Bimetallic NiCo2S4 Nanoneedles Anchored on Mesocarbon Microbeads as Advanced Electrodes for Asymmetric Supercapacitors
Corresponding Author: Li Sun
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 35
Abstract
Bimetallic Ni–Co sulfides are outstanding pseudocapacitive materials with high electrochemical activity and excellent energy storage performance as electrodes for high-performance supercapacitors. In this study, a novel urchin-like NiCo2S4@mesocarbon microbead (NCS@MCMB) composite with a core–shell structure was prepared by a facile two-step hydrothermal method. The highly conductive MCMBs offered abundant adsorption sites for the growth of NCS nanoneedles, which allowed each nanoneedle to fully unfold without aggregation, resulting in improved NCS utilization and efficient electron/ion transfer in the electrolyte. When applied as an electrode material for supercapacitors, the composite exhibited a maximum specific capacitance of 936 F g−1 at 1 A g−1 and a capacitance retention of 94% after 3000 cycles at 5 A g−1, because of the synergistic effect of MCMB and NCS. Moreover, we fabricated an asymmetric supercapacitor based on the NCS@MCMB composite, which exhibited enlarged voltage windows and could power a light-emitting diode device for several minutes, further demonstrating the exceptional electrochemical performance of the NCS@MCMB composite.
Highlights:
1 A facile method was used to anchor pseudocapacitive bimetallic NiCo2S4 (NCS) nanoneedles on mesocarbon microbeads (MCMBs), forming a novel urchin-like structure.
2 The NCS@MCMB electrode and an assembled asymmetric supercapacitor displayed good electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
- P. Simon, Y. Gogotsi, B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- G. Zhang, H. Liu, J. Qu, J. Li, Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ. Sci. 9(4), 1190–1209 (2016). https://doi.org/10.1039/C5EE03761A
- S. Li, M. Li, Y. Jiang, W. Kong, K. Jiang, J. Wang, S. Fan, Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high performance lithium sulfur batteries. Nano Lett. 14(7), 4044–4049 (2014). https://doi.org/10.1021/nl501486n
- Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a
- G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, J. Nanoen, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2), 213–234 (2013). https://doi.org/10.1016/j.nanoen.2012.10.006
- C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). https://doi.org/10.1021/nl400378j
- J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). https://doi.org/10.1002/adma.201202146
- J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011). https://doi.org/10.1002/adma.201100058
- R. Alcantara, F.J. Madrigal, P. Lavela, J.L. Tirado, J.M. Mateos, C. Salazar, R. Stoyanova, E. Zhecheva, Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon 38(7), 1031–1041 (2000). https://doi.org/10.1016/S0008-6223(99)00215-8
- Y. Xu, X. Huang, Z. Lin, X. Zhong, Y. Huang, X. Duan, One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 6(1), 65–76 (2013). https://doi.org/10.1007/s12274-012-0284-4
- L. Huang, X. Yao, L.Y. Yuan, B. Yao, X. Gao et al., 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater. 12, 191–196 (2018). https://doi.org/10.1016/j.ensm.2017.12.016
- L. Winkless, Self-assembled supercapacitor wires for e-textiles. Mater. Today 19(8), 422 (2016). https://doi.org/10.1016/j.mattod.2016.08.014
- J. Chen, C. Li, G. Shi, Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 4(8), 1244–1253 (2013). https://doi.org/10.1021/jz400160k
- H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 4(8), 729–736 (2011). https://doi.org/10.1007/s12274-011-0129-6
- X. Li, B. Wei, Supercapacitors based on nanostructured carbon. Nano Energy 2(2), 159–173 (2013). https://doi.org/10.1016/j.nanoen.2012.09.008
- K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2014). https://doi.org/10.1002/smll.201301991
