Manganese-Zeolitic Imidazolate Frameworks-90 with High Blood Circulation Stability for MRI-Guided Tumor Therapy
Corresponding Author: Aiguo Wu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 61
Abstract
Zeolitic imidazolate frameworks (ZIFs) as smart drug delivery systems with microenvironment-triggered release have attracted much attention for tumor therapy. However, the exploration of ZIFs in biomedicine still encounters many issues, such as inconvenient surface modification, fast drug release during blood circulation, undesired damage to major organs, and severe in vivo toxicity. To address the above issues, we developed an Mn-ZIF-90 nanosystem functionalized with an originally designed active-targeting and pH-responsive magnetic resonance imaging (MRI) Y1 receptor ligand [Asn28, Pro30, Trp32]-NPY (25–36) for imaging-guided tumor therapy. After Y1 receptor ligand modification, the Mn-ZIF-90 nanosystem exhibited high drug loading, better blood circulation stability, and dual breast cancer cell membrane and mitochondria targetability, further favoring specific microenvironment-triggered tumor therapy. Meanwhile, this nanosystem showed promising T1-weighted magnetic resonance imaging contrast in vivo in the tumor sites. Especially, this nanosystem with fast clean-up had almost no obvious toxicity and no damage occurred to the major organs in mice. Therefore, this nanosystem shows potential for use in imaging-guided tumor therapy.
Highlights:
1 Manganese-zeolitic imidazolate frameworks (Mn-ZIF-90) with both high drug loading and magnetic resonance imaging (MRI) in vitro and in vivo were prepared.
2 The modification of a newly designed pH-protective and active-targeting Y1 receptor ligand reduces the drug release during blood circulation and specifically targets the tumor sites, improving therapeutic efficacy in vivo.
3 The combination of nano-size Mn-ZIF-90 and the highly specific Y1 receptor ligand promotes the specific drug accumulation in tumor sites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Ekladious, Y.L. Colson, M.W. Grinstaff, Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18(4), 273–294 (2019). https://doi.org/10.1038/s41573-018-0005-0
- V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014). https://doi.org/10.1038/nrd4333
- S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013). https://doi.org/10.1038/nmat3776
- F. Seidi, R. Jenjob, D. Crespy, Designing smart polymer conjugates for controlled release of payloads. Chem. Rev. 118(7), 3965–4036 (2018). https://doi.org/10.1021/acs.chemrev.8b00006
- Y. Dai, C. Xu, X. Sun, X. Chen, Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 46(12), 3830–3852 (2017). https://doi.org/10.1039/C6CS00592F
- W. Fan, B. Yung, P. Huang, X. Chen, Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 117(22), 13566–13638 (2017). https://doi.org/10.1021/acs.chemrev.7b00258
- Z. Shen, T. Chen, X. Ma, W. Ren, Z. Zhou et al., Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for t1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11(11), 10992–11004 (2017). https://doi.org/10.1021/acsnano.7b04924
- H.-X. Zhao, Q. Zou, S.-K. Sun, C. Yu, X. Zhang, R.-J. Li, Y.-Y. Fu, Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. 7(8), 5294–5301 (2016). https://doi.org/10.1039/C6SC01359G
- W.-H. Chen, Q. Lei, G.-F. Luo, H.-Z. Jia, S. Hong, Y.-X. Liu, Y.-J. Cheng, X.-Z. Zhang, Rational design of multifunctional gold nanoparticles via host–guest interaction for cancer-targeted therapy. ACS Appl. Mater. Interfaces 7(31), 17171–17180 (2015). https://doi.org/10.1021/acsami.5b04031
