A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
Corresponding Author: Xifei Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 97
Abstract
Engineering transition metal compounds (TMCs) catalysts with excellent adsorption-catalytic ability has been one of the most effective strategies to accelerate the redox kinetics of sulfur cathodes. Herein, this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping, bimetallic/bi-anionic TMCs, and TMCs-based heterostructure composites. It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band, d/p-band center, electron filling, and valence state. Moreover, the electronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity, electron filling, and ion radius, resulting in electron redistribution, bonds reconstruction, induced vacancies due to the electronic interaction and changed crystal structure such as lattice spacing and lattice distortion. Different from the aforementioned two strategies, heterostructures are constructed by two types of TMCs with different Fermi energy levels, which causes built-in electric field and electrons transfer through the interface, and induces electron redistribution and arranged local atoms to regulate the electronic structure. Additionally, the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out. It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.
Highlights:
1 The representatively engineering strategies of cations/anions doping, bimetallic/bi-anionic transition metal compounds and heterostructure composites catalysts for lithium sulfur batteries are comprehensively reviewed.
2 The promoted mechanism of catalytic performance by regulating electronic structure is focused on, including energy band, electron filling, d/p-band center, valence state.
3 The superiority of the modified transition metal compounds is comprehensively summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 34, 2200102 (2022). https://doi.org/10.1002/adma.202200102
- T. Liu, H. Hu, X. Ding, H. Yuan, C. Jin et al., 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 30, 346–366 (2020). https://doi.org/10.1016/j.ensm.2020.05.023
- X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460
- M. Barghamadi, A. Kapoor, C. Wen, A review on Li–S batteries as a high efficiency rechargeable lithium battery. J. Electrochem. Soc. 160, A1256–A1263 (2013). https://doi.org/10.1149/2.096308jes
- W.-G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746–18757 (2019). https://doi.org/10.1002/anie.201902413
- Z.-L. Xu, J.-K. Kim, K. Kang, Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19, 84–107 (2018). https://doi.org/10.1016/j.nantod.2018.02.006
- G. Cao, R. Duan, X. Li, Controllable catalysis behavior for high performance lithium sulfur batteries: from kinetics to strategies. EnergyChem 5, 100096 (2023). https://doi.org/10.1016/j.enchem.2022.100096
- X. Liu, J.-Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759
- L. Zhou, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed. Adv. Energy Mater. 11, 2001304 (2021). https://doi.org/10.1002/aenm.202001304
- D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2017). https://doi.org/10.1002/advs.201700270
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- C. Zhou, M. Chen, C. Dong, H. Wang, C. Shen et al., The continuous efficient conversion and directional deposition of lithium (poly)sulfides enabled by bimetallic site regulation. Nano Energy 98, 107332 (2022). https://doi.org/10.1016/j.nanoen.2022.107332
- C. Deng, Z. Wang, L. Feng, S. Wang, J. Yu, Electrocatalysis of sulfur and polysulfides in Li–S batteries. J. Mater. Chem. A 8, 19704–19728 (2020). https://doi.org/10.1039/D0TA05964A
- G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
- M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 10, 1903008 (2020). https://doi.org/10.1002/aenm.201903008
- X. Song, Y. Qu, L. Zhao, M. Zhao, Monolayer Fe3GeX2 (X = S, Se, and Te) as highly efficient electrocatalysts for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 13, 11845–11851 (2021). https://doi.org/10.1021/acsami.0c21136
- L. Kong, X. Chen, B.-Q. Li, H.-J. Peng, J.-Q. Huang et al., A bifunctional perovskite promoter for polysulfide regulation toward stable lithium–sulfur batteries. Adv. Mater. 30, 1705219 (2018). https://doi.org/10.1002/adma.201705219
- C. Yao, W. Li, K. Duan, C. Zhu, J. Li et al., Properties of S-functionalized nitrogen-based MXene (Ti2NS2) as a hosting material for lithium–sulfur batteries. Nanomaterials 11, 2478 (2021). https://doi.org/10.3390/nano11102478
- X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
- Y. Yan, H. Li, C. Cheng, T. Yan, W. Gao et al., Boosting polysulfide redox conversion of Li–S batteries by one-step-synthesized Co–Mo bimetallic nitride. J. Energy Chem. 61, 336–346 (2021). https://doi.org/10.1016/j.jechem.2021.03.041
- L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li–S batteries. ACS Nano 14, 8495–8507 (2020). https://doi.org/10.1021/acsnano.0c02762
- R. Xiao, T. Yu, S. Yang, K. Chen, Z. Li et al., Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium–sulfur batteries. Energy Storage Mater. 51, 890–899 (2022). https://doi.org/10.1016/j.ensm.2022.07.024
- F. Shi, J. Yu, C. Chen, S.P. Lau, W. Lv et al., Advances in understanding and regulation of sulfur conversion processes in metal–sulfur batteries. J. Mater. Chem. A 10, 19412–19443 (2022). https://doi.org/10.1039/D2TA02217F
- Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
- J. Qin, R. Wang, P. Xiao, D. Wang, Engineering cooperative catalysis in Li–S batteries. Adv. Energy Mater. 13, 2300611 (2023). https://doi.org/10.1002/aenm.202300611
- C.-L. Song, G.-H. Li, Y. Yang, X.-J. Hong, S. Huang et al., 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li–S battery. Chem. Eng. J. 381, 122701 (2020). https://doi.org/10.1016/j.cej.2019.122701
- Q. Zhang, P. Li, D. Zhou, Z. Chang, Y. Kuang et al., Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 13, 201701648 (2017). https://doi.org/10.1002/smll.201701648
- P. Zeng, C. Liu, X. Zhao, C. Yuan, Y. Chen et al., Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium–sulfur batteries. ACS Nano 14, 11558–11569 (2020). https://doi.org/10.1021/acsnano.0c04054
- J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan et al., Deciphering the modulation essence of p bands in co-based compounds on Li–S chemistry. Joule 2, 2681–2693 (2018). https://doi.org/10.1016/j.joule.2018.08.010
- C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li et al., Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 29, 1903842 (2019). https://doi.org/10.1002/adfm.201903842
- M. Liu, L. Wang, K. Zhao, S. Shi, Q. Shao et al., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890–2923 (2019). https://doi.org/10.1039/C9EE01722D
- G. Liu, W. Wang, P. Zeng, C. Yuan, L. Wang et al., Strengthened d-p orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium–sulfur batteries. Nano Lett. 22, 6366–6374 (2022). https://doi.org/10.1021/acs.nanolett.2c02183
- Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries. Adv. Mater. Deerfield Beach Fla 33, e2105947 (2021). https://doi.org/10.1002/adma.202105947
- Y. Liu, S. Ma, L. Liu, J. Koch, M. Rosebrock et al., Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li–S batteries. Adv. Funct. Mater. 30, 2002462 (2020). https://doi.org/10.1002/adfm.202002462
- Y. Zhong, K.R. Yang, W. Liu, P. He, V. Batista et al., Mechanistic insights into surface chemical interactions between lithium polysulfides and transition metal oxides. J. Phys. Chem. C 121, 14222–14227 (2017). https://doi.org/10.1021/ACS.JPCC.7B04170
- F. Shi, L. Zhai, Q. Liu, J. Yu, S.P. Lau et al., Emerging catalytic materials for practical lithium–sulfur batteries. J. Energy Chem. 76, 127–145 (2023). https://doi.org/10.1016/j.jechem.2022.08.027
- Y.C. Jiang, H.M.U. Arshad, H.J. Li, S. Liu, G.R. Li et al., Crystalline multi-metallic compounds as host materials in cathode for lithium–sulfur batteries. Small 17, e2005332 (2021). https://doi.org/10.1002/smll.202005332
- S. Huang, Z. Wang, Y. Von Lim, Y. Wang, Y. Li et al., Recent advances in heterostructure engineering for lithium–sulfur batteries. Adv. Energy Mater. 11, 2003689 (2021). https://doi.org/10.1002/aenm.202003689
- J. Wang, W.-Q. Han, A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 32, 2107166 (2022). https://doi.org/10.1002/adfm.202107166
- M.A. Al-Tahan, Y. Dong, A.E. Shrshr, X. Liu, R. Zhang et al., Enormous-sulfur-content cathode and excellent electrochemical performance of Li–S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator. J. Colloid Interface Sci. 609, 235–248 (2022). https://doi.org/10.1016/j.jcis.2021.12.035
- L. Shi, H. Fang, X. Yang, J. Xue, C. Li et al., Fe-cation doping in NiSe2 as an effective method of electronic structure modulation towards high-performance lithium–sulfur batteries. Chemsuschem 14, 1710–1719 (2021). https://doi.org/10.1002/cssc.202100216
- T. Yang, K. Liu, T. Wu, J. Zhang, X. Zheng et al., Rational valence modulation of bimetallic carbide assisted by defect engineering to enhance polysulfide conversion for lithium–sulfur batteries. J. Mater. Chem. A 8, 18032–18042 (2020). https://doi.org/10.1039/D0TA05927G
- R. Zhang, Y. Dong, M.A. Al-Tahan, Y. Zhang, R. Wei et al., Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries. J. Energy Chem. 60, 85–94 (2021). https://doi.org/10.1016/j.jechem.2021.01.004
- H. Zhang, R. Dai, S. Zhu, L. Zhou, Q. Xu et al., Bimetallic nitride modified separator constructs internal electric field for high-performance lithium-sulfur battery. Chem. Eng. J. 429, 132454 (2022). https://doi.org/10.1016/j.cej.2021.132454
- W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma et al., Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 15, 7491–7499 (2021). https://doi.org/10.1021/acsnano.1c00896