- X.C. Dong, Y. Zhang, L. Li, H. Su, H. Wei, Binary metal oxide: advanced energy storage materials in supercapacitors. J. Mater. Chem. A 3(1), 43–59 (2014). https://doi.org/10.1039/c4ta04996a
- Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9(5), 5310–5317 (2015). https://doi.org/10.1021/acsnano.5b00821
- H. Liang, Z. Wei, J. Xiang, H. Xu, G. Li, Y. Huang, Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 6, 31465 (2016). https://doi.org/10.1038/srep31465
- L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13(7), 3135–3139 (2013). https://doi.org/10.1021/nl401086t
- T. Liu, L.Y. Zhang, W. You, J.G. Yu, Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12), 1702407 (2017). https://doi.org/10.1002/smll.201702407
- M.S. Balogun, Y.C. Huang, W.T. Qiu, H. Yang, H.B. Ji, Y.X. Tong, Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 20(8), 425–451 (2017). https://doi.org/10.1016/j.mattod.2017.03.019
- Y.M. Chen, Z. Li, X.W. Lou, General formation of MxCo3−xS4 (M = Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors. Angew. Chem. Int. Ed. 127(36), 10667–10670 (2015). https://doi.org/10.1002/anie.201504349
- X.Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
- M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013). https://doi.org/10.1039/c2cs35310e
- S. Peng, L. Li, C. Li, H. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem. Commun. 49(86), 10178–10180 (2013). https://doi.org/10.1039/C3CC46034G
- H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5(19), 8879–8883 (2013). https://doi.org/10.1039/C3NR02958A
- J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14(2), 831 (2014). https://doi.org/10.1021/nl404199v
- W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang, X. Qian, Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J. Mater. Chem. A 2(25), 9613–9619 (2014). https://doi.org/10.1039/c4ta00414k
- L. Huang, D.C. Chen, Y. Ding, Z.L. Wang, Z.Z. Zeng, M.L. Liu, Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5(31), 11159–11162 (2013). https://doi.org/10.1021/am403367u
- T. Liu, C.J. Jiang, B. Cheng, W. You, J.G. Yu, Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J. Mater. Chem. A 5(40), 21257–21265 (2017). https://doi.org/10.1039/C7TA06149H
- H. Hu, B.Y. Guan, X.W. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 1(1), 102–113 (2016). https://doi.org/10.1016/j.chempr.2016.06.001
- C.Y. Chen, Z.Y. Shih, Z. Yang, H.T. Chang, Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors. J. Power Sources 215, 43–47 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.075
- L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 5(3), 1400977 (2015). https://doi.org/10.1002/aenm.201400977
- W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 7(21), 1700983 (2017). https://doi.org/10.1002/aenm.201700983
- C.Z. Wei, N.N. Zhan, J. Tao, S.S. Pang, L.P. Zhang, C. Cheng, D.J. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018). https://doi.org/10.1016/j.apsusc.2018.05.003
- X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16, 71–80 (2015). https://doi.org/10.1016/j.nanoen.2015.06.018
- C. Liu, C. Li, K. Ahmed, W. Wang, I. Lee, F. Zaera, C.S. Ozkan, M. Ozkan, Scalable, binderless, and carbonless hierarchical ni nanodendrite foam decorated with hydrous ruthenium dioxide for 1.6 v symmetric supercapacitors. Adv. Mater. Interfaces 3(6), 1500503 (2016). https://doi.org/10.1002/admi.201500503
- L. Zhang, L. Zuo, W. Fan, T. Liu, NiCo2S4 nanosheets grown on 3D networks of nitrogen-doped graphene/carbon nanotubes: advanced anode materials for lithium-ion batteries. ChemElectroChem 3(9), 1384–1391 (2016). https://doi.org/10.1002/celc.201600183
- J.B. Wu, X. Gao, H.M. Yu, T.P. Ding, Y.X. Yan et al., A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6 V) in an aqueous electrolyte. Adv. Funct. Mater. 26(33), 6114–6120 (2016). https://doi.org/10.1002/adfm.201601811