- T. Ma, Y. Hou, J. Zeng, C. Liu, P. Zhang, L. Jing, D. Shangguan, M. Gao, Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. J. Am. Chem. Soc. 140(1), 211–218 (2017). https://doi.org/10.1021/jacs.7b08900
- X. Xu, P.E. Saw, W. Tao, Y. Li, X. Ji et al., Ros-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 29(33), 1700141 (2017). https://doi.org/10.1002/adma.201700141
- Y. Shi, C. Ma, Y. Du, G. Yu, Microwave-responsive polymeric core-shell microcarriers for high-efficiency controlled drug release. J. Mater. Chem. B 5(19), 3541–3549 (2017). https://doi.org/10.1039/C7TB00235A
- W. Ren, M.Z. Iqbal, L. Zeng, T. Chen, Y. Pan et al., Black TiO2 based core-shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer. Nanoscale 9(31), 11195–11204 (2017). https://doi.org/10.1039/C7NR04039C
- A. Diaz-Moscoso, P. Ballester, Light-responsive molecular containers. Chem. Commun. 53(34), 4635–4652 (2017). https://doi.org/10.1039/C7CC01568B
- T. Wang, D. Wang, J. Liu, B. Feng, F. Zhou et al., Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett. 17(9), 5429–5436 (2017). https://doi.org/10.1021/acs.nanolett.7b02031
- M. Kanamala, W.R. Wilson, M. Yang, B.D. Palmer, Z. Wu, Mechanisms and biomaterials in ph-responsive tumour targeted drug delivery: a review. Biomaterials 85, 152–167 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.061
- L.S. Lin, J. Song, L. Song, K. Ke, Y. Liu et al., Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed. 57(18), 4902–4906 (2018). https://doi.org/10.1002/anie.201712027
- B. Yang, X. Mao, F. Hong, W. Meng, Y. Tang, X. Xia, S. Yang, W. Deng, K. Han, Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission. J. Am. Chem. Soc. 140(49), 17001–17006 (2018). https://doi.org/10.1021/jacs.8b07424
- Y. Qian, Y. Wang, F. Jia, Z. Wang, C. Yue, W. Zhang, Z. Hu, W. Wang, Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials 188, 96–106 (2019). https://doi.org/10.1016/j.biomaterials.2018.10.003
- W. Sang, Z. Zhang, Y. Dai, X. Chen, Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. (2019). https://doi.org/10.1039/C8CS00896E
- X. Sun, R. Du, L. Zhang, G. Zhang, X. Zheng et al., A ph-responsive yolk-like nanoplatform for tumor targeted dual-mode magnetic resonance imaging and chemotherapy. ACS Nano 11(7), 7049–7059 (2017). https://doi.org/10.1021/acsnano.7b02675
- Z. Shen, A. Wu, X. Chen, Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm. 14(5), 1352–1364 (2016). https://doi.org/10.1021/acs.molpharmaceut.6b00839
- Y. Dai, J. Guo, T.-Y. Wang, Y. Ju, A.J. Mitchell et al., Self-assembled nanoparticles from phenolic derivatives for cancer therapy. Adv. Healthc. Mater. 6(16), 1700467 (2017). https://doi.org/10.1002/adhm.201700467
- C.-I. Yen, S.-M. Liu, W.-S. Lo, J.-W. Wu, Y.-H. Liu et al., Cytotoxicity of postmodified zeolitic imidazolate framework-90 (ZIF-90) nanocrystals: correlation between functionality and toxicity. Chem. Eur. J. 22(9), 2925–2929 (2016). https://doi.org/10.1002/chem.201505005
- H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A.M. Nyström, X. Zou, One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138(3), 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
- J. Lin, P. Xin, L. An, Y. Xu, C. Tao et al., Fe3O4-ZIF-8 assemblies as pH and glutathione responsive T2–T1 switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo. Chem. Commun. 55(4), 478–481 (2018). https://doi.org/10.1039/C8CC08943D
- Z. Luo, Q. Wu, C. Yang, H. Wang, T. He et al., A powerful CD8 + t-cell stimulating d-tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv. Mater. 29(5), 1601776 (2017). https://doi.org/10.1002/adma.201601776
