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Fig. S1 Schematic cartoon showing the fabrication process of the scorpion tail-mimic flexible battery. a, Structural scheme and internal configuration of the scorpion tail-mimic Zn||MnO2 flexible cell. b, Fabrication process: the multilayered electrodes are cut into the designed shape, the extending strips are then wound around the central trunk to form the scorpion tail-like structures
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Fig. S2 Flow chart representing the synthesizing process of the designed C16K lipopeptide through the Fmoc solid-phase peptide synthesis strategy
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[bookmark: OLE_LINK34]Fig. S3 RP-HPLC and MS spectra of the synthesized C16K lipopeptide. a, RP-HPLC profile of the synthesized C16K. The purity was analyzed to be more than 97.8%. A gradient elution mode was employed. The monitoring wavelength was set at 220 nm, and the flow rate was 1.0 mL min-1. b, MS pattern of the lipopeptide, showing its relative molecular weight of 383.30 [384.30 = MW + H]
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Fig. S4 FTIR spectra of the pristine Zn foil and Zn soaked in the ZnSO4 electrolyte at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM). 
The peaks at 3440 cm-1, 3031 cm-1, 1617 cm-1 and 1092 cm-1 were assigned to the stretching vibrations of v(N-H), v(C-H), v(C=O) and the bending vibration of σ(C-H), respectively, indicating the adsorption of C16K molecules onto the Zn foil.

[bookmark: _Hlk215071870] [image: ]
[bookmark: _Hlk215071733]Fig. S5 SEM image and corresponding EDS mappings of the Zn foil soaked in the ZnSO4 electrolyte at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM)

[bookmark: _Hlk215071895][bookmark: _Hlk215071907]Table S1 The weight percentage and corresponding standard deviation of different elements from Fig. S5
	Element
	Signal type
	[bookmark: OLE_LINK3](wt.)%
	(wt.)% sigma

	C
	EDS
	11.91
	0.36

	N
	EDS
	1.14
	0.24

	O
	EDS
	1.97
	0.09

	S
	EDS
	1.13
	0.03

	Zn
	EDS
	83.85
	0.41

	Total
	
	100
	


Combining Fig. S5 and Table S1, it was revealed a uniform distribution of C16K molecules across the Zn foil.

[bookmark: _Hlk215477120] [image: ]
[bookmark: _Hlk215565828][bookmark: _Hlk215567910]Fig. S6 High-resolution XPS spectra of Zn foils: a N1s spectra of the Zn foil soaked in the ZnSO4 electrolyte at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM). b Zn 2p spectra of pristine Zn and Zn foils soaked in the ZnSO4 electrolyte in the absence or at the presence of C16K for 30 min (ZnSO4: 2.0 M, C16K: 0.10 mM)
The XPS profiles showed a noticeable positive shift of Zn 2p peaks to higher binding energies after immersion in the ZnSO4 electrolyte at the presence of C16K, signaling the formation of chemical bonds between C16K and the Zn surficial atoms.
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Fig. S7 Concentration-dependent dynamic adsorption curves of C16K on the liquid-solid interface
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Fig. S8 AFM images showing concentration-dependent topological evolution of the interfacial self-assembly of C16K. From left to right: 0.03 mM, 0.07 mM, 0.08 mM, 0.10 mM, 0.20 mM
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Fig. S9 Height profiles along Line #2 and #3 in Fig. 1d in the main text. Combined with the value from Line#1, the statistical average height of the membrane was 3.3 ± 0.2 nm from AFM results

Table S2 Summary of the structural parameters extracted from fitting of the NR data in Fig. 1e in the main text
	
	Substrate
	Bottom Lysine (K)
	Palmitic acid alkyl chain (C16)
	Top Lysine (K)

	t (Å)
	20
	6
	20
	6

	VF (%)
	-
	35
	35
	35

	M 
(mg m-2)
	-
	2.84
	9.45
	2.84


Tip: t, VF and M are the scattering thickness, volume fraction and adsorbed mass, respectively.
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Fig. S10 Statistical diameter distributions of the C16K self-assembled nanotubes. a, inner diameter, b, outer diameter
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Fig. S11 Schematic cartoon illustrating the morphological evolution of C16K bulk self-assembly
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Fig. S12 Raman spectra of the ZnSO4 electrolyte (top panel) in the absence or (lower panel) at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM)