- X. Gao, X. Yang, M. Li, Q. Sun, J. Liang et al., Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li–S batteries. Adv. Funct. Mater. 29, 1806724 (2019). https://doi.org/10.1002/adfm.201806724
- B. Wang, L. Wang, D. Ding, Y. Zhai, F. Wang et al., Zinc-assisted cobalt ditelluride polyhedra inducing lattice strain to endow efficient adsorption-catalysis for high-energy lithium–sulfur batteries. Adv. Mater. 34, e2204403 (2022). https://doi.org/10.1002/adma.202204403
- C. Shang, G. Li, B. Wei, J. Wang, R. Gao et al., Dissolving vanadium into titanium nitride lattice framework for rational polysulfide regulation in Li–S batteries. Adv. Energy Mater. 11, 2003020 (2021). https://doi.org/10.1002/aenm.202003020
- W. Xiao, Q. He, Y. Zhao, Virtual screening of two-dimensional selenides and transition metal doped SnSe for lithium–sulfur batteries: a first-principles study. Appl. Surf. Sci. 570, 151213 (2021). https://doi.org/10.1016/j.apsusc.2021.151213
- L. Wang, Z. Hu, X. Wan, W. Hua, H. Li et al., Li2S4 anchoring governs the catalytic sulfur reduction on defective SmMn2O5 in lithium–sulfur battery. Adv. Energy Mater. 12, 2200340 (2022). https://doi.org/10.1002/aenm.202200340
- Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
- Z. Cheng, Y. Wang, W. Zhang, M. Xu, Boosting polysulfide conversion in lithium–sulfur batteries by cobalt-doped vanadium nitride microflowers. ACS Appl. Energy Mater. 3, 4523–4530 (2020). https://doi.org/10.1021/acsaem.0c00205
- Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu et al., Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 9, 1900953 (2019). https://doi.org/10.1002/aenm.201900953
- J. Shan, W. Wang, B. Zhang, X. Wang, W. Zhou et al., Unraveling the atomic-level manipulation mechanism of Li2 S redox kinetics via electron-donor doping for designing high-volumetric-energy-density, lean-electrolyte lithium-sulfur batteries. Adv. Sci. 9, e2204192 (2022). https://doi.org/10.1002/advs.202204192
- L. Chen, Y. Xu, G. Cao, H.M.K. Sari, R. Duan et al., Bifunctional catalytic effect of CoSe2 for lithium–sulfur batteries: single doping versus dual doping. Adv. Funct. Mater. 32, 2270052 (2022). https://doi.org/10.1002/adfm.202270052
- T. Feng, T. Zhao, N. Zhang, Y. Duan, L. Li et al., 2D amorphous Mo-doped CoB for bidirectional sulfur catalysis in lithium sulfur batteries. Adv. Funct. Mater. 32, 2202766 (2022). https://doi.org/10.1002/adfm.202202766
- O. Eroglu, M.S. Kiai, H. Kizil, Performance enhancement of Li-S battery with the anatase nano structured Fe doped TiO2 as a robust interlayer. J. Alloys Compd. 838, 155607 (2020). https://doi.org/10.1016/j.jallcom.2020.155607
- W. Wang, Y. Zhao, Y. Zhang, J. Wang, G. Cui et al., Defect-rich multishelled Fe-doped Co3O4 hollow microspheres with multiple spatial confinements to facilitate catalytic conversion of polysulfides for high-performance Li–S batteries. ACS Appl. Mater. Interfaces 12, 12763–12773 (2020). https://doi.org/10.1021/acsami.9b21853
- W. Cui, H. Li, Y. Liu, Q. Cai, J. Zhao, Capture and catalytic conversion of lithium polysulfides by metal-doped MoS2 monolayers for lithium–sulfur batteries: a computational study. Phys. E Low Dimension. Syst. Nanostruct. 130, 114715 (2021). https://doi.org/10.1016/j.physe.2021.114715
- H. Pan, X. Huang, X. Yan, L. Liu, L. Xia et al., Metal-doped mesoporous silica as sulfur hosts in lithium–sulfur battery with enhanced conductivity and polysulfide adsorption ability. J. Electroanal. Chem. 832, 361–367 (2019). https://doi.org/10.1016/j.jelechem.2018.11.019
- T. Feng, T. Zhao, S. Zhu, N. Zhang, Z. Wei et al., Anion-doped cobalt selenide with porous architecture for high-rate and flexible lithium–sulfur batteries. Small Methods 5, e2100649 (2021). https://doi.org/10.1002/smtd.202100649
- Y. Li, H. Wu, D. Wu, H. Wei, Y. Guo et al., High-density oxygen doping of conductive metal sulfides for better polysulfide trapping and Li2 S-S8 redox kinetics in high areal capacity lithium–sulfur batteries. Adv. Sci. 9, e2200840 (2022). https://doi.org/10.1002/advs.202200840
- M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett. 5, 3041–3050 (2020). https://doi.org/10.1021/acsenergylett.0c01564
- D. Sun, J. Zhou, D. Rao, L. Zhu, S. Niu et al., Regulating the electron filling state of d orbitals in Ta-based compounds for tunable lithium–sulfur chemistry. Sustain. Mater. Technol. 28, e00271 (2021). https://doi.org/10.1016/j.susmat.2021.e00271
- W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium–sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34, e2106370 (2022). https://doi.org/10.1002/adma.202106370
- L. Shi, W. Yuan, J. Liu, W. Zhang, S. Hou et al., P-doped NiSe2 nanorods grown on activated carbon cloths for high-loading lithium–sulfur batteries. J. Alloys Compd. 875, 160045 (2021). https://doi.org/10.1016/j.jallcom.2021.160045
- F. Liu, N. Wang, C. Shi, J. Sha, L. Ma et al., Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium–sulfur batteries. Chem. Eng. J. 431, 133923 (2022). https://doi.org/10.1016/j.cej.2021.133923
- J. Liu, Z. Qiao, Q. Xie, D.-L. Peng, R.-J. Xie, Phosphorus-doped metal-organic framework-derived CoS2 nanoboxes with improved adsorption-catalysis effect for Li–S batteries. ACS Appl. Mater. Interfaces 13, 15226–15236 (2021). https://doi.org/10.1021/acsami.1c00494
- H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 9, 1902096 (2019). https://doi.org/10.1002/aenm.201902096
- S. Hu, M. Yi, H. Wu, T. Wang, X. Ma et al., Ionic-liquid-assisted synthesis of N, F, and B Co-doped CoFe2O4–x on multiwalled carbon nanotubes with enriched oxygen vacancies for Li–S batteries. Adv. Funct. Mater. 32, 2111084 (2022). https://doi.org/10.1002/adfm.202111084
- Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei et al., Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li–S batteries. Adv. Mater. 33, 2103050 (2021). https://doi.org/10.1002/adma.202103050
- A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 50, 9817–9844 (2021). https://doi.org/10.1039/d1cs00330e
- C.Y. Zhang, C. Zhang, G.W. Sun, J.L. Pan, L. Gong et al., Spin effect to promote reaction kinetics and overall performance of lithium–sulfur batteries under external magnetic field. Angew. Chem. Int. Ed. 61, e202211570 (2022). https://doi.org/10.1002/anie.202211570
- C.-C. Lin, T.-R. Liu, S.-R. Lin, K.M. Boopathi, C.-H. Chiang et al., Spin-polarized photocatalytic CO2 reduction of Mn-doped perovskite nanoplates. J. Am. Chem. Soc. 144, 15718–15726 (2022). https://doi.org/10.1021/jacs.2c06060
- J. Ran, L. Wang, M. Si, X. Liang, D. Gao, Tailoring spin state of perovskite oxides by fluorine atom doping for efficient oxygen electrocatalysis. Small 19, e2206367 (2023). https://doi.org/10.1002/smll.202206367
- G. Song, R. Gao, Z. Zhao, Y. Zhang, H. Tan et al., High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Appl. Catal. B Environ. 301, 120809 (2022). https://doi.org/10.1016/j.apcatb.2021.120809
- S. Liu, B. Zhang, Y. Cao, H. Wang, Y. Zhang et al., Understanding the effect of nickel doping in cobalt spinel oxides on regulating spin state to promote the performance of the oxygen reduction reaction and zinc–air batteries. ACS Energy Lett. 8, 159–168 (2023). https://doi.org/10.1021/acsenergylett.2c02457
- Y. Li, X. Wang, M. Sun, Z. Zhao, Z. Wang et al., NiCo (oxy)selenide electrocatalysts via anionic regulation for high-performance lithium–sulfur batteries. J. Mater. Chem. A 10, 5410–5419 (2022). https://doi.org/10.1039/D1TA10723B
- H. Shan, J. Qin, J. Wang, H.M.K. Sari, L. Lei et al., Doping-induced electronic/ionic engineering to optimize the redox kinetics for potassium storage: a case study of Ni-doped CoSe2. Adv. Sci. 9, e2200341 (2022). https://doi.org/10.1002/advs.202200341
- S. Li, P. Xu, M.K. Aslam, C. Chen, A. Rashid et al., Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Mater. 27, 51–60 (2020). https://doi.org/10.1016/j.ensm.2020.01.017
- Z. Wu, S. Chen, L. Wang, Q. Deng, Z. Zeng et al., Implanting nickel and cobalt phosphide into well-defined carbon nanocages: a synergistic adsorption-electrocatalysis separator mediator for durable high-power Li–S batteries. Energy Storage Mater. 38, 381–388 (2021). https://doi.org/10.1016/j.ensm.2021.03.026
- J. Duan, Y. Zou, Z. Li, B. Long, Y. Du, Hollow quasi-polyhedron structure of NiCoP with strong constraint sulfur effect for lithium sulfur battery. J. Electroanal. Chem. 847, 113187 (2019). https://doi.org/10.1016/j.jelechem.2019.113187
- S. Zhao, Y. Li, F. Zhang, J. Guo, Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. J. Alloys Compd. Interdiscip. J. Mater. Sci. Solid-State Chem. Phys. 805, 873–879 (2019). https://doi.org/10.1016/j.jallcom.2019.07.145
- J. Guo, Y. Huang, S. Zhao, Z. Li, Z. Wang et al., Array-structured double-ion cooperative adsorption sites as multifunctional sulfur hosts for lithium-sulfur batteries with low electrolyte/sulfur ratio. ACS Nano 15, 16322–16334 (2021). https://doi.org/10.1021/acsnano.1c05536
- S. Maletti, F.S. Podetti, S. Oswald, L. Giebeler, C.A. Barbero et al., LiV3O8-based functional separator coating as effective polysulfide mediator for lithium–sulfur batteries. ACS Appl. Energy Mater. 3, 2893–2899 (2020). https://doi.org/10.1021/acsaem.9b02502
- X. Wang, J. Han, C. Luo, B. Zhang, J. Ma et al., Coordinated adsorption and catalytic conversion of polysulfides enabled by perovskite bimetallic hydroxide nanocages for lithium–sulfur batteries. Small 17, e2101538 (2021). https://doi.org/10.1002/smll.202101538
- S. Bhoyate, B. Park, S.H. Oh, W. Choi, Defect engineered MoWS alloy catalyst boost the polysulfide conversion in lithium–sulfur battery. J. Power. Sources 511, 230426 (2021). https://doi.org/10.1016/j.jpowsour.2021.230426