- J. Qin, M. Cho, Y. Lee, Ferrocene-encapsulated zn zeolitic imidazole framework (ZIF-8) for optical and electrochemical sensing of amyloid-β oligomers and for the early diagnosis of alzheimer’s disease. ACS Appl. Mater. Interfaces 11(12), 11743–11748 (2019). https://doi.org/10.1021/acsami.8b21425
- Q. Wu, M. Niu, X. Chen, L. Tan, C. Fu et al., Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 162, 132–143 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.022
- H. Fei, J.F. Cahill, K.A. Prather, S.M. Cohen, Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg. Chem. 52(7), 4011–4016 (2013). https://doi.org/10.1021/ic400048g
- G. Zhao, H. Wu, R. Feng, D. Wang, P. Xu, H. Wang, Z. Guo, Q. Chen, Bimetallic zeolitic imidazolate framework as an intrinsic two-photon fluorescence and pH-responsive MR imaging agent. ACS Omega 3(8), 9790–9797 (2018). https://doi.org/10.1021/acsomega.8b00923
- C. Liu, Q. Liu, A. Huang, A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols. Chem. Commun. 52(16), 3400–3402 (2016). https://doi.org/10.1039/C5CC10171A
- X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li et al., Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 46(11), 3386–3401 (2017). https://doi.org/10.1039/C7CS00058H
- Z. Jiang, Y. Wang, L. Sun, B. Yuan, Y. Tian et al., Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials 197, 41–50 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.001
- J. Deng, K. Wang, M. Wang, P. Yu, L. Mao, Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J. Am. Chem. Soc. 139(16), 5877–5882 (2017). https://doi.org/10.1021/jacs.7b01229
- D.R. Green, J.C. Reed, Mitochondria and apoptosis. Science 281(5381), 1309–1312 (1998). https://doi.org/10.1126/science.281.5381.1309
- M.P. Murphy, R.C. Hartley, Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov. 17(12), 865–886 (2018). https://doi.org/10.1038/nrd.2018.174
- S. Fulda, L. Galluzzi, G. Kroemer, Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 9(6), 447–464 (2010). https://doi.org/10.1038/nrd3137
- Z. Jiang, Y. Tian, D. Shan, Y. Wang, E. Gerhard et al., pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. Biomaterials 170, 70–81 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.002
- Y. Li, J. Tang, L. He, Y. Liu, Y. Liu, C. Chen, Z. Tang, Core–shell upconversion nanoparticle@metal–organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 27(27), 4075–4080 (2015). https://doi.org/10.1002/adma.201501779
- J. Li, Y. Tian, A. Wu, Neuropeptide y receptors: a promising target for cancer imaging and therapy. Regen. Biomater. 2(3), 215–219 (2015). https://doi.org/10.1093/rb/rbv013
- J.-F. Li, Y.-J. Zhang, S.-Y. Ding, R. Panneerselvam, Z.-Q. Tian, Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117(7), 5002–5069 (2017). https://doi.org/10.1021/acs.chemrev.6b00596
- J. Li, Z. Shen, X. Ma, W. Ren, L. Xiang et al., Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy. ACS Appl. Mater. Interfaces 7(9), 5574–5582 (2015). https://doi.org/10.1021/acsami.5b00270
- F.-M. Zhang, H. Dong, X. Zhang, X.-J. Sun, M. Liu, D.-D. Yang, X. Liu, J.-Z. Wei, Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs. ACS Appl. Mater. Interfaces 9(32), 27332–27337 (2017). https://doi.org/10.1021/acsami.7b08451
- K. Jiang, L. Zhang, Q. Hu, D. Zhao, T. Xia et al., Pressure controlled drug release in a Zr-cluster-based MOF. J. Mater. Chem. B 4(39), 6398–6401 (2016). https://doi.org/10.1039/C6TB01756H
- Q. Sun, Z. Zhou, N. Qiu, Y. Shen, Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29(14), 1606628 (2017). https://doi.org/10.1002/adma.201606628
- D. Pathania, M. Millard, N. Neamati, Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev. 61(14), 1250–1275 (2009). https://doi.org/10.1016/j.addr.2009.05.010