- Y.T. Luan, H.N. Zhang, F. Yang, J. Yan, K. Zhu et al., Rational design of NiCo2S4 nanoparticles @ N-doped CNT for hybrid supercapacitor. Appl. Surf. Sci. 447, 165–172 (2018). https://doi.org/10.1016/j.apsusc.2018.03.236
- N.N. Wang, Y.J. Wang, S.Z. Cui, H.W. Hou, L.W. Mi, W.H. Chen, A hollow tube-on-tube architecture of carbon-tube-supported nickel cobalt sulfide nanotubes for advanced supercapacitors. ChemNanoMat 3(4), 269–276 (2017). https://doi.org/10.1002/cnma.201700016
- D. Bai, F. Wang, J. Lv, F. Zhang, S. Xu, Triple-confined well-dispersed biactive NiCo2S4/Ni0.96S on graphene aerogel for high-efficiency lithium storage. ACS Appl. Mater. Interfaces 8(48), 32853–32861 (2016). https://doi.org/10.1021/acsami.6b11389
- P. Shen, H.T. Zhang, S.J. Zhang, L.F. Fei, Fabrication of completely interface-engineered Ni(OH)2/rGO nanoarchitectures for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 460, 65–73 (2018). https://doi.org/10.1016/j.apsusc.2017.09.145
- T.H. Yao, X. Guo, S.C. Qin, F.Y. Xia, Q. Li, Y.L. Li, Q. Chen, J.S. Li, D.Y. He, Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett. 9(4), 38 (2017). https://doi.org/10.1007/s40820-017-0141-9
- D.L. Li, Y.N. Gong, M.S. Wang, C.X. Pan, Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). https://doi.org/10.1007/s40820-016-0117-1
- X. Liu, F. Zou, K. Liu, Z. Qiang, C.J. Taubert, P. Ustriyana, B.D. Vogt, Y. Zhu, A binary metal organic frameworks derived hierarchical hollow Ni3S2/Co9S8/N-doped carbon composite with superior sodium storage performance. J. Mater. Chem. A 5(23), 11781–11787 (2017). https://doi.org/10.1039/C7TA00201G
- C.W. Kung, H.W. Chen, C.Y. Lin, K.C. Huang, R. Vittal, K.C. Ho, CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6(8), 7016 (2012). https://doi.org/10.1021/nn302063s
- X. Xie, L. Gao, Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45(12), 2365–2373 (2007). https://doi.org/10.1016/j.carbon.2007.07.014
- B. Pandit, B.R. Sankapal, Highly conductive energy efficient electroless anchored silver nanoparticles on mwcnts as supercapacitive electrode. New J. Chem. 41(19), 10808–10814 (2017). https://doi.org/10.1039/C7NJ01792H
- J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang, X. Dong, Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J. Mater. Chem. A 3(3), 1258–1264 (2014). https://doi.org/10.1039/C4TA05747C
- J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22(12), 5656–5665 (2012). https://doi.org/10.1039/C2JM15863A
- W. Liu, M. Ulaganathan, I. Abdelwahab, X. Luo, Z. Chen, S.T. Rong, X. Wang, Y. Liu, D. Geng, Y. Bao, Two-dimensional polymer synthesized via solid-state polymerization for high-performance supercapacitors. ACS Nano 12(1), 852–860 (2017). https://doi.org/10.1021/acsnano.7b08354
- H. Chen, J. Jiang, Y. Zhao, L. Zhang, D. Guo, D. Xia, One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J. Mater. Chem. A 3(1), 428–437 (2014). https://doi.org/10.1039/c4ta04420g
- H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen, Y. Ruan, NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15(38), 7649–7651 (2013). https://doi.org/10.1039/C3CE41243A
- J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu, X. Meng, Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 7(2), 1601234 (2017). https://doi.org/10.1002/aenm.201601234
- Y.M. Fan, Y.C. Liu, X.B. Liu, Y.N. Liu, L.Z. Fan, Hierarchical porous NiCo2S4-rGO composites for high-performance supercapacitors. Electrochim. Acta 249, 1–8 (2017). https://doi.org/10.1016/j.electacta.2017.07.175
- X.L. Ning, F. Li, Y. Zhou, Y.E. Miao, C. Wei, T.X. Liu, Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors. Chem. Eng. J. 328, 599–608 (2017). https://doi.org/10.1016/j.cej.2017.07.062
- Y.H. Xiao, D.C. Su, X.Z. Wang, L.M. Zhou, S.D. Wu, F. Li, S.M. Fang, In situ growth of ultradispersed NiCo2S4 nanoparticles on graphene for asymmetric supercapacitors. Electrochim. Acta 176, 44–50 (2015). https://doi.org/10.1016/j.electacta.2015.06.128