- L. Zhang, Z. Chen, N. Dongfang, M. Li, C. Diao et al. Li–S batteries: nickel–cobalt double hydroxide as a multifunctional mediator for ultrahigh‐rate and ultralong‐life Li–S batteries. 8, 1870152 (2018). https://doi.org/10.1002/aenm.201870152
- T. Li, Y. Li, J. Yang, Y. Deng, M. Wu et al., In situ electrochemical activation derived LixMoOy nanorods as the multifunctional interlayer for fast kinetics Li–S batteries. Small 17, 2104613 (2021). https://doi.org/10.1002/smll.202104613
- Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong et al., Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30, 1906661 (2020). https://doi.org/10.1002/adfm.201906661
- H. Gao, S. Ning, J. Zou, S. Men, Y. Zhou et al., The electrocatalytic activity of BaTiO3 nanops towards polysulfides enables high-performance lithium–sulfur batteries. J. Energy Chem. 48, 208–216 (2020). https://doi.org/10.1016/j.jechem.2020.01.028
- Y. Zhou, H. Shu, Y. Zhou, T. Sun, M. Han et al., Flower-like Bi4Ti3O12/carbon nanotubes as reservoir and promoter of polysulfide for lithium sulfur battery. J. Power. Sources 453, 227896 (2020). https://doi.org/10.1016/j.jpowsour.2020.227896
- Y. Hu, A. Hu, J. Wang, X. Niu, M. Zhou et al., Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium–sulfur batteries. J. Mater. Chem. A 9, 9771–9779 (2021). https://doi.org/10.1039/D1TA00798J
- X.-J. Hong, C.-L. Song, Z.-M. Wu, Z.-H. Li, Y.-P. Cai et al., Sulfophilic and lithophilic sites in bimetal nickel-zinc carbide with fast conversion of polysulfides for high-rate Li–S battery. Chem. Eng. J. 404, 126566 (2021). https://doi.org/10.1016/j.cej.2020.126566
- L. Zhang, F. Wan, H. Cao, L. Liu, Y. Wang et al., Integration of binary active sites: Co3V2O8 as polysulfide traps and catalysts for lithium–sulfur battery with superior cycling stability. Small 16, 1907153 (2020). https://doi.org/10.1002/smll.201907153
- D. He, X. Liu, X. Li, P. Lyu, J. Chen et al., Regulating the polysulfide redox kinetics for high-performance lithium–sulfur batteries through highly sulfiphilic FeWO4 nanorods. Chem. Eng. J. 419, 129509 (2021). https://doi.org/10.1016/j.cej.2021.129509
- S. Bhoyate, J. Kim, E. Lee, B. Park, E. Lee et al., Mixed phase 2D Mo0.5W0.5S2 alloy as a multi-functional electrocatalyst for a high-performance cathode in Li–S batteries. J. Mater. Chem. A 8, 12436–12445 (2020). https://doi.org/10.1039/D0TA04354K
- T. Sun, X. Zhao, B. Li, H. Shu, L. Luo et al., NiMoO4 nanosheets anchored on N–S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li–S battery. Adv. Funct. Mater. 31, 2101285 (2021). https://doi.org/10.1002/adfm.202101285
- W. Qiu, G. Li, D. Luo, Y. Zhang, Y. Zhao et al., Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium-sulfur batteries. Adv. Sci. 8, 2003400 (2021). https://doi.org/10.1002/advs.202003400
- C. Zhou, Z. Li, X. Xu, L. Mai, Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 8, nwab055 (2021). https://doi.org/10.1093/nsr/nwab055
- Z.-J. Zheng, H. Ye, Z.-P. Guo, Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy Environ. Sci. 14, 1835–1853 (2021). https://doi.org/10.1039/D0EE03181J
- P. Geng, M. Du, X. Guo, H. Pang, Z. Tian et al., Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium–sulfur batteries. Energy Environ. Mater. 5, 599–607 (2022). https://doi.org/10.1002/eem2.12196
- Y. Wang, Z. Deng, J. Huang, H. Li, Z. Li et al., 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li–S battery. Energy Storage Mater. 36, 466–477 (2021). https://doi.org/10.1016/j.ensm.2021.01.025
- R. Meng, Q. Du, N. Zhong, X. Zhou, S. Liu et al., A tandem electrocatalysis of sulfur reduction by bimetal 2D MOFs. Adv. Energy Mater. 11, 2102819 (2021). https://doi.org/10.1002/aenm.202102819
- P. Feng, W. Hou, Z. Bai, Y. Bai, K. Sun et al., Ultrathin two-dimensional bimetal NiCo-based MOF nanosheets as ultralight interlayer in lithium-sulfur batteries. Chin. Chem. Lett. 34, 107427 (2023). https://doi.org/10.1016/j.cclet.2022.04.025
- W. Li, X. Guo, P. Geng, M. Du, Q. Jing et al., Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li–S battery. Adv. Mater. 33, e2105163 (2021). https://doi.org/10.1002/adma.202105163
- C. Zha, D. Wu, Y. Zhao, J. Deng, J. Wu et al., Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries. J. Energy Chem. 52, 163–169 (2021). https://doi.org/10.1016/j.jechem.2020.04.059
- A. Amiri, R. Shahbazian-Yassar, Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 9, 782–823 (2021). https://doi.org/10.1039/D0TA09578H
- M.J. Theibault, C.R. McCormick, S. Lang, R.E. Schaak, H.D. Abruña, High entropy sulfide nanops as lithium polysulfide redox catalysts. ACS Nano 17, 18402–18410 (2023). https://doi.org/10.1021/acsnano.3c05869
- Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li et al., A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 23, 678–683 (2019). https://doi.org/10.1016/j.ensm.2019.02.030
- B. Fang, X. Tian, T. Wang, T. Wang, L. Qu et al., Restraining polysulfide with high-entropy metal nitride towards long cycle life and high capacity Li–S batteries. ChemElectroChem 7, 4737–4744 (2020). https://doi.org/10.1002/celc.202001215
- L. Tian, Z. Zhang, S. Liu, G. Li, X. Gao, High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium–sulfur batteries. Energy Environ. Mater. 5, 645–654 (2022). https://doi.org/10.1002/eem2.12215
- M. Du, X. Wang, P. Geng, Q. Li, Y. Gu et al., Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries. Chem. Eng. J. 420, 130518 (2021). https://doi.org/10.1016/j.cej.2021.130518
- M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 (2022). https://doi.org/10.1002/anie.202209350
- H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212–220 (2021). https://doi.org/10.1016/j.ensm.2021.09.003
- Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi et al., Multi-anionic and-cationic compounds: new high entropy materials for advanced Li–ion batteries. Energy Environ. Sci. 12, 2433–2442 (2019). https://doi.org/10.1039/C9EE00368A
- T. Wang, H. Chen, Z. Yang, J. Liang, S. Dai, High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 142, 4550–4554 (2020). https://doi.org/10.1021/jacs.9b12377
- Z. Rao, P.Y. Tung, R. Xie, Y. Wei, H. Zhang et al., Machine learning-enabled high-entropy alloy discovery. Science 378, 78–85 (2022). https://doi.org/10.1126/science.abo4940
- L. Chen, Z. Chen, X. Yao, B. Su, W. Chen, et al. High-entropy alloy catalysts: high-throughput and machine learning-driven design. J. Mater. Inform. 2, 19 (2022). https://doi.org/10.20517/jmi.2022.23
- Z.W. Chen, Z. Gariepy, L. Chen, X. Yao, A. Anand et al., Machine-learning-driven high-entropy alloy catalyst discovery to circumvent the scaling relation for CO2 reduction reaction. ACS Catal. 12, 14864–14871 (2022). https://doi.org/10.1021/acscatal.2c03675
- X. Wan, Z. Zhang, W. Yu, H. Niu, X. Wang et al., Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction. Patterns 3, 100553 (2022)
- Y. Men, D. Wu, Y. Hu, L. Li, P. Li et al., Understanding alkaline hydrogen oxidation reaction on PdNiRuIrRh high-entropy-alloy by machine learning potential. Angew. Chem. Int. Ed. 62, e202217976 (2023). https://doi.org/10.1002/anie.202217976
- Y. Feng, M. Xu, T. He, B. Chen, F. Gu et al., CoPSe: a new ternary anode material for stable and high-rate sodium/potassium-ion batteries. Adv. Mater. 33, e2007262 (2021). https://doi.org/10.1002/adma.202007262
- H. Li, R. Gao, B. Chen, C. Zhou, F. Shao et al., Vacancy-rich MoSSe with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li–S batteries. Nano Lett. 22, 4999–5008 (2022). https://doi.org/10.1021/acs.nanolett.2c01779
- M. Cheng, Z. Xing, R. Yan, Z. Zhao, T. Ma et al., Oxygen-modulated metal nitride clusters with moderate binding ability to insoluble Li2Sx for reversible polysulfide electrocatalysis. InfoMat 5, e12387 (2023). https://doi.org/10.1002/inf2.12387
- L. Sun, K. Li, J. Fu, B. Tian, C. Wang et al., Cerium oxysulfide with O–Ce–S bindings for efficient adsorption and conversion of lithium polysulfide in Li–S batteries. Inorg. Chem. 60, 12847–12854 (2021). https://doi.org/10.1021/acs.inorgchem.1c01184
- X. Wu, N. Liu, M. Wang, Y. Qiu, B. Guan et al., A class of catalysts of BiOX (X = Cl, Br, I) for anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries. ACS Nano 13, 13109–13115 (2019). https://doi.org/10.1021/acsnano.9b05908
- D. Wang, G. Du, Y. Wang, Y. Fan, D. Han et al., BiOI nanosheets-wrapped carbon fibers as efficient electrocatalyst for bidirectional polysulfide conversion in Li–S batteries. Chem. Eng. J. 430, 133015 (2022). https://doi.org/10.1016/j.cej.2021.133015
- D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano 13, 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
- X.-S. Chen, Y. Gao, G.-R. Zhu, H.-J. Chen, S.-C. Chen et al., Multifunctional interlayer with simultaneously capturing and catalytically converting polysulfides for boosting safety and performance of lithium-sulfur batteries at high-low temperatures. J. Energy Chem. 50, 248–259 (2020). https://doi.org/10.1016/j.jechem.2020.03.041
- J. Lu, Z. Wang, Y. Guo, Z. Jin, G. Cao et al., Ultrathin nanosheets of FeOOH with oxygen vacancies as efficient polysulfide electrocatalyst for advanced lithium–sulfur batteries. Energy Storage Mater. 47, 561–568 (2022). https://doi.org/10.1016/j.ensm.2022.02.008
- Y. Zhang, Y. Yang, C. Huang, J. Wang, X. Liu et al., Sulfur cathodes based on dual-functional GMs-MnOOH for high performance lithium sulfur batteries. Mater. Today Commun. 29, 102857 (2021). https://doi.org/10.1016/j.mtcomm.2021.102857
- Y. Zuo, Y. Zhu, R. Wan, W. Su, Y. Fan et al., The Electrocatalyst based on LiVPO4F/CNT to enhance the electrochemical kinetics for high performance Li-S batteries. Chem. Eng. J. 415, 129053 (2021). https://doi.org/10.1016/j.cej.2021.129053
