MXene Key Composites: A New Arena for Gas Sensors
Corresponding Author: Xifei Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 209
Abstract
With the development of science and technology, the scale of industrial production continues to grow, and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing. These gases include flammable and explosive gases, and even contain toxic gases. Therefore, it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately. In recent years, a new two-dimensional material called MXene has attracted widespread attention in various applications. Their abundant surface functional groups and sites, excellent current conductivity, tunable surface chemistry, and outstanding stability make them promising for gas sensor applications. Since the birth of MXene materials, researchers have utilized the efficient and convenient solution etching preparation, high flexibility, and easily functionalize MXene with other materials to prepare composites for gas sensing. This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research. However, previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing, without systematically explaining the gas sensing mechanisms generated by different gases, as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials. This article reviews the latest progress in the application of MXene-based composite materials in gas sensing. Firstly, a brief summary was given of the commonly used methods for preparing gas sensing device structures, followed by an introduction to the key attributes of MXene related to gas sensing performance. This article focuses on the performance of MXene-based composite materials used for gas sensing, such as MXene/graphene, MXene/Metal oxide, MXene/Transition metal sulfides (TMDs), MXene/Metal–organic framework (MOF), MXene/Polymer. It summarizes the advantages and disadvantages of MXene composite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases. Finally, future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.
Highlights:
1 With its layered structure, abundant functional groups, and excellent electrical conductivity, MXene is of great research interest in the field of gas sensing.
2 The preparation technology of gas sensors is constantly being optimized, opening up avenues for the development of gas sensing.
3 MXene-based composite materials (MXene/graphene, MXene/metal oxides, MXene/MOF, and MXene/polymer) are applied in various gas sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, X. Yuan, G. Zeng, Y. Wu, Y. Liu et al., Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface Sci. 221, 41–59 (2015). https://doi.org/10.1016/j.cis.2015.04.005
- L. Qin, Q. Tao, X. Liu, M. Fahlman, J. Halim et al., Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 60, 734–742 (2019). https://doi.org/10.1016/j.nanoen.2019.04.002
- Y. Zhang, S. Yu, G. Lou, Y. Shen, H. Chen, Review of macroporous materials as electrochemical supercapacitor electrodes. J. Mater. Sci. 52, 11201–11228 (2017). https://doi.org/10.1007/s10853-017-0955-3
- L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang et al., A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 30, e1805268 (2018). https://doi.org/10.1002/adma.201805268
- H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl. Mater. Interfaces 12, 31037–31053 (2020). https://doi.org/10.1021/acsami.0c06435
- H. Tai, S. Wang, Z. Duan, Y. Jiang, Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuat. B Chem. 318, 128104 (2020). https://doi.org/10.1016/j.snb.2020.128104
- P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang et al., Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8, 1703259 (2018). https://doi.org/10.1002/aenm.201703259
- V. Sharma, H.L. Kagdada, P.K. Jha, P. Śpiewak, K.J. Kurzydłowski, Thermal transport properties of boron nitride based materials: a review. Renew. Sustain. Energy Rev. 120, 109622 (2020). https://doi.org/10.1016/j.rser.2019.109622
- A.C. Bouali, M. Serdechnova, C. Blawert, J. Tedim, M.G.S. Ferreira et al., Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: a review. Appl. Mater. Today 21, 100857 (2020). https://doi.org/10.1016/j.apmt.2020.100857
- A.M. Kuchkaev, S. Lavate, A.M. Kuchkaev, A.V. Sukhov, R. Srivastava et al., Chemical functionalization of 2D black phosphorus toward its applications in energy devices and catalysis: a review. Energy Technol. 9, 2100581 (2021). https://doi.org/10.1002/ente.202100581
- D.H. Ho, Y.Y. Choi, S.B. Jo, J.-M. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33, 2005846 (2021). https://doi.org/10.1002/adma.202005846