- T. Peng, Z.Y. Qain, J. Wang, D.L. Song, J.Y. Liu, Q. Liu, P. Wang, Construction of mass-controllable mesoporous NiCo2S4 electrodes for high performance supercapacitors. J. Mater. Chem. A 2(45), 19376–19382 (2014). https://doi.org/10.1039/c4ta04246h
- G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 5(11), 9453–9456 (2012). https://doi.org/10.1039/c2ee22572g
- Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang, X. Duan, Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25(40), 5779–5784 (2013). https://doi.org/10.1002/adma.201301928
- B.Y. Guan, L. Yu, X. Wang, S.Y. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29(6), 1605051 (2016). https://doi.org/10.1002/adma.201605051
- J. Zhu, J. Jiang, Z. Sun, J. Luo, Z. Fan, X. Huang, H. Zhang, T. Yu, 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. Small 10(14), 2937–2945 (2014). https://doi.org/10.1002/smll.201302937
References
J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
P. Simon, Y. Gogotsi, B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
G. Zhang, H. Liu, J. Qu, J. Li, Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ. Sci. 9(4), 1190–1209 (2016). https://doi.org/10.1039/C5EE03761A
S. Li, M. Li, Y. Jiang, W. Kong, K. Jiang, J. Wang, S. Fan, Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high performance lithium sulfur batteries. Nano Lett. 14(7), 4044–4049 (2014). https://doi.org/10.1021/nl501486n
Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a
G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, J. Nanoen, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2), 213–234 (2013). https://doi.org/10.1016/j.nanoen.2012.10.006
C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). https://doi.org/10.1021/nl400378j
J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). https://doi.org/10.1002/adma.201202146
J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011). https://doi.org/10.1002/adma.201100058
R. Alcantara, F.J. Madrigal, P. Lavela, J.L. Tirado, J.M. Mateos, C. Salazar, R. Stoyanova, E. Zhecheva, Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon 38(7), 1031–1041 (2000). https://doi.org/10.1016/S0008-6223(99)00215-8
Y. Xu, X. Huang, Z. Lin, X. Zhong, Y. Huang, X. Duan, One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 6(1), 65–76 (2013). https://doi.org/10.1007/s12274-012-0284-4
L. Huang, X. Yao, L.Y. Yuan, B. Yao, X. Gao et al., 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater. 12, 191–196 (2018). https://doi.org/10.1016/j.ensm.2017.12.016
L. Winkless, Self-assembled supercapacitor wires for e-textiles. Mater. Today 19(8), 422 (2016). https://doi.org/10.1016/j.mattod.2016.08.014
J. Chen, C. Li, G. Shi, Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 4(8), 1244–1253 (2013). https://doi.org/10.1021/jz400160k
H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 4(8), 729–736 (2011). https://doi.org/10.1007/s12274-011-0129-6
X. Li, B. Wei, Supercapacitors based on nanostructured carbon. Nano Energy 2(2), 159–173 (2013). https://doi.org/10.1016/j.nanoen.2012.09.008
K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2014). https://doi.org/10.1002/smll.201301991
X.C. Dong, Y. Zhang, L. Li, H. Su, H. Wei, Binary metal oxide: advanced energy storage materials in supercapacitors. J. Mater. Chem. A 3(1), 43–59 (2014). https://doi.org/10.1039/c4ta04996a
Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9(5), 5310–5317 (2015). https://doi.org/10.1021/acsnano.5b00821
H. Liang, Z. Wei, J. Xiang, H. Xu, G. Li, Y. Huang, Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 6, 31465 (2016). https://doi.org/10.1038/srep31465
L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13(7), 3135–3139 (2013). https://doi.org/10.1021/nl401086t
T. Liu, L.Y. Zhang, W. You, J.G. Yu, Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12), 1702407 (2017). https://doi.org/10.1002/smll.201702407