- N. Li, T. Meng, L. Ma, H. Zhang, J. Yao et al., Curtailing carbon usage with addition of functionalized NiFe2O4 quantum dots: toward more practical S cathodes for Li–S cells. Nano-Micro Lett. 12, 145 (2020). https://doi.org/10.1007/s40820-020-00484-4
- J. Pu, M. Han, T. Wang, X. Zhu, M. Lu et al., The enhanced confinement effect of double shell hollow mesoporous spheres assembled with nitrogen-doped copper cobaltate nanops for enhancing lithium–sulfur batteries. Electrochim. Acta 404, 139597 (2022). https://doi.org/10.1016/j.electacta.2021.139597
- Q. Hao, G. Cui, Y. Zhang, J. Li, Z. Zhang, Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries. Chem. Eng. J. 381, 122672 (2020). https://doi.org/10.1016/j.cej.2019.122672
- Z. Shen, Q. Zhou, H. Yu, J. Tian, M. Shi et al., CoSe2/MoS2 heterostructures to couple polysulfide adsorption and catalysis in lithium-sulfur batteries. Chin. J. Chem. 39, 1138–1144 (2021). https://doi.org/10.1002/cjoc.202000661
- J. Liu, C. Hu, H. Li, N. Baikalov, Z. Bakenov et al., Novel Ni/Ni2P@C hollow heterostructure microsphere as efficient sulfur hosts for high-performance lithium-sulfur batteries. J. Alloys Compd. 871, 159576 (2021). https://doi.org/10.1016/j.jallcom.2021.159576
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33, e2101204 (2021). https://doi.org/10.1002/adma.202101204
- J.-L. Yang, S.-X. Zhao, Y.-M. Lu, X.-T. Zeng, W. Lv et al., In-situ topochemical nitridation derivative MoO2–Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. Nano Energy 68, 104356 (2020). https://doi.org/10.1016/j.nanoen.2019.104356
- S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao et al., Insight into MoS2–MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 11, 2003314 (2021). https://doi.org/10.1002/aenm.202003314
- H. Shi, J. Qin, P. Lu, C. Dong, J. He et al., Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries. Adv. Funct. Mater. 31, 2102314 (2021). https://doi.org/10.1002/adfm.202102314
- J. Li, Z. Xiong, Y. Sun, F. Li, Y. Feng et al., Balanced capture and catalytic ability toward polysulfides by designing MoO2–Co2Mo3O8 heterostructures for lithium-sulfur batteries. Nanoscale 13, 15689–15698 (2021). https://doi.org/10.1039/d1nr04506g
- B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10, 2000091 (2020). https://doi.org/10.1002/aenm.202000091
- J. Li, W. Xie, S. Zhang, S.-M. Xu, M. Shao, Boosting the rate performance of Li–S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. J. Mater. Chem. A 9, 11151–11159 (2021). https://doi.org/10.1039/D1TA00959A
- T.T. Nguyen, J. Balamurugan, H.W. Go, Q.P. Ngo, N.H. Kim et al., Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li–S batteries. Chem. Eng. J. 427, 131774 (2022). https://doi.org/10.1016/j.cej.2021.131774
- W. Yang, Y. Wei, Q. Chen, S. Qin, J. Zuo et al., A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium–sulfur batteries. J. Mater. Chem. A 8, 15816–15821 (2020). https://doi.org/10.1039/d0ta01664k
- D.-Q. Cai, J.-L. Yang, T. Liu, S.-X. Zhao, G. Cao, Interfaces-dominated Li2S nucleation behavior enabled by heterostructure catalyst for fast kinetics Li–S batteries. Nano Energy 89, 106452 (2021). https://doi.org/10.1016/j.nanoen.2021.106452
- J.-L. Yang, D.-Q. Cai, X.-G. Hao, L. Huang, Q. Lin et al., Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium-sulfur batteries. ACS Nano 15, 11491–11500 (2021). https://doi.org/10.1021/acsnano.1c01250
- Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33, e2100855 (2021). https://doi.org/10.1002/adma.202100855
- Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9, e2103456 (2022). https://doi.org/10.1002/advs.202103456
- W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 15, 7114–7130 (2021). https://doi.org/10.1021/acsnano.1c00270
- S. Chen, J. Luo, N. Li, X. Han, J. Wang et al., Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 30, 187–195 (2020). https://doi.org/10.1016/j.ensm.2020.05.002
- W. Li, Z. Gong, X. Yan, D. Wang, J. Liu et al., In situ engineered ZnS–FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 8, 433–442 (2020). https://doi.org/10.1039/C9TA11451C
- T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10, 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
- B. Guan, X. Sun, Y. Zhang, X. Wu, Y. Qiu et al., The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries. Chin. Chem. Lett. 32, 2249–2253 (2021). https://doi.org/10.1016/j.cclet.2020.12.051
- C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a mott–schottky catalyst with multiple adsorption sites for robust lithium–sulfur batteries. Adv. Energy Mater. 11, 2100432 (2021). https://doi.org/10.1002/aenm.202100432
- Y. Wang, R. Zhang, Z. Sun, H. Wu, S. Lu et al., Spontaneously formed mott-schottky electrocatalyst for lithium-sulfur batteries. Adv. Mater. Interfaces 7, 1902092 (2020). https://doi.org/10.1002/admi.201902092
- C. Ye, Y. Jiao, H. Jin, A.D. Slattery, K. Davey et al., 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem. Int. Ed. 57, 16703–16707 (2018). https://doi.org/10.1002/anie.201810579
- K. Cai, T. Wang, Z. Wang, J. Wang, L. Li et al., A cocklebur-like sulfur host with the TiO2–VOx heterostructure efficiently implementing one-step adsorption-diffusion-conversion towards long-life Li–S batteries. Compos. Part B Eng. 249, 110410 (2023). https://doi.org/10.1016/j.compositesb.2022.110410
- Y. Li, T. Jiang, H. Yang, D. Lei, X. Deng et al., A heterostuctured Co3S4/MnS nanotube array as a catalytic sulfur host for lithium–sulfur batteries. Electrochim. Acta 330, 135311 (2020). https://doi.org/10.1016/j.electacta.2019.135311
- L. Wu, J. Hu, X. Yang, Z. Liang, S. Chen et al., Synergistic effect of adsorption and electrocatalysis of CoO/NiO heterostructure nanosheet assembled nanocages for high-performance lithium–sulfur batteries. J. Mater. Chem. A 10, 23811–23822 (2022). https://doi.org/10.1039/D2TA06876A
- Y. Xiao, Y. Liu, G. Qin, P. Han, X. Guo et al., Building MoSe2–Mo2C incorporated hollow fluorinated carbon fibers for Li–S batteries. Compos. Part B Eng. 193, 108004 (2020). https://doi.org/10.1016/j.compositesb.2020.108004
- R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng et al., Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 32, e2000315 (2020). https://doi.org/10.1002/adma.202000315
- Y. Yao, H. Wang, H. Yang, S. Zeng, R. Xu et al., A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries. Adv. Mater. 32, e1905658 (2020). https://doi.org/10.1002/adma.201905658
- J. Cai, J. Jin, Z. Fan, C. Li, Z. Shi et al., 3D printing of a V8C7–VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li–S batteries. Adv. Mater. 32, 2005967 (2020). https://doi.org/10.1002/adma.202005967
- Z. Jin, Z. Liang, M. Zhao, Q. Zhang, B. Liu et al., Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 394, 124983 (2020). https://doi.org/10.1016/j.cej.2020.124983
- K. Guo, G. Qu, J. Li, H. Xia, W. Yan et al., Polysulfides shuttling remedies by interface-catalytic effect of Mn3O4-MnPx heterostructure. Energy Storage Mater. 36, 496–503 (2021). https://doi.org/10.1016/j.ensm.2021.01.021
- Z. Xu, Z. Wang, M. Wang, H. Cui, Y. Liu et al., Large-scale synthesis of Fe9S10/Fe3O4@C heterostructure as integrated trapping-catalyzing interlayer for highly efficient lithium-sulfur batteries. Chem. Eng. J. 422, 130049 (2021). https://doi.org/10.1016/j.cej.2021.130049
- R. Meng, Q. Deng, C. Peng, B. Chen, K. Liao et al., Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today 35, 100991 (2020). https://doi.org/10.1016/j.nantod.2020.100991
- Y. Liu, D. Hong, M. Chen, Z. Su, Y. Gao et al., Pt-NbC composite as a bifunctional catalyst for redox transformation of polysulfides in high-rate-performing lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13, 35008–35018 (2021). https://doi.org/10.1021/acsami.1c10228
- Y. Liu, D. Hong, M. Chen, Z. Su, Y. Gao et al., Synergistic action of Pt and Nb2O5 ultrafine nanops for bidirectional conversion of polysulfides in high-performance lithium-sulfur cells. Chem. Eng. J. 430, 132714 (2022). https://doi.org/10.1016/j.cej.2021.132714
- X. Zhou, L. Li, J. Yang, L. Xu, J. Tang, Cobalt and molybdenum carbide nanops grafted on nitrogen-doped carbon nanotubes as efficient chemical anchors and polysulfide conversion catalysts for lithium-sulfur batteries. ChemElectroChem 7, 3767–3775 (2020). https://doi.org/10.1002/celc.202000909
- H. Li, Y. Wang, H. Chen, B. Niu, W. Zhang et al., Synergistic mediation of polysulfide immobilization and conversion by a catalytic and dual-adsorptive system for high performance lithium-sulfur batteries. Chem. Eng. J. 406, 126802 (2021). https://doi.org/10.1016/j.cej.2020.126802
- C. Qi, M. Cai, Z. Li, J. Jin, B.V.R. Chowdari et al., Ultrathin TiO2 surface layer coated TiN nanops in freestanding film for high sulfur loading Li–S battery. Chem. Eng. J. 399, 125674 (2020). https://doi.org/10.1016/j.cej.2020.125674
- C. Wei, M. Tian, M. Wang, Z. Shi, L. Yu et al., Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li–S batteries. ACS Nano 14, 16073–16084 (2020). https://doi.org/10.1021/acsnano.0c07999
- S. Xue, W. Huang, W. Lin, W. Xing, M. Shen et al., Interfacial engineering of lattice coherency at ZnO–ZnS photocatalytic heterojunctions. Chem Catal. 2, 125–139 (2022). https://doi.org/10.1016/j.checat.2021.11.019
- Z. Li, C. Mao, Q. Pei, P.N. Duchesne, T. He et al., Engineered disorder in CO2 photocatalysis. Nat. Commun. 13, 7205 (2022). https://doi.org/10.1038/s41467-022-34798-1
- H. Zhang, L.K. Ono, G. Tong, Y. Liu, Y. Qi, Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge. Nat. Commun. 12, 4738 (2021). https://doi.org/10.1038/s41467-021-24976-y