[image: ]
Fig. S13 Comparison of the hydrogen bonds in the ZnSO4 electrolyte in the absence or at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM). a, Raman spectra and corresponding fitting curves in the range of 3800 cm-1 - 2800 cm-1. b, Ratios of different hydrogen bonds calculated from the fitting results in (a)
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Fig. S14 FTIR spectra of the ZnSO4 electrolyte in the absence or at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM)
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Fig. S15 1H-NMR spectra of the ZnSO4 electrolyte in the absence or at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM, D2O as the solvent)
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Fig. S16 ESP distribution of (top)a water molecule and (bottom) a C16K molecule
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Fig. S17 Calculated binding energies of H2O-Zn2+ and C16K-Zn2+
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Fig. S18 Contact angle measurements of the (left) pristine and (right) C16K-modified Zn foil
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Fig. S19 Zeta potential statistics of the Zn powder in the absence or at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM)
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[bookmark: OLE_LINK1]Fig. S20 CV curves of the a pristine and b lipopeptide self-assembly reinforced Zn||Zn symmetric cells at various scan rates
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[bookmark: _Hlk215481309]Fig. S21 Tafel plots of the pristine Zn and C16K-modified Zn at varying concentrations
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Fig. S22 LSV curves of the Zn electrode tested in the absence or at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM) using the three-electrode system. The values represent the initial HER potentials of the systems

[image: ]
Fig. S23 Migration behavior simulations of Zn2+ at the presence of the C16K self-assembled bilayers. a, Detailed view of the molecular structure of a pair of interdigitated lipopeptides in the self-assembled bilayer during the CGMD simulations. b, Snapshot of the interdigitated lipopeptide pair at the anode/electrolyte interface during the CGMD simulations. c, MSD of Zn2+ along the C16K self-assembled bilayer and in other directions from CGMD simulations

[bookmark: OLE_LINK41][image: ]
Fig. S24 Nucleation overpotential and growth overpotential of Zn plating in Zn||Cu asymmetric cell in the absence or at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM, current density: 1 mA cm-2)
The nucleation overpotential () is defined as the potential difference between the equilibrium potential (0 V) and the most negative potential at the onset of Zn plating, whereas the growth overpotential () is defined as the potential difference between the equilibrium potential and the subsequent quasi-steady plating potential. The overshoot  is defined as .
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[bookmark: _Hlk182753888]Fig. S25 EIS profiles and corresponding amperometric i-t curves. a and c, EIS profiles of the Zn||Zn symmetric cells a in the absence or c at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM). b and d, The corresponding amperometric i-t curves b in the absence or d at the presence of C16K under an applied overpotential of 20 mV
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Fig. S26 Zn2+ transference numbers of the reinforced Zn||Zn symmetric cells with different C16K concentrations. a-c Amperometric i-t curves of the reinforced Zn||Zn cells with (a) 0.20 mM, (b) 0.30 mM, and (c) 1.00 mM C16K, together with the EIS profiles recorded before and after polarization (insets). d Summary of the Zn2+ transference number at different C16K concentrations
[bookmark: _Hlk215568432]Table S3 Calculated Zn2+ transfer numbers () of the Zn||Zn symmetric cells
	Cell
	R0(ohm)
	I0(μA cm-2)
	Rss(ohm)
	Iss(μA cm-2)
	tZn2+

	Pristine Zn||Zn
	746.8
	25.45
	978.2
	16.68
	0.18

	Reinforced Zn||Zn with 0.10 mM C16K
	327.5
	27.83
	608.3
	11.57
	0.34
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Fig. S27 Nyquist plots of the Zn||Zn symmetric cells tested under various temperatures a in the absence or b at the presence of C16K

[image: ]
[bookmark: _Hlk215481331]Fig. S28 CV curves of the Zn||Cu asymmetric cells in the absence or at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM, current density: 1 mA cm-2, scan rate: 2 mV s-1). Point A denotes the crossover potential, while points B and C indicate the onset potential of Zn2+ deposition reactions







[image: ]
Fig. S29 Exchange current density measurements of the Zn||Zn symmetric cells tested in the absence or at the presence of C16K. a, Galvanostatic cycling performances under current densities ranging from 0.5 to 2.5 mA cm⁻². b, Exchange current density plots derived from the Zn plating/stripping measurements


[image: ]
Fig. S30 Optical images of the Zn deposited on Cu foils and corresponding electrolytes a in the absence or b at the presence of C16K (ZnSO4: 2.0 M, C16K: 0.10 mM, test conditions: 5 mA cm-2 for 1 h)
[image: ]
Fig. S31 Line roughness analysis. Surface profiles extracted along the white dotted lines in Fig. 3e in the main text
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Fig. S32 Time-evolved in-situ optical microscopy images of the Zn electrodes during Zn plating in the Zn||Zn symmetric cells. a, In the absence of C16K. b, At the presence of C16K. (ZnSO4: 2.0 M, C16K: 0.10 mM, test conditions: 1 mA cm−2 & 1 mAh cm−2)
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Fig. S33 Schematic illustration of Zn plating in native ZnSO4 electrolyte, showing intense byproducts formation and HER side reactions 



[bookmark: OLE_LINK43]Table S4 Comparison of the electrochemical performances in diverse Zn||Zn symmetric cells with different treatment strategies.
	Strategy
	Current density
 (mA cm-2)
	Areal capacity
 (mAh cm-2)
	Cycle lifespan 
(h)
	CPC 
(Ah cm-2)
	Ref.

