homogeneous plating/stripping mode with fine grains for highly reversible Zn anodes. Energy Environ. Sci. 17(18), 6787–6798 (2024). https://doi.org/10.1039/D4EE02264E
W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16(6), 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
X. Wang, W. Zhou, L. Wang, Y. Zhang, S. Li et al., Benchmarking corrosion with anionic polarity index for stable and fast aqueous batteries even in low-concentration electrolyte. Adv. Mater. 37(14), e2501049 (2025). https://doi.org/10.1002/adma.202501049
Y. Lv, C. Huang, M. Zhao, M. Fang, Q. Dong et al., Synergistic anion-cation chemistry enables highly stable Zn metal anodes. J. Am. Chem. Soc. 147(10), 8523–8533 (2025). https://doi.org/10.1021/jacs.4c16932
K. Wang, H. Zhan, W. Su, X.-X. Liu, X. Sun, Ordered interface regulation at Zn electrodes induced by trace gum additives for high-performance aqueous batteries. Energy Environ. Sci. 18(3), 1398–1407 (2025). https://doi.org/10.1039/D4EE04100C
J. Luo, L. Xu, Y. Zhou, T. Yan, Y. Shao et al., Regulating the inner Helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 62(21), e202302302 (2023). https://doi.org/10.1002/anie.202302302
S.-J. Zhang, J. Hao, H. Wu, Q. Chen, C. Ye et al., Protein interfacial gelation toward shuttle-free and dendrite-free Zn-iodine batteries. Adv. Mater. 36(35), e2404011 (2024). https://doi.org/10.1002/adma.202404011
L. Zheng, H. Li, X. Wang, Z. Chen, C. Hu et al., Competitive solvation-induced interphases enable highly reversible Zn anodes. ACS Energy Lett. 8(5), 2086–2096 (2023). https://doi.org/10.1021/acsenergylett.3c00650
S. Chen, Y. Ying, L. Ma, D. Zhu, H. Huang et al., An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 14, 2925 (2023). https://doi.org/10.1038/s41467-023-38492-8
Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14, 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
X. Hu, H. Dong, N. Gao, T. Wang, H. He et al., Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries. Nat. Commun. 16(1), 2316 (2025). https://doi.org/10.1038/s41467-025-57666-0
F. Zhao, J. Feng, H. Dong, R. Chen, T. Munshi et al., Ultrathin protection layer via rapid sputtering strategy for stable aqueous zinc ion batteries. Adv. Funct. Mater. 34(51), 2409400 (2024). https://doi.org/10.1002/adfm.202409400
D. Wang, S. Hu, T. Li, C. Chang, S. Li et al., Anti-dendrite separator interlayer enabling staged zinc deposition for enhanced cycling stability of aqueous zinc batteries. Nat. Commun. 16(1), 259 (2025). https://doi.org/10.1038/s41467-024-55153-6
T. Li, H. Yang, X. Dong, H. Ma, J. Cai et al., Co-regulation of interface and bulk for enhanced localized high-concentration electrolytes in stable and practical zinc metal batteries. Angew. Chem. Int. Ed. 64(29), e202501183 (2025). https://doi.org/10.1002/anie.202501183
W. Lyu, X. Yu, Y. Lv, A.M. Rao, J. Zhou et al., Building stable solid-state potassium metal batteries. Adv. Mater. 36(24), 2305795 (2024). https://doi.org/10.1002/adma.202305795
Y. Zhang, H. Jiang, L. Xu, Z. Gao, C. Meng, Ammonium vanadium oxide [(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl. Energy Mater. 2(11), 7861–7869 (2019). https://doi.org/10.1021/acsaem.9b01299
Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To et al., Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016). https://doi.org/10.1038/nenergy.2015.9
J. Kim, J. Jeong, S.H. Ko, Electrochemical biosensors for point-of-care testing. Bio-des. Manuf. 7(4), 548–565 (2024). https://doi.org/10.1007/s42242-024-00301-6
W. Guo, F. Tian, D. Fu, H. Cui, H. Song et al., High-performance aqueous calcium ion batteries enabled by Zn metal anodes with stable ion-conducting interphases. Nano Lett. 24(39), 12095–12101 (2024). https://doi.org/10.1021/acs.nanolett.4c02778