- J. Cai, Z. Sun, W. Cai, N. Wei, Y. Fan et al., A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting Bi-directional sulfur redox in Li–S batteries. Adv. Funct. Mater. 31, 2100586 (2021). https://doi.org/10.1002/adfm.202100586
- W. Xu, H. Pang, H. Zhou, Z. Jian, R. Hu et al., Lychee-like TiO2@TiN dual-function composite material for lithium-sulfur batteries. RSC Adv. 10, 2670–2676 (2020). https://doi.org/10.1039/c9ra09534a
- J. Li, Y. Chen, S. Zhang, W. Xie, S.-M. Xu et al., Coordinating adsorption and catalytic activity of polysulfide on hierarchical integrated electrodes for high-performance flexible Li–S batteries. ACS Appl. Mater. Interfaces 12, 49519–49529 (2020). https://doi.org/10.1021/acsami.0c10453
- Z. He, X. Liu, M. Zhang, L. Guo, M. Ajmal et al., Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation. J. Energy Chem. 85, 570–580 (2023). https://doi.org/10.1016/j.jechem.2023.06.043
- W. Zhou, D. Zhao, Q. Wu, J. Dan, X. Zhu et al., Rational design of the Lotus-like N-Co2VO4-co heterostructures with well-defined interfaces in suppressing the shuttle effect and dendrite growth in lithium–sulfur batteries. Small 17, 2104109 (2021). https://doi.org/10.1002/smll.202104109
References
Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 34, 2200102 (2022). https://doi.org/10.1002/adma.202200102
T. Liu, H. Hu, X. Ding, H. Yuan, C. Jin et al., 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 30, 346–366 (2020). https://doi.org/10.1016/j.ensm.2020.05.023
X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460
M. Barghamadi, A. Kapoor, C. Wen, A review on Li–S batteries as a high efficiency rechargeable lithium battery. J. Electrochem. Soc. 160, A1256–A1263 (2013). https://doi.org/10.1149/2.096308jes
W.-G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746–18757 (2019). https://doi.org/10.1002/anie.201902413
Z.-L. Xu, J.-K. Kim, K. Kang, Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19, 84–107 (2018). https://doi.org/10.1016/j.nantod.2018.02.006
G. Cao, R. Duan, X. Li, Controllable catalysis behavior for high performance lithium sulfur batteries: from kinetics to strategies. EnergyChem 5, 100096 (2023). https://doi.org/10.1016/j.enchem.2022.100096
X. Liu, J.-Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759
L. Zhou, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed. Adv. Energy Mater. 11, 2001304 (2021). https://doi.org/10.1002/aenm.202001304
D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2017). https://doi.org/10.1002/advs.201700270
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
C. Zhou, M. Chen, C. Dong, H. Wang, C. Shen et al., The continuous efficient conversion and directional deposition of lithium (poly)sulfides enabled by bimetallic site regulation. Nano Energy 98, 107332 (2022). https://doi.org/10.1016/j.nanoen.2022.107332
C. Deng, Z. Wang, L. Feng, S. Wang, J. Yu, Electrocatalysis of sulfur and polysulfides in Li–S batteries. J. Mater. Chem. A 8, 19704–19728 (2020). https://doi.org/10.1039/D0TA05964A
G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 10, 1903008 (2020). https://doi.org/10.1002/aenm.201903008
X. Song, Y. Qu, L. Zhao, M. Zhao, Monolayer Fe3GeX2 (X = S, Se, and Te) as highly efficient electrocatalysts for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 13, 11845–11851 (2021). https://doi.org/10.1021/acsami.0c21136
L. Kong, X. Chen, B.-Q. Li, H.-J. Peng, J.-Q. Huang et al., A bifunctional perovskite promoter for polysulfide regulation toward stable lithium–sulfur batteries. Adv. Mater. 30, 1705219 (2018). https://doi.org/10.1002/adma.201705219
C. Yao, W. Li, K. Duan, C. Zhu, J. Li et al., Properties of S-functionalized nitrogen-based MXene (Ti2NS2) as a hosting material for lithium–sulfur batteries. Nanomaterials 11, 2478 (2021). https://doi.org/10.3390/nano11102478
X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
Y. Yan, H. Li, C. Cheng, T. Yan, W. Gao et al., Boosting polysulfide redox conversion of Li–S batteries by one-step-synthesized Co–Mo bimetallic nitride. J. Energy Chem. 61, 336–346 (2021). https://doi.org/10.1016/j.jechem.2021.03.041
L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li–S batteries. ACS Nano 14, 8495–8507 (2020). https://doi.org/10.1021/acsnano.0c02762
R. Xiao, T. Yu, S. Yang, K. Chen, Z. Li et al., Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium–sulfur batteries. Energy Storage Mater. 51, 890–899 (2022). https://doi.org/10.1016/j.ensm.2022.07.024
F. Shi, J. Yu, C. Chen, S.P. Lau, W. Lv et al., Advances in understanding and regulation of sulfur conversion processes in metal–sulfur batteries. J. Mater. Chem. A 10, 19412–19443 (2022). https://doi.org/10.1039/D2TA02217F
Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
J. Qin, R. Wang, P. Xiao, D. Wang, Engineering cooperative catalysis in Li–S batteries. Adv. Energy Mater. 13, 2300611 (2023). https://doi.org/10.1002/aenm.202300611
C.-L. Song, G.-H. Li, Y. Yang, X.-J. Hong, S. Huang et al., 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li–S battery. Chem. Eng. J. 381, 122701 (2020). https://doi.org/10.1016/j.cej.2019.122701
Q. Zhang, P. Li, D. Zhou, Z. Chang, Y. Kuang et al., Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 13, 201701648 (2017). https://doi.org/10.1002/smll.201701648
P. Zeng, C. Liu, X. Zhao, C. Yuan, Y. Chen et al., Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium–sulfur batteries. ACS Nano 14, 11558–11569 (2020). https://doi.org/10.1021/acsnano.0c04054
J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan et al., Deciphering the modulation essence of p bands in co-based compounds on Li–S chemistry. Joule 2, 2681–2693 (2018). https://doi.org/10.1016/j.joule.2018.08.010
C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li et al., Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 29, 1903842 (2019). https://doi.org/10.1002/adfm.201903842
M. Liu, L. Wang, K. Zhao, S. Shi, Q. Shao et al., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890–2923 (2019). https://doi.org/10.1039/C9EE01722D
G. Liu, W. Wang, P. Zeng, C. Yuan, L. Wang et al., Strengthened d-p orbital hybridization through asymmetric coordination engineering of single-atom catalysts for durable lithium–sulfur batteries. Nano Lett. 22, 6366–6374 (2022). https://doi.org/10.1021/acs.nanolett.2c02183
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries. Adv. Mater. Deerfield Beach Fla 33, e2105947 (2021). https://doi.org/10.1002/adma.202105947
Y. Liu, S. Ma, L. Liu, J. Koch, M. Rosebrock et al., Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li–S batteries. Adv. Funct. Mater. 30, 2002462 (2020). https://doi.org/10.1002/adfm.202002462
Y. Zhong, K.R. Yang, W. Liu, P. He, V. Batista et al., Mechanistic insights into surface chemical interactions between lithium polysulfides and transition metal oxides. J. Phys. Chem. C 121, 14222–14227 (2017). https://doi.org/10.1021/ACS.JPCC.7B04170
F. Shi, L. Zhai, Q. Liu, J. Yu, S.P. Lau et al., Emerging catalytic materials for practical lithium–sulfur batteries. J. Energy Chem. 76, 127–145 (2023). https://doi.org/10.1016/j.jechem.2022.08.027
Y.C. Jiang, H.M.U. Arshad, H.J. Li, S. Liu, G.R. Li et al., Crystalline multi-metallic compounds as host materials in cathode for lithium–sulfur batteries. Small 17, e2005332 (2021). https://doi.org/10.1002/smll.202005332
S. Huang, Z. Wang, Y. Von Lim, Y. Wang, Y. Li et al., Recent advances in heterostructure engineering for lithium–sulfur batteries. Adv. Energy Mater. 11, 2003689 (2021). https://doi.org/10.1002/aenm.202003689
J. Wang, W.-Q. Han, A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 32, 2107166 (2022). https://doi.org/10.1002/adfm.202107166
M.A. Al-Tahan, Y. Dong, A.E. Shrshr, X. Liu, R. Zhang et al., Enormous-sulfur-content cathode and excellent electrochemical performance of Li–S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator. J. Colloid Interface Sci. 609, 235–248 (2022). https://doi.org/10.1016/j.jcis.2021.12.035
L. Shi, H. Fang, X. Yang, J. Xue, C. Li et al., Fe-cation doping in NiSe2 as an effective method of electronic structure modulation towards high-performance lithium–sulfur batteries. Chemsuschem 14, 1710–1719 (2021). https://doi.org/10.1002/cssc.202100216
T. Yang, K. Liu, T. Wu, J. Zhang, X. Zheng et al., Rational valence modulation of bimetallic carbide assisted by defect engineering to enhance polysulfide conversion for lithium–sulfur batteries. J. Mater. Chem. A 8, 18032–18042 (2020). https://doi.org/10.1039/D0TA05927G
R. Zhang, Y. Dong, M.A. Al-Tahan, Y. Zhang, R. Wei et al., Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries. J. Energy Chem. 60, 85–94 (2021). https://doi.org/10.1016/j.jechem.2021.01.004
H. Zhang, R. Dai, S. Zhu, L. Zhou, Q. Xu et al., Bimetallic nitride modified separator constructs internal electric field for high-performance lithium-sulfur battery. Chem. Eng. J. 429, 132454 (2022). https://doi.org/10.1016/j.cej.2021.132454
W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma et al., Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 15, 7491–7499 (2021). https://doi.org/10.1021/acsnano.1c00896
X. Gao, X. Yang, M. Li, Q. Sun, J. Liang et al., Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li–S batteries. Adv. Funct. Mater. 29, 1806724 (2019). https://doi.org/10.1002/adfm.201806724
B. Wang, L. Wang, D. Ding, Y. Zhai, F. Wang et al., Zinc-assisted cobalt ditelluride polyhedra inducing lattice strain to endow efficient adsorption-catalysis for high-energy lithium–sulfur batteries. Adv. Mater. 34, e2204403 (2022). https://doi.org/10.1002/adma.202204403
C. Shang, G. Li, B. Wei, J. Wang, R. Gao et al., Dissolving vanadium into titanium nitride lattice framework for rational polysulfide regulation in Li–S batteries. Adv. Energy Mater. 11, 2003020 (2021). https://doi.org/10.1002/aenm.202003020