	Eelectrolyte additives
	Synergistic reinforcement of ion transport and interfacial stability 
	1
	1
	4000
	2
	This work

	
	
	5
	5
	2250
	5.625
	

	
	
	10
	5
	1020
	5.1
	

	
	HSE-10 m
	0.5
	0.5
	1200
	0.3
	[49]

	
	BE/5Cor
	10
	10
	600
	3
	[50]

	
	ZnSO4-C3N4QDs
	5
	1
	400
	1
	[51]

	
	HDES
	1
	1
	4500
	2.25
	[52]

	
	0.5 M Zn(HBS)2
	5
	1
	1600
	4
	[53]

	
	0.05 M BmBr/ZSO
	1
	1
	2700
	1.35
	[54]

	
	0.1-LBG
	2
	2
	1160
	1.16
	[55]

	
	ZnSO4-1% Py
	0.5
	0.5
	3300
	0.825
	[56]

	
	SP-ZnCl2
	5
	2
	1200
	3
	[57]

	
	ZnOTF/MAAC
	4
	4
	700
	1.4
	[58]

	Gel electrolytes
	Asymmetric electrolyte
	10
	10
	700
	3.5
	[59]

	
	ZIG-20wt%
	1
	0.5
	900
	0.45
	[60]

	Coatings
	Zn@PAH/PAA
	5
	5
	340
	0.85
	[61]

	
	CN10@Zn
	4
	2
	1100
	2.2
	[62]

	Separators
	HTS
	2
	2
	3000
	3
	[63]
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Fig. S34 Voltage profiles of the pristine (blue) and reinforced (red) Zn||Zn symmetric cells at a current density of 10 mA cm-2 for 5 mAh cm-2

[image: ]
Fig. S35 a FTIR spectra of the Zn soaked in the ZnSO4 electrolyte at the presence of C16K and Zn recovered from reinforced Zn||Zn cell after cycling. b High-resolution N1s XPS spectra of Zn recovered from pristine Zn||Zn and reinforced Zn||Zn cells before and after cycling


[image: ]
Fig. S36 XRD patterns of the pristine and reinforced Zn anodes after cycling for 50 cycles at 1 mA cm-2 for 1 mAh cm-2

[image: ]
Fig. S37 Representative capacity-voltage profiles of the a reinforced and b pristine Zn||Cu asymmetric cells at a current density of 1 mA cm-2 for 0.5 mAh cm-2
[image: ]
Fig. S38 CE comparison of the reinforced (red) and pristine (blue) Zn||Cu asymmetric cells at 5 mA cm-2 for 2.5 mAh cm-2
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Fig. S39 Representative capacity-voltage profiles of the a reinforced and b pristine Zn||Cu asymmetric cells at a current density of 5 mA cm-2 for 2.5 mAh cm-2
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Fig. S40 Measurement of the thickness of the Zn foil employed in the experiment at a high Zn utilization rate of 50% DoD
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Fig. S41 SEM images of the Zn anode after 300 h of cycling at a high Zn utilization rate of 50% DoD. b is a magnified view of the selected region in a

[image: ]
[bookmark: _Hlk182954878]Fig. S42 a XRD pattern and b SEM image of the synthesized β-MnO2 cathode (PDF#24-0735) by a hydrothermal method. The results demonstrate that the cathode material possessed needle-like morphologies and high crystallinity with the characteristic peaks of β-MnO2

[image: ]
Fig. S43 The charge/discharge profiles of the a reinforced and b pristine Zn||MnO2 full cells at 1.0 A g-1. The charge/discharge profiles of the C16K self-assembly reinforced Zn||MnO2 full cells exhibit a more stable discharge plateau with lower voltage hysteresis contrast to the untreated counterpart

[bookmark: _Hlk215052237][image: ]
[bookmark: _Hlk215055994]Fig. S44 GITT curves of (a) reinforced and (b) pristine Zn||MnO2 cells at 0.1 A g-1, and (c) the corresponding diffusion coefficient values calculated for both cells