- Z. Yang, S. Han, M. Keller, A. Kaiser, B.J. Bender et al., Structural basis of ligand binding modes at the neuropeptide YY 1 receptor. Nature 556(7702), 520–524 (2018). https://doi.org/10.1038/s41586-018-0046-x
- Y. Tan, Y. Zhu, Y. Zhao, L. Wen, T. Meng et al., Mitochondrial alkaline ph-responsive drug release mediated by celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials 154, 169–181 (2018). https://doi.org/10.1016/j.biomaterials.2017.07.036
- P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin et al., Metal–organic frameworks in biomedicine. Chem. Rev. 112(2), 1232–1268 (2012). https://doi.org/10.1021/cr200256v
- T. Baati, L. Njim, F. Neffati, A. Kerkeni, M. Bouttemi et al., In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal-organic frameworks. Chem. Sci. 4(4), 1597–1607 (2013). https://doi.org/10.1039/C3SC22116D
- Y. Yang, J. Liu, C. Liang, L. Feng, T. Fu et al., Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 10(2), 2774–2781 (2016). https://doi.org/10.1021/acsnano.5b07882
References
I. Ekladious, Y.L. Colson, M.W. Grinstaff, Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18(4), 273–294 (2019). https://doi.org/10.1038/s41573-018-0005-0
V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014). https://doi.org/10.1038/nrd4333
S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013). https://doi.org/10.1038/nmat3776
F. Seidi, R. Jenjob, D. Crespy, Designing smart polymer conjugates for controlled release of payloads. Chem. Rev. 118(7), 3965–4036 (2018). https://doi.org/10.1021/acs.chemrev.8b00006
Y. Dai, C. Xu, X. Sun, X. Chen, Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 46(12), 3830–3852 (2017). https://doi.org/10.1039/C6CS00592F
W. Fan, B. Yung, P. Huang, X. Chen, Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 117(22), 13566–13638 (2017). https://doi.org/10.1021/acs.chemrev.7b00258
Z. Shen, T. Chen, X. Ma, W. Ren, Z. Zhou et al., Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for t1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11(11), 10992–11004 (2017). https://doi.org/10.1021/acsnano.7b04924
H.-X. Zhao, Q. Zou, S.-K. Sun, C. Yu, X. Zhang, R.-J. Li, Y.-Y. Fu, Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. 7(8), 5294–5301 (2016). https://doi.org/10.1039/C6SC01359G
W.-H. Chen, Q. Lei, G.-F. Luo, H.-Z. Jia, S. Hong, Y.-X. Liu, Y.-J. Cheng, X.-Z. Zhang, Rational design of multifunctional gold nanoparticles via host–guest interaction for cancer-targeted therapy. ACS Appl. Mater. Interfaces 7(31), 17171–17180 (2015). https://doi.org/10.1021/acsami.5b04031
T. Ma, Y. Hou, J. Zeng, C. Liu, P. Zhang, L. Jing, D. Shangguan, M. Gao, Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. J. Am. Chem. Soc. 140(1), 211–218 (2017). https://doi.org/10.1021/jacs.7b08900
X. Xu, P.E. Saw, W. Tao, Y. Li, X. Ji et al., Ros-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 29(33), 1700141 (2017). https://doi.org/10.1002/adma.201700141
Y. Shi, C. Ma, Y. Du, G. Yu, Microwave-responsive polymeric core-shell microcarriers for high-efficiency controlled drug release. J. Mater. Chem. B 5(19), 3541–3549 (2017). https://doi.org/10.1039/C7TB00235A
W. Ren, M.Z. Iqbal, L. Zeng, T. Chen, Y. Pan et al., Black TiO2 based core-shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer. Nanoscale 9(31), 11195–11204 (2017). https://doi.org/10.1039/C7NR04039C
A. Diaz-Moscoso, P. Ballester, Light-responsive molecular containers. Chem. Commun. 53(34), 4635–4652 (2017). https://doi.org/10.1039/C7CC01568B
T. Wang, D. Wang, J. Liu, B. Feng, F. Zhou et al., Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett. 17(9), 5429–5436 (2017). https://doi.org/10.1021/acs.nanolett.7b02031