W. Xiao, Q. He, Y. Zhao, Virtual screening of two-dimensional selenides and transition metal doped SnSe for lithium–sulfur batteries: a first-principles study. Appl. Surf. Sci. 570, 151213 (2021). https://doi.org/10.1016/j.apsusc.2021.151213
L. Wang, Z. Hu, X. Wan, W. Hua, H. Li et al., Li2S4 anchoring governs the catalytic sulfur reduction on defective SmMn2O5 in lithium–sulfur battery. Adv. Energy Mater. 12, 2200340 (2022). https://doi.org/10.1002/aenm.202200340
Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
Z. Cheng, Y. Wang, W. Zhang, M. Xu, Boosting polysulfide conversion in lithium–sulfur batteries by cobalt-doped vanadium nitride microflowers. ACS Appl. Energy Mater. 3, 4523–4530 (2020). https://doi.org/10.1021/acsaem.0c00205
Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu et al., Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 9, 1900953 (2019). https://doi.org/10.1002/aenm.201900953
J. Shan, W. Wang, B. Zhang, X. Wang, W. Zhou et al., Unraveling the atomic-level manipulation mechanism of Li2 S redox kinetics via electron-donor doping for designing high-volumetric-energy-density, lean-electrolyte lithium-sulfur batteries. Adv. Sci. 9, e2204192 (2022). https://doi.org/10.1002/advs.202204192
L. Chen, Y. Xu, G. Cao, H.M.K. Sari, R. Duan et al., Bifunctional catalytic effect of CoSe2 for lithium–sulfur batteries: single doping versus dual doping. Adv. Funct. Mater. 32, 2270052 (2022). https://doi.org/10.1002/adfm.202270052
T. Feng, T. Zhao, N. Zhang, Y. Duan, L. Li et al., 2D amorphous Mo-doped CoB for bidirectional sulfur catalysis in lithium sulfur batteries. Adv. Funct. Mater. 32, 2202766 (2022). https://doi.org/10.1002/adfm.202202766
O. Eroglu, M.S. Kiai, H. Kizil, Performance enhancement of Li-S battery with the anatase nano structured Fe doped TiO2 as a robust interlayer. J. Alloys Compd. 838, 155607 (2020). https://doi.org/10.1016/j.jallcom.2020.155607
W. Wang, Y. Zhao, Y. Zhang, J. Wang, G. Cui et al., Defect-rich multishelled Fe-doped Co3O4 hollow microspheres with multiple spatial confinements to facilitate catalytic conversion of polysulfides for high-performance Li–S batteries. ACS Appl. Mater. Interfaces 12, 12763–12773 (2020). https://doi.org/10.1021/acsami.9b21853
W. Cui, H. Li, Y. Liu, Q. Cai, J. Zhao, Capture and catalytic conversion of lithium polysulfides by metal-doped MoS2 monolayers for lithium–sulfur batteries: a computational study. Phys. E Low Dimension. Syst. Nanostruct. 130, 114715 (2021). https://doi.org/10.1016/j.physe.2021.114715
H. Pan, X. Huang, X. Yan, L. Liu, L. Xia et al., Metal-doped mesoporous silica as sulfur hosts in lithium–sulfur battery with enhanced conductivity and polysulfide adsorption ability. J. Electroanal. Chem. 832, 361–367 (2019). https://doi.org/10.1016/j.jelechem.2018.11.019
T. Feng, T. Zhao, S. Zhu, N. Zhang, Z. Wei et al., Anion-doped cobalt selenide with porous architecture for high-rate and flexible lithium–sulfur batteries. Small Methods 5, e2100649 (2021). https://doi.org/10.1002/smtd.202100649
Y. Li, H. Wu, D. Wu, H. Wei, Y. Guo et al., High-density oxygen doping of conductive metal sulfides for better polysulfide trapping and Li2 S-S8 redox kinetics in high areal capacity lithium–sulfur batteries. Adv. Sci. 9, e2200840 (2022). https://doi.org/10.1002/advs.202200840
M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett. 5, 3041–3050 (2020). https://doi.org/10.1021/acsenergylett.0c01564
D. Sun, J. Zhou, D. Rao, L. Zhu, S. Niu et al., Regulating the electron filling state of d orbitals in Ta-based compounds for tunable lithium–sulfur chemistry. Sustain. Mater. Technol. 28, e00271 (2021). https://doi.org/10.1016/j.susmat.2021.e00271
W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium–sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34, e2106370 (2022). https://doi.org/10.1002/adma.202106370
L. Shi, W. Yuan, J. Liu, W. Zhang, S. Hou et al., P-doped NiSe2 nanorods grown on activated carbon cloths for high-loading lithium–sulfur batteries. J. Alloys Compd. 875, 160045 (2021). https://doi.org/10.1016/j.jallcom.2021.160045
F. Liu, N. Wang, C. Shi, J. Sha, L. Ma et al., Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium–sulfur batteries. Chem. Eng. J. 431, 133923 (2022). https://doi.org/10.1016/j.cej.2021.133923
J. Liu, Z. Qiao, Q. Xie, D.-L. Peng, R.-J. Xie, Phosphorus-doped metal-organic framework-derived CoS2 nanoboxes with improved adsorption-catalysis effect for Li–S batteries. ACS Appl. Mater. Interfaces 13, 15226–15236 (2021). https://doi.org/10.1021/acsami.1c00494
H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 9, 1902096 (2019). https://doi.org/10.1002/aenm.201902096
S. Hu, M. Yi, H. Wu, T. Wang, X. Ma et al., Ionic-liquid-assisted synthesis of N, F, and B Co-doped CoFe2O4–x on multiwalled carbon nanotubes with enriched oxygen vacancies for Li–S batteries. Adv. Funct. Mater. 32, 2111084 (2022). https://doi.org/10.1002/adfm.202111084
Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei et al., Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li–S batteries. Adv. Mater. 33, 2103050 (2021). https://doi.org/10.1002/adma.202103050
A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 50, 9817–9844 (2021). https://doi.org/10.1039/d1cs00330e
C.Y. Zhang, C. Zhang, G.W. Sun, J.L. Pan, L. Gong et al., Spin effect to promote reaction kinetics and overall performance of lithium–sulfur batteries under external magnetic field. Angew. Chem. Int. Ed. 61, e202211570 (2022). https://doi.org/10.1002/anie.202211570
C.-C. Lin, T.-R. Liu, S.-R. Lin, K.M. Boopathi, C.-H. Chiang et al., Spin-polarized photocatalytic CO2 reduction of Mn-doped perovskite nanoplates. J. Am. Chem. Soc. 144, 15718–15726 (2022). https://doi.org/10.1021/jacs.2c06060
J. Ran, L. Wang, M. Si, X. Liang, D. Gao, Tailoring spin state of perovskite oxides by fluorine atom doping for efficient oxygen electrocatalysis. Small 19, e2206367 (2023). https://doi.org/10.1002/smll.202206367
G. Song, R. Gao, Z. Zhao, Y. Zhang, H. Tan et al., High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Appl. Catal. B Environ. 301, 120809 (2022). https://doi.org/10.1016/j.apcatb.2021.120809
S. Liu, B. Zhang, Y. Cao, H. Wang, Y. Zhang et al., Understanding the effect of nickel doping in cobalt spinel oxides on regulating spin state to promote the performance of the oxygen reduction reaction and zinc–air batteries. ACS Energy Lett. 8, 159–168 (2023). https://doi.org/10.1021/acsenergylett.2c02457
Y. Li, X. Wang, M. Sun, Z. Zhao, Z. Wang et al., NiCo (oxy)selenide electrocatalysts via anionic regulation for high-performance lithium–sulfur batteries. J. Mater. Chem. A 10, 5410–5419 (2022). https://doi.org/10.1039/D1TA10723B
H. Shan, J. Qin, J. Wang, H.M.K. Sari, L. Lei et al., Doping-induced electronic/ionic engineering to optimize the redox kinetics for potassium storage: a case study of Ni-doped CoSe2. Adv. Sci. 9, e2200341 (2022). https://doi.org/10.1002/advs.202200341
S. Li, P. Xu, M.K. Aslam, C. Chen, A. Rashid et al., Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Mater. 27, 51–60 (2020). https://doi.org/10.1016/j.ensm.2020.01.017
Z. Wu, S. Chen, L. Wang, Q. Deng, Z. Zeng et al., Implanting nickel and cobalt phosphide into well-defined carbon nanocages: a synergistic adsorption-electrocatalysis separator mediator for durable high-power Li–S batteries. Energy Storage Mater. 38, 381–388 (2021). https://doi.org/10.1016/j.ensm.2021.03.026
J. Duan, Y. Zou, Z. Li, B. Long, Y. Du, Hollow quasi-polyhedron structure of NiCoP with strong constraint sulfur effect for lithium sulfur battery. J. Electroanal. Chem. 847, 113187 (2019). https://doi.org/10.1016/j.jelechem.2019.113187
S. Zhao, Y. Li, F. Zhang, J. Guo, Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. J. Alloys Compd. Interdiscip. J. Mater. Sci. Solid-State Chem. Phys. 805, 873–879 (2019). https://doi.org/10.1016/j.jallcom.2019.07.145
J. Guo, Y. Huang, S. Zhao, Z. Li, Z. Wang et al., Array-structured double-ion cooperative adsorption sites as multifunctional sulfur hosts for lithium-sulfur batteries with low electrolyte/sulfur ratio. ACS Nano 15, 16322–16334 (2021). https://doi.org/10.1021/acsnano.1c05536
S. Maletti, F.S. Podetti, S. Oswald, L. Giebeler, C.A. Barbero et al., LiV3O8-based functional separator coating as effective polysulfide mediator for lithium–sulfur batteries. ACS Appl. Energy Mater. 3, 2893–2899 (2020). https://doi.org/10.1021/acsaem.9b02502
X. Wang, J. Han, C. Luo, B. Zhang, J. Ma et al., Coordinated adsorption and catalytic conversion of polysulfides enabled by perovskite bimetallic hydroxide nanocages for lithium–sulfur batteries. Small 17, e2101538 (2021). https://doi.org/10.1002/smll.202101538
S. Bhoyate, B. Park, S.H. Oh, W. Choi, Defect engineered MoWS alloy catalyst boost the polysulfide conversion in lithium–sulfur battery. J. Power. Sources 511, 230426 (2021). https://doi.org/10.1016/j.jpowsour.2021.230426
L. Zhang, Z. Chen, N. Dongfang, M. Li, C. Diao et al. Li–S batteries: nickel–cobalt double hydroxide as a multifunctional mediator for ultrahigh‐rate and ultralong‐life Li–S batteries. 8, 1870152 (2018). https://doi.org/10.1002/aenm.201870152
T. Li, Y. Li, J. Yang, Y. Deng, M. Wu et al., In situ electrochemical activation derived LixMoOy nanorods as the multifunctional interlayer for fast kinetics Li–S batteries. Small 17, 2104613 (2021). https://doi.org/10.1002/smll.202104613
Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong et al., Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30, 1906661 (2020). https://doi.org/10.1002/adfm.201906661
H. Gao, S. Ning, J. Zou, S. Men, Y. Zhou et al., The electrocatalytic activity of BaTiO3 nanops towards polysulfides enables high-performance lithium–sulfur batteries. J. Energy Chem. 48, 208–216 (2020). https://doi.org/10.1016/j.jechem.2020.01.028