- K. Nataf, T.H. Bradley, An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities. Appl. Energy 164, 133–139 (2016). https://doi.org/10.1016/j.apenergy.2015.11.102
- H. Zheng, Y. Zeng, H. Zhang, X. Zhao, M. Chen et al., Oxygen vacancy activated Bi2O3 nanoflowers as a high-performance anode for rechargeable alkaline battery. J. Power. Sources 433, 126684 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.090
- A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017). https://doi.org/10.1016/j.matdes.2016.10.053
- T. Bashir, S. Zhou, S. Yang, S.A. Ismail, T. Ali et al., Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem. Energy Rev. 6, 5 (2023). https://doi.org/10.1007/s41918-022-00174-2
- X. Hui, X. Ge, R. Zhao, Z. Li, L. Yin, Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- Q.-N. Zhao, Y.-J. Zhang, Z.-H. Duan, S. Wang, C. Liu et al., A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 40, 1459–1476 (2021). https://doi.org/10.1007/s12598-020-01602-2
- A. Hermawan, T. Amrillah, A. Riapanitra, W.-J. Ong, S. Yin, Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis. Adv. Healthc. Mater. 10, e2100970 (2021). https://doi.org/10.1002/adhm.202100970
- E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
- H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
- Z. Yang, W. Li, G. Zhang, J. Wang, J. Zuo et al., Constructing SbOC bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano Energy 93, 106764 (2022). https://doi.org/10.1016/j.nanoen.2021.106764
- C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- Y. Liang, X. Luo, W. Weng, Z. Hu, Y. Zhang et al., Activated carbon nanotube fiber fabric as a high-performance flexible electrode for solid-state supercapacitors. ACS Appl. Mater. Interfaces 13, 28433–28441 (2021). https://doi.org/10.1021/acsami.1c02758
- H. Shan, J. Qin, Y. Ding, H.M.K. Sari, X. Song et al., Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Adv. Mater. 33, e2102471 (2021). https://doi.org/10.1002/adma.202102471
- H. Hwang, S. Byun, S. Yuk, S. Kim, S.H. Song et al., High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710 (2021). https://doi.org/10.1016/j.apsusc.2021.149710
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- K. Li, X. Wang, X. Wang, M. Liang, V. Nicolosi et al., All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy 75, 104971 (2020). https://doi.org/10.1016/j.nanoen.2020.104971
- H.T.M. Hoa, K.J. Lee, H.P. Pham, T.A. Doan, H.H. Nguyen et al., Ammonia gas sensing behavior of hybridization between reduced graphene oxide and gold nanops. J. Nanomater. 2020, 7680508 (2020). https://doi.org/10.1155/2020/7680508
- X. Li, Y. Zhao, X. Wang, J. Wang, A.M. Gaskov et al., Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuat. B Chem. 230, 330–336 (2016). https://doi.org/10.1016/j.snb.2016.02.069
- W. Zhang, M. Gong, J. Yang, J. Gu, Zr-MOFs integrated with a guest capturer and a photosensitizer for the simultaneous adsorption and degradation of 4-chlorophenol. Langmuir 37, 8157–8166 (2021). https://doi.org/10.1021/acs.langmuir.1c00823
- P. Guo, H. Pan, Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens. Actuat. B Chem. 114, 762–767 (2006). https://doi.org/10.1016/j.snb.2005.07.040
- J. Li, Y. Wang, H. Song, Y. Guo, S. Hu et al., Photocatalytic hydrogen under visible light by nitrogen-doped rutile titania graphitic carbon nitride composites: an experimental and theoretical study. Adv. Compos. Hybrid Mater. 6, 83 (2023). https://doi.org/10.1007/s42114-023-00659-8
- Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.-Z. Zhang et al., MXenes for energy harvesting. Adv. Mater. 34, 2108560 (2022). https://doi.org/10.1002/adma.202108560
- X. He, H. Zhang, X. Zhao, P. Zhang, M. Chen et al., Stabilized molybdenum trioxide nanowires as novel ultrahigh-capacity cathode for rechargeable zinc ion battery. Adv. Sci. 6, 1900151 (2019). https://doi.org/10.1002/advs.201900151
- K.C. Divya, J. Østergaard, Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 79, 511–520 (2009). https://doi.org/10.1016/j.epsr.2008.09.017
- C.J. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3, 29–55 (2020). https://doi.org/10.1002/eem2.12058
- Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao et al., Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 405, 126664 (2021). https://doi.org/10.1016/j.cej.2020.126664
- X. Xu, Y. Zhang, H. Sun, J. Zhou, F. Yang et al., Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices. Adv. Electron. Mater. 7, 2000967 (2021). https://doi.org/10.1002/aelm.202000967
- F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017). https://doi.org/10.1039/C7CS00205J