M. Kanamala, W.R. Wilson, M. Yang, B.D. Palmer, Z. Wu, Mechanisms and biomaterials in ph-responsive tumour targeted drug delivery: a review. Biomaterials 85, 152–167 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.061
L.S. Lin, J. Song, L. Song, K. Ke, Y. Liu et al., Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed. 57(18), 4902–4906 (2018). https://doi.org/10.1002/anie.201712027
B. Yang, X. Mao, F. Hong, W. Meng, Y. Tang, X. Xia, S. Yang, W. Deng, K. Han, Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission. J. Am. Chem. Soc. 140(49), 17001–17006 (2018). https://doi.org/10.1021/jacs.8b07424
Y. Qian, Y. Wang, F. Jia, Z. Wang, C. Yue, W. Zhang, Z. Hu, W. Wang, Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials 188, 96–106 (2019). https://doi.org/10.1016/j.biomaterials.2018.10.003
W. Sang, Z. Zhang, Y. Dai, X. Chen, Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. (2019). https://doi.org/10.1039/C8CS00896E
X. Sun, R. Du, L. Zhang, G. Zhang, X. Zheng et al., A ph-responsive yolk-like nanoplatform for tumor targeted dual-mode magnetic resonance imaging and chemotherapy. ACS Nano 11(7), 7049–7059 (2017). https://doi.org/10.1021/acsnano.7b02675
Z. Shen, A. Wu, X. Chen, Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm. 14(5), 1352–1364 (2016). https://doi.org/10.1021/acs.molpharmaceut.6b00839
Y. Dai, J. Guo, T.-Y. Wang, Y. Ju, A.J. Mitchell et al., Self-assembled nanoparticles from phenolic derivatives for cancer therapy. Adv. Healthc. Mater. 6(16), 1700467 (2017). https://doi.org/10.1002/adhm.201700467
C.-I. Yen, S.-M. Liu, W.-S. Lo, J.-W. Wu, Y.-H. Liu et al., Cytotoxicity of postmodified zeolitic imidazolate framework-90 (ZIF-90) nanocrystals: correlation between functionality and toxicity. Chem. Eur. J. 22(9), 2925–2929 (2016). https://doi.org/10.1002/chem.201505005
H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A.M. Nyström, X. Zou, One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138(3), 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
J. Lin, P. Xin, L. An, Y. Xu, C. Tao et al., Fe3O4-ZIF-8 assemblies as pH and glutathione responsive T2–T1 switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo. Chem. Commun. 55(4), 478–481 (2018). https://doi.org/10.1039/C8CC08943D
Z. Luo, Q. Wu, C. Yang, H. Wang, T. He et al., A powerful CD8 + t-cell stimulating d-tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv. Mater. 29(5), 1601776 (2017). https://doi.org/10.1002/adma.201601776
J. Qin, M. Cho, Y. Lee, Ferrocene-encapsulated zn zeolitic imidazole framework (ZIF-8) for optical and electrochemical sensing of amyloid-β oligomers and for the early diagnosis of alzheimer’s disease. ACS Appl. Mater. Interfaces 11(12), 11743–11748 (2019). https://doi.org/10.1021/acsami.8b21425
Q. Wu, M. Niu, X. Chen, L. Tan, C. Fu et al., Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 162, 132–143 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.022
H. Fei, J.F. Cahill, K.A. Prather, S.M. Cohen, Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg. Chem. 52(7), 4011–4016 (2013). https://doi.org/10.1021/ic400048g
G. Zhao, H. Wu, R. Feng, D. Wang, P. Xu, H. Wang, Z. Guo, Q. Chen, Bimetallic zeolitic imidazolate framework as an intrinsic two-photon fluorescence and pH-responsive MR imaging agent. ACS Omega 3(8), 9790–9797 (2018). https://doi.org/10.1021/acsomega.8b00923
C. Liu, Q. Liu, A. Huang, A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols. Chem. Commun. 52(16), 3400–3402 (2016). https://doi.org/10.1039/C5CC10171A