Y. Zhou, H. Shu, Y. Zhou, T. Sun, M. Han et al., Flower-like Bi4Ti3O12/carbon nanotubes as reservoir and promoter of polysulfide for lithium sulfur battery. J. Power. Sources 453, 227896 (2020). https://doi.org/10.1016/j.jpowsour.2020.227896
Y. Hu, A. Hu, J. Wang, X. Niu, M. Zhou et al., Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium–sulfur batteries. J. Mater. Chem. A 9, 9771–9779 (2021). https://doi.org/10.1039/D1TA00798J
X.-J. Hong, C.-L. Song, Z.-M. Wu, Z.-H. Li, Y.-P. Cai et al., Sulfophilic and lithophilic sites in bimetal nickel-zinc carbide with fast conversion of polysulfides for high-rate Li–S battery. Chem. Eng. J. 404, 126566 (2021). https://doi.org/10.1016/j.cej.2020.126566
L. Zhang, F. Wan, H. Cao, L. Liu, Y. Wang et al., Integration of binary active sites: Co3V2O8 as polysulfide traps and catalysts for lithium–sulfur battery with superior cycling stability. Small 16, 1907153 (2020). https://doi.org/10.1002/smll.201907153
D. He, X. Liu, X. Li, P. Lyu, J. Chen et al., Regulating the polysulfide redox kinetics for high-performance lithium–sulfur batteries through highly sulfiphilic FeWO4 nanorods. Chem. Eng. J. 419, 129509 (2021). https://doi.org/10.1016/j.cej.2021.129509
S. Bhoyate, J. Kim, E. Lee, B. Park, E. Lee et al., Mixed phase 2D Mo0.5W0.5S2 alloy as a multi-functional electrocatalyst for a high-performance cathode in Li–S batteries. J. Mater. Chem. A 8, 12436–12445 (2020). https://doi.org/10.1039/D0TA04354K
T. Sun, X. Zhao, B. Li, H. Shu, L. Luo et al., NiMoO4 nanosheets anchored on N–S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li–S battery. Adv. Funct. Mater. 31, 2101285 (2021). https://doi.org/10.1002/adfm.202101285
W. Qiu, G. Li, D. Luo, Y. Zhang, Y. Zhao et al., Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium-sulfur batteries. Adv. Sci. 8, 2003400 (2021). https://doi.org/10.1002/advs.202003400
C. Zhou, Z. Li, X. Xu, L. Mai, Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 8, nwab055 (2021). https://doi.org/10.1093/nsr/nwab055
Z.-J. Zheng, H. Ye, Z.-P. Guo, Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy Environ. Sci. 14, 1835–1853 (2021). https://doi.org/10.1039/D0EE03181J
P. Geng, M. Du, X. Guo, H. Pang, Z. Tian et al., Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium–sulfur batteries. Energy Environ. Mater. 5, 599–607 (2022). https://doi.org/10.1002/eem2.12196
Y. Wang, Z. Deng, J. Huang, H. Li, Z. Li et al., 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li–S battery. Energy Storage Mater. 36, 466–477 (2021). https://doi.org/10.1016/j.ensm.2021.01.025
R. Meng, Q. Du, N. Zhong, X. Zhou, S. Liu et al., A tandem electrocatalysis of sulfur reduction by bimetal 2D MOFs. Adv. Energy Mater. 11, 2102819 (2021). https://doi.org/10.1002/aenm.202102819
P. Feng, W. Hou, Z. Bai, Y. Bai, K. Sun et al., Ultrathin two-dimensional bimetal NiCo-based MOF nanosheets as ultralight interlayer in lithium-sulfur batteries. Chin. Chem. Lett. 34, 107427 (2023). https://doi.org/10.1016/j.cclet.2022.04.025
W. Li, X. Guo, P. Geng, M. Du, Q. Jing et al., Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li–S battery. Adv. Mater. 33, e2105163 (2021). https://doi.org/10.1002/adma.202105163
C. Zha, D. Wu, Y. Zhao, J. Deng, J. Wu et al., Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries. J. Energy Chem. 52, 163–169 (2021). https://doi.org/10.1016/j.jechem.2020.04.059
A. Amiri, R. Shahbazian-Yassar, Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 9, 782–823 (2021). https://doi.org/10.1039/D0TA09578H
M.J. Theibault, C.R. McCormick, S. Lang, R.E. Schaak, H.D. Abruña, High entropy sulfide nanops as lithium polysulfide redox catalysts. ACS Nano 17, 18402–18410 (2023). https://doi.org/10.1021/acsnano.3c05869
Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li et al., A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 23, 678–683 (2019). https://doi.org/10.1016/j.ensm.2019.02.030
B. Fang, X. Tian, T. Wang, T. Wang, L. Qu et al., Restraining polysulfide with high-entropy metal nitride towards long cycle life and high capacity Li–S batteries. ChemElectroChem 7, 4737–4744 (2020). https://doi.org/10.1002/celc.202001215
L. Tian, Z. Zhang, S. Liu, G. Li, X. Gao, High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium–sulfur batteries. Energy Environ. Mater. 5, 645–654 (2022). https://doi.org/10.1002/eem2.12215
M. Du, X. Wang, P. Geng, Q. Li, Y. Gu et al., Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries. Chem. Eng. J. 420, 130518 (2021). https://doi.org/10.1016/j.cej.2021.130518
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 (2022). https://doi.org/10.1002/anie.202209350
H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212–220 (2021). https://doi.org/10.1016/j.ensm.2021.09.003
Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi et al., Multi-anionic and-cationic compounds: new high entropy materials for advanced Li–ion batteries. Energy Environ. Sci. 12, 2433–2442 (2019). https://doi.org/10.1039/C9EE00368A
T. Wang, H. Chen, Z. Yang, J. Liang, S. Dai, High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 142, 4550–4554 (2020). https://doi.org/10.1021/jacs.9b12377
Z. Rao, P.Y. Tung, R. Xie, Y. Wei, H. Zhang et al., Machine learning-enabled high-entropy alloy discovery. Science 378, 78–85 (2022). https://doi.org/10.1126/science.abo4940
L. Chen, Z. Chen, X. Yao, B. Su, W. Chen, et al. High-entropy alloy catalysts: high-throughput and machine learning-driven design. J. Mater. Inform. 2, 19 (2022). https://doi.org/10.20517/jmi.2022.23
Z.W. Chen, Z. Gariepy, L. Chen, X. Yao, A. Anand et al., Machine-learning-driven high-entropy alloy catalyst discovery to circumvent the scaling relation for CO2 reduction reaction. ACS Catal. 12, 14864–14871 (2022). https://doi.org/10.1021/acscatal.2c03675
X. Wan, Z. Zhang, W. Yu, H. Niu, X. Wang et al., Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction. Patterns 3, 100553 (2022)
Y. Men, D. Wu, Y. Hu, L. Li, P. Li et al., Understanding alkaline hydrogen oxidation reaction on PdNiRuIrRh high-entropy-alloy by machine learning potential. Angew. Chem. Int. Ed. 62, e202217976 (2023). https://doi.org/10.1002/anie.202217976
Y. Feng, M. Xu, T. He, B. Chen, F. Gu et al., CoPSe: a new ternary anode material for stable and high-rate sodium/potassium-ion batteries. Adv. Mater. 33, e2007262 (2021). https://doi.org/10.1002/adma.202007262
H. Li, R. Gao, B. Chen, C. Zhou, F. Shao et al., Vacancy-rich MoSSe with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li–S batteries. Nano Lett. 22, 4999–5008 (2022). https://doi.org/10.1021/acs.nanolett.2c01779
M. Cheng, Z. Xing, R. Yan, Z. Zhao, T. Ma et al., Oxygen-modulated metal nitride clusters with moderate binding ability to insoluble Li2Sx for reversible polysulfide electrocatalysis. InfoMat 5, e12387 (2023). https://doi.org/10.1002/inf2.12387
L. Sun, K. Li, J. Fu, B. Tian, C. Wang et al., Cerium oxysulfide with O–Ce–S bindings for efficient adsorption and conversion of lithium polysulfide in Li–S batteries. Inorg. Chem. 60, 12847–12854 (2021). https://doi.org/10.1021/acs.inorgchem.1c01184
X. Wu, N. Liu, M. Wang, Y. Qiu, B. Guan et al., A class of catalysts of BiOX (X = Cl, Br, I) for anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries. ACS Nano 13, 13109–13115 (2019). https://doi.org/10.1021/acsnano.9b05908
D. Wang, G. Du, Y. Wang, Y. Fan, D. Han et al., BiOI nanosheets-wrapped carbon fibers as efficient electrocatalyst for bidirectional polysulfide conversion in Li–S batteries. Chem. Eng. J. 430, 133015 (2022). https://doi.org/10.1016/j.cej.2021.133015
D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano 13, 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
X.-S. Chen, Y. Gao, G.-R. Zhu, H.-J. Chen, S.-C. Chen et al., Multifunctional interlayer with simultaneously capturing and catalytically converting polysulfides for boosting safety and performance of lithium-sulfur batteries at high-low temperatures. J. Energy Chem. 50, 248–259 (2020). https://doi.org/10.1016/j.jechem.2020.03.041
J. Lu, Z. Wang, Y. Guo, Z. Jin, G. Cao et al., Ultrathin nanosheets of FeOOH with oxygen vacancies as efficient polysulfide electrocatalyst for advanced lithium–sulfur batteries. Energy Storage Mater. 47, 561–568 (2022). https://doi.org/10.1016/j.ensm.2022.02.008
Y. Zhang, Y. Yang, C. Huang, J. Wang, X. Liu et al., Sulfur cathodes based on dual-functional GMs-MnOOH for high performance lithium sulfur batteries. Mater. Today Commun. 29, 102857 (2021). https://doi.org/10.1016/j.mtcomm.2021.102857
Y. Zuo, Y. Zhu, R. Wan, W. Su, Y. Fan et al., The Electrocatalyst based on LiVPO4F/CNT to enhance the electrochemical kinetics for high performance Li-S batteries. Chem. Eng. J. 415, 129053 (2021). https://doi.org/10.1016/j.cej.2021.129053
N. Li, T. Meng, L. Ma, H. Zhang, J. Yao et al., Curtailing carbon usage with addition of functionalized NiFe2O4 quantum dots: toward more practical S cathodes for Li–S cells. Nano-Micro Lett. 12, 145 (2020). https://doi.org/10.1007/s40820-020-00484-4
J. Pu, M. Han, T. Wang, X. Zhu, M. Lu et al., The enhanced confinement effect of double shell hollow mesoporous spheres assembled with nitrogen-doped copper cobaltate nanops for enhancing lithium–sulfur batteries. Electrochim. Acta 404, 139597 (2022). https://doi.org/10.1016/j.electacta.2021.139597
Q. Hao, G. Cui, Y. Zhang, J. Li, Z. Zhang, Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries. Chem. Eng. J. 381, 122672 (2020). https://doi.org/10.1016/j.cej.2019.122672
Z. Shen, Q. Zhou, H. Yu, J. Tian, M. Shi et al., CoSe2/MoS2 heterostructures to couple polysulfide adsorption and catalysis in lithium-sulfur batteries. Chin. J. Chem. 39, 1138–1144 (2021). https://doi.org/10.1002/cjoc.202000661