[image: ]
Fig. S45 SEM images of the a Zn anode and b MnO2 cathode in the pristine Zn||MnO2 full cells after 50 cycles
[image: ]
Fig. S46 Long-term cycling performance of the (red) reinforced and (blue) pristine Zn||MnO2 full cells at 5.0 A g-1

[bookmark: _Hlk215166449][image: ]
Fig. S47 MS spectrum of the electrolyte extracted from the reinforced Zn||MnO2 cell after charging to 1.8 V, showing a predominant peak at m/z 384.36 corresponding to the [M+H]+ of C16K
[image: ]
Fig. S48 High-resolution N1s XPS spectrum of the cathode from the reinforced Zn||MnO2 cell after charging to 1.8 V
[image: ]
[bookmark: OLE_LINK2]Fig. S49 a XRD pattern and b SEM image of the (NH4)2V4O9 cathode (PDF#23-0791) synthesized by a hydrothermal method. The results demonstrate that the cathode material possessed lamellar morphologies and high crystallinity with the typical peaks of (NH4)2V4O9

[image: ]
Fig. S50 a CV curves and b EIS of the (red) C16K self-assembly reinforced and (blue) pristine Zn||(NH4)2V4O9 full cells at a scan rate of 0.5 mV s-1

[image: ]
Fig. S51 Rate performances of the (red) reinforced and (blue) pristine Zn||(NH4)2V4O9 full cells

[image: ]
Fig. S52 Long-term cycling performance of the (red) reinforced and (blue) pristine Zn||(NH4)2V4O9 full cells at 2.0 A g-1

[image: ]
Fig. S53 Long-term cycling performance of the (red) C16K self-assembly reinforced and (blue) pristine Zn||(NH4)2V4O9 full cells at 5.0 A g-1

Table S5 Comparison of the cycling performance of full cells employing bio-inspired electrolytes
	Strategy
	Cathode 
materials
	Cycling number
	Retention (%)
	Rate
	Ref.

	[bookmark: _Hlk215178115]Synergistic reinforcement of ion transport and interfacial stability
	β-MnO2
	200
	75%
	1.0 A g-1
	This work

	
	
	500
	61%
	3.0 A g-1
	

	
	(NH4)2V4O9
	500
	70%
	2.0 A g-1
	

	
	
	1000
	84%
	5.0 A g-1
	

	BE/5Cor
	NaV3O8 1.5H2O
	500
	70.6%
	1.0 A g-1
	[S1]

	
	
	500
	70.8%
	5.0 A g-1
	

	Cll+ZOF
	VO2
	1200
	94%
	2.0 A g-1
	[S2]

	SAM-Zn
	NH4V4O10
	1000
	~86%
	5.0 A g-1
	[S3]

	NCAP-Glu-ZSO
	NH4V4O10
	200
	~71.4%
	0.5 A g-1
	[S4]

	SAB-Zn
	MnO2
	500
	64.7%
	1 C
	[S5]

	ZnSO4/BICINE-10
	NH4V4O10
	1000
	69.8%
	3.0 A g-1
	[S6]

	Val-H
	AC@I2
	1000
	78%
	0.2 A g-1
	[S7]

	ZSO/Phe
	LMO
	300
	77.3%
	1 C
	[S8]

	ZnSO4+Glucose
	MnO2
	1000
	~80%
	10 C
	[S9]

	L-C/Zn(OTf)2
	NH4V4O10
	500
	80.59%
	1.0 A g-1
	[S10]

	1 M ZnSO4+75 mM Ert
	δ-MnO2
	500
	79.5%
	1.0 A g-1
	[S11]

	2 M ZS+10% Xos
	ZnxV2O5
	300
	~60%
	2.0 A g-1
	[S12]

	PZS
	Zn0.25V2O5
	1000
	77.8%
	1.2 A g-1
	[S13]



[image: ]
Fig. S54 Cycling performance of the C16K self-assembly reinforced Zn||MnO2 pouch cell at 125 mA g-1

[image: ]
Fig. S55 Photographic image showing the voltage measurement of three interconnected reinforced Zn||MnO2 pouch cells using a voltmeter. The interconnected pouch cells output a stable voltage of up to 4.05 V

 [image: ]
Fig. S56 CV characterization of the scorpion tail-mimic reinforced Zn||MnO2 flexible battery at a scan rate of 0.5 mV s-1

 [image: ]
Fig. S57 Long-term cycling performance of the scorpion tail-mimic reinforced Zn||MnO2 flexible battery at 1.0 A g-1

[image: ]
[bookmark: _Hlk214995448]Fig. S58 a EIS of the Zn||MnO2 wearable battery before and after mechanical deformation. b AFM image of the interfacial self-assembly of C16K after mechanical deformation
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