X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li et al., Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 46(11), 3386–3401 (2017). https://doi.org/10.1039/C7CS00058H
Z. Jiang, Y. Wang, L. Sun, B. Yuan, Y. Tian et al., Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials 197, 41–50 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.001
J. Deng, K. Wang, M. Wang, P. Yu, L. Mao, Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J. Am. Chem. Soc. 139(16), 5877–5882 (2017). https://doi.org/10.1021/jacs.7b01229
D.R. Green, J.C. Reed, Mitochondria and apoptosis. Science 281(5381), 1309–1312 (1998). https://doi.org/10.1126/science.281.5381.1309
M.P. Murphy, R.C. Hartley, Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov. 17(12), 865–886 (2018). https://doi.org/10.1038/nrd.2018.174
S. Fulda, L. Galluzzi, G. Kroemer, Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 9(6), 447–464 (2010). https://doi.org/10.1038/nrd3137
Z. Jiang, Y. Tian, D. Shan, Y. Wang, E. Gerhard et al., pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time. Biomaterials 170, 70–81 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.002
Y. Li, J. Tang, L. He, Y. Liu, Y. Liu, C. Chen, Z. Tang, Core–shell upconversion nanoparticle@metal–organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 27(27), 4075–4080 (2015). https://doi.org/10.1002/adma.201501779
J. Li, Y. Tian, A. Wu, Neuropeptide y receptors: a promising target for cancer imaging and therapy. Regen. Biomater. 2(3), 215–219 (2015). https://doi.org/10.1093/rb/rbv013
J.-F. Li, Y.-J. Zhang, S.-Y. Ding, R. Panneerselvam, Z.-Q. Tian, Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117(7), 5002–5069 (2017). https://doi.org/10.1021/acs.chemrev.6b00596
J. Li, Z. Shen, X. Ma, W. Ren, L. Xiang et al., Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy. ACS Appl. Mater. Interfaces 7(9), 5574–5582 (2015). https://doi.org/10.1021/acsami.5b00270
F.-M. Zhang, H. Dong, X. Zhang, X.-J. Sun, M. Liu, D.-D. Yang, X. Liu, J.-Z. Wei, Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs. ACS Appl. Mater. Interfaces 9(32), 27332–27337 (2017). https://doi.org/10.1021/acsami.7b08451
K. Jiang, L. Zhang, Q. Hu, D. Zhao, T. Xia et al., Pressure controlled drug release in a Zr-cluster-based MOF. J. Mater. Chem. B 4(39), 6398–6401 (2016). https://doi.org/10.1039/C6TB01756H
Q. Sun, Z. Zhou, N. Qiu, Y. Shen, Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29(14), 1606628 (2017). https://doi.org/10.1002/adma.201606628
D. Pathania, M. Millard, N. Neamati, Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev. 61(14), 1250–1275 (2009). https://doi.org/10.1016/j.addr.2009.05.010
Z. Yang, S. Han, M. Keller, A. Kaiser, B.J. Bender et al., Structural basis of ligand binding modes at the neuropeptide YY 1 receptor. Nature 556(7702), 520–524 (2018). https://doi.org/10.1038/s41586-018-0046-x
Y. Tan, Y. Zhu, Y. Zhao, L. Wen, T. Meng et al., Mitochondrial alkaline ph-responsive drug release mediated by celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials 154, 169–181 (2018). https://doi.org/10.1016/j.biomaterials.2017.07.036
P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin et al., Metal–organic frameworks in biomedicine. Chem. Rev. 112(2), 1232–1268 (2012). https://doi.org/10.1021/cr200256v
T. Baati, L. Njim, F. Neffati, A. Kerkeni, M. Bouttemi et al., In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal-organic frameworks. Chem. Sci. 4(4), 1597–1607 (2013). https://doi.org/10.1039/C3SC22116D
Y. Yang, J. Liu, C. Liang, L. Feng, T. Fu et al., Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 10(2), 2774–2781 (2016). https://doi.org/10.1021/acsnano.5b07882