- M. Hu, C. Cui, C. Shi, Z.-S. Wu, J. Yang et al., High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 13, 6899–6905 (2019). https://doi.org/10.1021/acsnano.9b01762
- S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- S.N. Shuvo, A.M. Ulloa Gomez, A. Mishra, W.Y. Chen, A.M. Dongare et al., Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 5, 2915–2924 (2020). https://doi.org/10.1021/acssensors.0c01287
- J. Choi, Y.-J. Kim, S.-Y. Cho, K. Park, H. Kang et al., In situ formation of multiple Schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30, 2003998 (2020). https://doi.org/10.1002/adfm.202003998
- S. Sun, M. Wang, X. Chang, Y. Jiang, D. Zhang et al., W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuat. B Chem. 304, 127274 (2020). https://doi.org/10.1016/j.snb.2019.127274
- H. Qian, H. Ren, Y. Zhang, X. He, W. Li et al., Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review. Electrochem. Energy Rev. 5, 2 (2022). https://doi.org/10.1007/s41918-022-00155-5
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- D. Zhang, M. Luo, K. Yang, P. Yang, C. Liu et al., Porosity-adjustable MXene film with transverse and longitudinal ion channels for flexible supercapacitors. Microporous Mesoporous Mater. 326, 111389 (2021). https://doi.org/10.1016/j.micromeso.2021.111389
- Q. Wang, J. Liu, G. Tian, D. Zhang, Co@N-CNT/MXenes in situ grown on carbon nanotube film for multifunctional sensors and flexible supercapacitors. Nanoscale 13, 14460–14468 (2021). https://doi.org/10.1039/D1NR03641F
- K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020). https://doi.org/10.1002/adfm.202000842
- M.K. Aslam, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11, 2000681 (2021). https://doi.org/10.1002/aenm.202000681
- L. Wan, Y. Tang, L. Chen, K. Wang, J. Zhang et al., In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability. Chem. Eng. J. 410, 128349 (2021). https://doi.org/10.1016/j.cej.2020.128349
- Z. Yang, L. Jiang, J. Wang, F. Liu, J. He et al., Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuat. B Chem. 326, 128828 (2021). https://doi.org/10.1016/j.snb.2020.128828
- V.T. Le, Y. Vasseghian, V.D. Doan, T.T.T. Nguyen, T.T. Thi Vo et al., Flexible and high-sensitivity sensor based on Ti3C2-MoS2 MXene composite for the detection of toxic gases. Chemosphere 291, 133025 (2022). https://doi.org/10.1016/j.chemosphere.2021.133025
- L. Li, H. Cao, Z. Liang, Y. Cheng, T. Yin et al., First-principles study of Ti-deficient Ti3C2 MXene nanosheets as NH3 gas sensors. ACS Appl. Nano Mater. 5, 2470–2475 (2022). https://doi.org/10.1021/acsanm.1c04158
- B. Sun, F. Qin, L. Jiang, J. Gao, Z. Liu et al., Room-temperature gas sensors based on three-dimensional Co3O4/Al2O3@Ti3C2Tx MXene nanocomposite for highly sensitive NOx detection. Sens. Actuat. B Chem. 368, 132206 (2022). https://doi.org/10.1016/j.snb.2022.132206
- Z. Wang, S. Gao, T. Fei, S. Liu, T. Zhang, Construction of ZnO/SnO2 heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature. ACS Sens. 4, 2048–2057 (2019). https://doi.org/10.1021/acssensors.9b00648
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
- Z. Li, D. Guo, D. Wang, M. Sun, H. Sun, Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor. J. Power. Sources 506, 230197 (2021). https://doi.org/10.1016/j.jpowsour.2021.230197
- Y. Li, W. Zhang, X. Yang, J. Zhang, Z. Wang et al., A high-voltage and high-capacity Ti3C2Tx/BiCuS2.5 heterostructure to boost up the energy density and recyclability of zinc-ion-hybrid capacitors. Nano Energy 87, 106136 (2021). https://doi.org/10.1016/j.nanoen.2021.106136
- A. VahidMohammadi, W. Liang, M. Mojtabavi, M. Wanunu, M. Beidaghi, 2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage. Energy Storage Mater. 41, 554–562 (2021). https://doi.org/10.1016/j.ensm.2021.06.014
- Y. Gogotsi, What nano can do for energy storage. ACS Nano 8, 5369–5371 (2014). https://doi.org/10.1021/nn503164x
- M. Yousaf, H.T.H. Shi, Y. Wang, Y. Chen, Z. Ma et al., Novel pliable electrodes for flexible electrochemical energy storage devices: recent progress and challenges. Adv. Energy Mater. 6, 1600490 (2016). https://doi.org/10.1002/aenm.201600490
- L. Wen, F. Li, H.-M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28, 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
- Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang et al., A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy Environ. Sci. 10, 941–949 (2017). https://doi.org/10.1039/C6EE03773A
- B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34, 249–256 (2017). https://doi.org/10.1016/j.nanoen.2017.02.043
- L. Yang, N. Yi, J. Zhu, Z. Cheng, X. Yin et al., Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 8, 6487–6500 (2020). https://doi.org/10.1039/C9TA07855J