M.S. Balogun, Y.C. Huang, W.T. Qiu, H. Yang, H.B. Ji, Y.X. Tong, Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 20(8), 425–451 (2017). https://doi.org/10.1016/j.mattod.2017.03.019
Y.M. Chen, Z. Li, X.W. Lou, General formation of MxCo3−xS4 (M = Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors. Angew. Chem. Int. Ed. 127(36), 10667–10670 (2015). https://doi.org/10.1002/anie.201504349
X.Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013). https://doi.org/10.1039/c2cs35310e
S. Peng, L. Li, C. Li, H. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem. Commun. 49(86), 10178–10180 (2013). https://doi.org/10.1039/C3CC46034G
H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5(19), 8879–8883 (2013). https://doi.org/10.1039/C3NR02958A
J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14(2), 831 (2014). https://doi.org/10.1021/nl404199v
W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang, X. Qian, Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J. Mater. Chem. A 2(25), 9613–9619 (2014). https://doi.org/10.1039/c4ta00414k
L. Huang, D.C. Chen, Y. Ding, Z.L. Wang, Z.Z. Zeng, M.L. Liu, Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5(31), 11159–11162 (2013). https://doi.org/10.1021/am403367u
T. Liu, C.J. Jiang, B. Cheng, W. You, J.G. Yu, Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J. Mater. Chem. A 5(40), 21257–21265 (2017). https://doi.org/10.1039/C7TA06149H
H. Hu, B.Y. Guan, X.W. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 1(1), 102–113 (2016). https://doi.org/10.1016/j.chempr.2016.06.001
C.Y. Chen, Z.Y. Shih, Z. Yang, H.T. Chang, Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors. J. Power Sources 215, 43–47 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.075
L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 5(3), 1400977 (2015). https://doi.org/10.1002/aenm.201400977
W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 7(21), 1700983 (2017). https://doi.org/10.1002/aenm.201700983
C.Z. Wei, N.N. Zhan, J. Tao, S.S. Pang, L.P. Zhang, C. Cheng, D.J. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018). https://doi.org/10.1016/j.apsusc.2018.05.003
X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16, 71–80 (2015). https://doi.org/10.1016/j.nanoen.2015.06.018
C. Liu, C. Li, K. Ahmed, W. Wang, I. Lee, F. Zaera, C.S. Ozkan, M. Ozkan, Scalable, binderless, and carbonless hierarchical ni nanodendrite foam decorated with hydrous ruthenium dioxide for 1.6 v symmetric supercapacitors. Adv. Mater. Interfaces 3(6), 1500503 (2016). https://doi.org/10.1002/admi.201500503
L. Zhang, L. Zuo, W. Fan, T. Liu, NiCo2S4 nanosheets grown on 3D networks of nitrogen-doped graphene/carbon nanotubes: advanced anode materials for lithium-ion batteries. ChemElectroChem 3(9), 1384–1391 (2016). https://doi.org/10.1002/celc.201600183
J.B. Wu, X. Gao, H.M. Yu, T.P. Ding, Y.X. Yan et al., A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6 V) in an aqueous electrolyte. Adv. Funct. Mater. 26(33), 6114–6120 (2016). https://doi.org/10.1002/adfm.201601811
Y.T. Luan, H.N. Zhang, F. Yang, J. Yan, K. Zhu et al., Rational design of NiCo2S4 nanoparticles @ N-doped CNT for hybrid supercapacitor. Appl. Surf. Sci. 447, 165–172 (2018). https://doi.org/10.1016/j.apsusc.2018.03.236
N.N. Wang, Y.J. Wang, S.Z. Cui, H.W. Hou, L.W. Mi, W.H. Chen, A hollow tube-on-tube architecture of carbon-tube-supported nickel cobalt sulfide nanotubes for advanced supercapacitors. ChemNanoMat 3(4), 269–276 (2017). https://doi.org/10.1002/cnma.201700016
D. Bai, F. Wang, J. Lv, F. Zhang, S. Xu, Triple-confined well-dispersed biactive NiCo2S4/Ni0.96S on graphene aerogel for high-efficiency lithium storage. ACS Appl. Mater. Interfaces 8(48), 32853–32861 (2016). https://doi.org/10.1021/acsami.6b11389
P. Shen, H.T. Zhang, S.J. Zhang, L.F. Fei, Fabrication of completely interface-engineered Ni(OH)2/rGO nanoarchitectures for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 460, 65–73 (2018). https://doi.org/10.1016/j.apsusc.2017.09.145