J. Liu, C. Hu, H. Li, N. Baikalov, Z. Bakenov et al., Novel Ni/Ni2P@C hollow heterostructure microsphere as efficient sulfur hosts for high-performance lithium-sulfur batteries. J. Alloys Compd. 871, 159576 (2021). https://doi.org/10.1016/j.jallcom.2021.159576
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33, e2101204 (2021). https://doi.org/10.1002/adma.202101204
J.-L. Yang, S.-X. Zhao, Y.-M. Lu, X.-T. Zeng, W. Lv et al., In-situ topochemical nitridation derivative MoO2–Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. Nano Energy 68, 104356 (2020). https://doi.org/10.1016/j.nanoen.2019.104356
S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao et al., Insight into MoS2–MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 11, 2003314 (2021). https://doi.org/10.1002/aenm.202003314
H. Shi, J. Qin, P. Lu, C. Dong, J. He et al., Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries. Adv. Funct. Mater. 31, 2102314 (2021). https://doi.org/10.1002/adfm.202102314
J. Li, Z. Xiong, Y. Sun, F. Li, Y. Feng et al., Balanced capture and catalytic ability toward polysulfides by designing MoO2–Co2Mo3O8 heterostructures for lithium-sulfur batteries. Nanoscale 13, 15689–15698 (2021). https://doi.org/10.1039/d1nr04506g
B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10, 2000091 (2020). https://doi.org/10.1002/aenm.202000091
J. Li, W. Xie, S. Zhang, S.-M. Xu, M. Shao, Boosting the rate performance of Li–S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. J. Mater. Chem. A 9, 11151–11159 (2021). https://doi.org/10.1039/D1TA00959A
T.T. Nguyen, J. Balamurugan, H.W. Go, Q.P. Ngo, N.H. Kim et al., Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li–S batteries. Chem. Eng. J. 427, 131774 (2022). https://doi.org/10.1016/j.cej.2021.131774
W. Yang, Y. Wei, Q. Chen, S. Qin, J. Zuo et al., A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium–sulfur batteries. J. Mater. Chem. A 8, 15816–15821 (2020). https://doi.org/10.1039/d0ta01664k
D.-Q. Cai, J.-L. Yang, T. Liu, S.-X. Zhao, G. Cao, Interfaces-dominated Li2S nucleation behavior enabled by heterostructure catalyst for fast kinetics Li–S batteries. Nano Energy 89, 106452 (2021). https://doi.org/10.1016/j.nanoen.2021.106452
J.-L. Yang, D.-Q. Cai, X.-G. Hao, L. Huang, Q. Lin et al., Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium-sulfur batteries. ACS Nano 15, 11491–11500 (2021). https://doi.org/10.1021/acsnano.1c01250
Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33, e2100855 (2021). https://doi.org/10.1002/adma.202100855
Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9, e2103456 (2022). https://doi.org/10.1002/advs.202103456
W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 15, 7114–7130 (2021). https://doi.org/10.1021/acsnano.1c00270
S. Chen, J. Luo, N. Li, X. Han, J. Wang et al., Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 30, 187–195 (2020). https://doi.org/10.1016/j.ensm.2020.05.002
W. Li, Z. Gong, X. Yan, D. Wang, J. Liu et al., In situ engineered ZnS–FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 8, 433–442 (2020). https://doi.org/10.1039/C9TA11451C
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10, 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
B. Guan, X. Sun, Y. Zhang, X. Wu, Y. Qiu et al., The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries. Chin. Chem. Lett. 32, 2249–2253 (2021). https://doi.org/10.1016/j.cclet.2020.12.051
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a mott–schottky catalyst with multiple adsorption sites for robust lithium–sulfur batteries. Adv. Energy Mater. 11, 2100432 (2021). https://doi.org/10.1002/aenm.202100432
Y. Wang, R. Zhang, Z. Sun, H. Wu, S. Lu et al., Spontaneously formed mott-schottky electrocatalyst for lithium-sulfur batteries. Adv. Mater. Interfaces 7, 1902092 (2020). https://doi.org/10.1002/admi.201902092
C. Ye, Y. Jiao, H. Jin, A.D. Slattery, K. Davey et al., 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem. Int. Ed. 57, 16703–16707 (2018). https://doi.org/10.1002/anie.201810579
K. Cai, T. Wang, Z. Wang, J. Wang, L. Li et al., A cocklebur-like sulfur host with the TiO2–VOx heterostructure efficiently implementing one-step adsorption-diffusion-conversion towards long-life Li–S batteries. Compos. Part B Eng. 249, 110410 (2023). https://doi.org/10.1016/j.compositesb.2022.110410
Y. Li, T. Jiang, H. Yang, D. Lei, X. Deng et al., A heterostuctured Co3S4/MnS nanotube array as a catalytic sulfur host for lithium–sulfur batteries. Electrochim. Acta 330, 135311 (2020). https://doi.org/10.1016/j.electacta.2019.135311
L. Wu, J. Hu, X. Yang, Z. Liang, S. Chen et al., Synergistic effect of adsorption and electrocatalysis of CoO/NiO heterostructure nanosheet assembled nanocages for high-performance lithium–sulfur batteries. J. Mater. Chem. A 10, 23811–23822 (2022). https://doi.org/10.1039/D2TA06876A
Y. Xiao, Y. Liu, G. Qin, P. Han, X. Guo et al., Building MoSe2–Mo2C incorporated hollow fluorinated carbon fibers for Li–S batteries. Compos. Part B Eng. 193, 108004 (2020). https://doi.org/10.1016/j.compositesb.2020.108004
R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng et al., Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 32, e2000315 (2020). https://doi.org/10.1002/adma.202000315
Y. Yao, H. Wang, H. Yang, S. Zeng, R. Xu et al., A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries. Adv. Mater. 32, e1905658 (2020). https://doi.org/10.1002/adma.201905658
J. Cai, J. Jin, Z. Fan, C. Li, Z. Shi et al., 3D printing of a V8C7–VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li–S batteries. Adv. Mater. 32, 2005967 (2020). https://doi.org/10.1002/adma.202005967
Z. Jin, Z. Liang, M. Zhao, Q. Zhang, B. Liu et al., Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 394, 124983 (2020). https://doi.org/10.1016/j.cej.2020.124983
K. Guo, G. Qu, J. Li, H. Xia, W. Yan et al., Polysulfides shuttling remedies by interface-catalytic effect of Mn3O4-MnPx heterostructure. Energy Storage Mater. 36, 496–503 (2021). https://doi.org/10.1016/j.ensm.2021.01.021
Z. Xu, Z. Wang, M. Wang, H. Cui, Y. Liu et al., Large-scale synthesis of Fe9S10/Fe3O4@C heterostructure as integrated trapping-catalyzing interlayer for highly efficient lithium-sulfur batteries. Chem. Eng. J. 422, 130049 (2021). https://doi.org/10.1016/j.cej.2021.130049
R. Meng, Q. Deng, C. Peng, B. Chen, K. Liao et al., Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today 35, 100991 (2020). https://doi.org/10.1016/j.nantod.2020.100991
Y. Liu, D. Hong, M. Chen, Z. Su, Y. Gao et al., Pt-NbC composite as a bifunctional catalyst for redox transformation of polysulfides in high-rate-performing lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13, 35008–35018 (2021). https://doi.org/10.1021/acsami.1c10228
Y. Liu, D. Hong, M. Chen, Z. Su, Y. Gao et al., Synergistic action of Pt and Nb2O5 ultrafine nanops for bidirectional conversion of polysulfides in high-performance lithium-sulfur cells. Chem. Eng. J. 430, 132714 (2022). https://doi.org/10.1016/j.cej.2021.132714
X. Zhou, L. Li, J. Yang, L. Xu, J. Tang, Cobalt and molybdenum carbide nanops grafted on nitrogen-doped carbon nanotubes as efficient chemical anchors and polysulfide conversion catalysts for lithium-sulfur batteries. ChemElectroChem 7, 3767–3775 (2020). https://doi.org/10.1002/celc.202000909
H. Li, Y. Wang, H. Chen, B. Niu, W. Zhang et al., Synergistic mediation of polysulfide immobilization and conversion by a catalytic and dual-adsorptive system for high performance lithium-sulfur batteries. Chem. Eng. J. 406, 126802 (2021). https://doi.org/10.1016/j.cej.2020.126802
C. Qi, M. Cai, Z. Li, J. Jin, B.V.R. Chowdari et al., Ultrathin TiO2 surface layer coated TiN nanops in freestanding film for high sulfur loading Li–S battery. Chem. Eng. J. 399, 125674 (2020). https://doi.org/10.1016/j.cej.2020.125674
C. Wei, M. Tian, M. Wang, Z. Shi, L. Yu et al., Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li–S batteries. ACS Nano 14, 16073–16084 (2020). https://doi.org/10.1021/acsnano.0c07999
S. Xue, W. Huang, W. Lin, W. Xing, M. Shen et al., Interfacial engineering of lattice coherency at ZnO–ZnS photocatalytic heterojunctions. Chem Catal. 2, 125–139 (2022). https://doi.org/10.1016/j.checat.2021.11.019
Z. Li, C. Mao, Q. Pei, P.N. Duchesne, T. He et al., Engineered disorder in CO2 photocatalysis. Nat. Commun. 13, 7205 (2022). https://doi.org/10.1038/s41467-022-34798-1
H. Zhang, L.K. Ono, G. Tong, Y. Liu, Y. Qi, Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge. Nat. Commun. 12, 4738 (2021). https://doi.org/10.1038/s41467-021-24976-y
J. Cai, Z. Sun, W. Cai, N. Wei, Y. Fan et al., A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting Bi-directional sulfur redox in Li–S batteries. Adv. Funct. Mater. 31, 2100586 (2021). https://doi.org/10.1002/adfm.202100586
W. Xu, H. Pang, H. Zhou, Z. Jian, R. Hu et al., Lychee-like TiO2@TiN dual-function composite material for lithium-sulfur batteries. RSC Adv. 10, 2670–2676 (2020). https://doi.org/10.1039/c9ra09534a
J. Li, Y. Chen, S. Zhang, W. Xie, S.-M. Xu et al., Coordinating adsorption and catalytic activity of polysulfide on hierarchical integrated electrodes for high-performance flexible Li–S batteries. ACS Appl. Mater. Interfaces 12, 49519–49529 (2020). https://doi.org/10.1021/acsami.0c10453
Z. He, X. Liu, M. Zhang, L. Guo, M. Ajmal et al., Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation. J. Energy Chem. 85, 570–580 (2023). https://doi.org/10.1016/j.jechem.2023.06.043
W. Zhou, D. Zhao, Q. Wu, J. Dan, X. Zhu et al., Rational design of the Lotus-like N-Co2VO4-co heterostructures with well-defined interfaces in suppressing the shuttle effect and dendrite growth in lithium–sulfur batteries. Small 17, 2104109 (2021). https://doi.org/10.1002/smll.202104109