T.H. Yao, X. Guo, S.C. Qin, F.Y. Xia, Q. Li, Y.L. Li, Q. Chen, J.S. Li, D.Y. He, Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett. 9(4), 38 (2017). https://doi.org/10.1007/s40820-017-0141-9
D.L. Li, Y.N. Gong, M.S. Wang, C.X. Pan, Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). https://doi.org/10.1007/s40820-016-0117-1
X. Liu, F. Zou, K. Liu, Z. Qiang, C.J. Taubert, P. Ustriyana, B.D. Vogt, Y. Zhu, A binary metal organic frameworks derived hierarchical hollow Ni3S2/Co9S8/N-doped carbon composite with superior sodium storage performance. J. Mater. Chem. A 5(23), 11781–11787 (2017). https://doi.org/10.1039/C7TA00201G
C.W. Kung, H.W. Chen, C.Y. Lin, K.C. Huang, R. Vittal, K.C. Ho, CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6(8), 7016 (2012). https://doi.org/10.1021/nn302063s
X. Xie, L. Gao, Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45(12), 2365–2373 (2007). https://doi.org/10.1016/j.carbon.2007.07.014
B. Pandit, B.R. Sankapal, Highly conductive energy efficient electroless anchored silver nanoparticles on mwcnts as supercapacitive electrode. New J. Chem. 41(19), 10808–10814 (2017). https://doi.org/10.1039/C7NJ01792H
J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang, X. Dong, Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J. Mater. Chem. A 3(3), 1258–1264 (2014). https://doi.org/10.1039/C4TA05747C
J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22(12), 5656–5665 (2012). https://doi.org/10.1039/C2JM15863A
W. Liu, M. Ulaganathan, I. Abdelwahab, X. Luo, Z. Chen, S.T. Rong, X. Wang, Y. Liu, D. Geng, Y. Bao, Two-dimensional polymer synthesized via solid-state polymerization for high-performance supercapacitors. ACS Nano 12(1), 852–860 (2017). https://doi.org/10.1021/acsnano.7b08354
H. Chen, J. Jiang, Y. Zhao, L. Zhang, D. Guo, D. Xia, One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J. Mater. Chem. A 3(1), 428–437 (2014). https://doi.org/10.1039/c4ta04420g
H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen, Y. Ruan, NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15(38), 7649–7651 (2013). https://doi.org/10.1039/C3CE41243A
J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu, X. Meng, Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 7(2), 1601234 (2017). https://doi.org/10.1002/aenm.201601234
Y.M. Fan, Y.C. Liu, X.B. Liu, Y.N. Liu, L.Z. Fan, Hierarchical porous NiCo2S4-rGO composites for high-performance supercapacitors. Electrochim. Acta 249, 1–8 (2017). https://doi.org/10.1016/j.electacta.2017.07.175
X.L. Ning, F. Li, Y. Zhou, Y.E. Miao, C. Wei, T.X. Liu, Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors. Chem. Eng. J. 328, 599–608 (2017). https://doi.org/10.1016/j.cej.2017.07.062
Y.H. Xiao, D.C. Su, X.Z. Wang, L.M. Zhou, S.D. Wu, F. Li, S.M. Fang, In situ growth of ultradispersed NiCo2S4 nanoparticles on graphene for asymmetric supercapacitors. Electrochim. Acta 176, 44–50 (2015). https://doi.org/10.1016/j.electacta.2015.06.128
T. Peng, Z.Y. Qain, J. Wang, D.L. Song, J.Y. Liu, Q. Liu, P. Wang, Construction of mass-controllable mesoporous NiCo2S4 electrodes for high performance supercapacitors. J. Mater. Chem. A 2(45), 19376–19382 (2014). https://doi.org/10.1039/c4ta04246h
G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 5(11), 9453–9456 (2012). https://doi.org/10.1039/c2ee22572g
Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang, X. Duan, Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25(40), 5779–5784 (2013). https://doi.org/10.1002/adma.201301928
B.Y. Guan, L. Yu, X. Wang, S.Y. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29(6), 1605051 (2016). https://doi.org/10.1002/adma.201605051
J. Zhu, J. Jiang, Z. Sun, J. Luo, Z. Fan, X. Huang, H. Zhang, T. Yu, 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. Small 10(14), 2937–2945 (2014). https://doi.org/10.1002/smll.201302937