- Z. Chen, J. Wang, A. Umar, Y. Wang, H. Li et al., Three-dimensional crumpled graphene-based nanosheets with ultrahigh NO2 gas sensibility. ACS Appl. Mater. Interfaces 9, 11819–11827 (2017). https://doi.org/10.1021/acsami.7b01229
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14, 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- Y. Yang, Z. Cao, P. He, L. Shi, G. Ding et al., Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 66, 104134 (2019). https://doi.org/10.1016/j.nanoen.2019.104134
- D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan et al., Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014). https://doi.org/10.1016/j.elecom.2014.07.026
- Y.-X. Zhang, Y.-H. Wang, Nonlinear optical properties of metal nanops: a review. RSC Adv. 7, 45129–45144 (2017). https://doi.org/10.1039/C7RA07551K
- S. Alwarappan, N. Nesakumar, D. Sun, T.Y. Hu, C.-Z. Li, 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens. Bioelectron. 205, 113943 (2022). https://doi.org/10.1016/j.bios.2021.113943
- K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang et al., Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12, 45306–45314 (2020). https://doi.org/10.1021/acsami.0c13653
- D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28, 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
- M. Asad, M.H. Sheikhi, Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuat. B Chem. 231, 474–483 (2016). https://doi.org/10.1016/j.snb.2016.03.021
- W. Li, C. Teng, Y. Sun, L. Cai, J.-L. Xu et al., Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl. Mater. Interfaces 10, 34485–34493 (2018). https://doi.org/10.1021/acsami.8b11254
- H. Yan, M. Zhong, Z. Lv, P. Wan, Stretchable electronic sensors of nanocomposite network films for ultrasensitive chemical vapor sensing. Small 13, 1701697 (2017). https://doi.org/10.1002/smll.201701697
- J. Hassinen, J. Kauppila, J. Leiro, A. Määttänen, P. Ihalainen et al., Low-cost reduced graphene oxide-based conductometric nitrogen dioxide-sensitive sensor on paper. Anal. Bioanal. Chem. 405, 3611–3617 (2013). https://doi.org/10.1007/s00216-013-6805-5
- A. Abdellah, A. Abdelhalim, F. Loghin, P. Köhler, Z. Ahmad et al., Flexible carbon nanotube based gas sensors fabricated by large-scale spray deposition. IEEE Sens. J. 13, 4014–4021 (2013). https://doi.org/10.1109/JSEN.2013.2265775
- J. Lee, W. Shim, E. Lee, J.-S. Noh, W. Lee, Highly mobile palladium thin films on an elastomeric substrate: nanogap-based hydrogen gas sensors. Angew. Chem. Int. Ed. 50, 5301–5305 (2011). https://doi.org/10.1002/anie.201100054
- J. Lee, W. Shim, E. Lee, J.S. Noh, W. Lee, Highly mobile palladium thin films on an elastomeric substrate: Nanogap-based hydrogen gas sensors. Angew. Chem. Int. Ed. 123(23), 5413–5417 (2011). https://doi.org/10.1002/anie.201100054
- Z. Zhao, G. Huang, Y. Kong, J. Cui, A.A. Solovev et al., Atomic layer deposition for electrochemical energy: from design to industrialization. Electrochem. Energy Rev. 5, 31 (2022). https://doi.org/10.1007/s41918-022-00146-6
- J. Zhang, L. Huang, Y. Lin, L. Chen, Z. Zeng et al., Pencil-trace on printed silver interdigitated electrodes for paper-based NO2 gas sensors. Appl. Phys. Lett. 106, 143101 (2015). https://doi.org/10.1063/1.4917063
- J.M. Azzarelli, K.A. Mirica, J.B. Ravnsbæk, T.M. Swager, Wireless gas detection with a smartphone via rf communication. Proc. Natl. Acad. Sci. U.S.A. 111, 18162–18166 (2014). https://doi.org/10.1073/pnas.1415403111
- S.H. Lim, B. Radha, J.Y. Chan, M.S. Saifullah, G.U. Kulkarni et al., Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography. ACS Appl. Mater. Interfaces 5, 7274–7281 (2013). https://doi.org/10.1021/am401624r
- N. Tang, C. Zhou, L. Xu, Y. Jiang, H. Qu et al., A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens. 4, 726–732 (2019). https://doi.org/10.1021/acssensors.8b01690
- Y. Lin, J. Chen, M.M. Tavakoli, Y. Gao, Y. Zhu et al., Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 31, e1804285 (2019). https://doi.org/10.1002/adma.201804285
- S. Wu, P. Liu, Y. Zhang, H. Zhang, X. Qin, Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sens. Actuat. B Chem. 252, 697–705 (2017). https://doi.org/10.1016/j.snb.2017.06.062
- L.T. Duy, T.Q. Trung, A. Hanif, S. Siddiqui, E. Roh et al., A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibres with self-assembled reduced graphene oxide. 2D Mater. 4, 025062 (2017). https://doi.org/10.1088/2053-1583/aa6783
- N. Kim, S. Choi, D. Yang, J. Bae, J. Park et al., Chemical Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens. Actuat. B Chem. 193, 574–581 (2014). https://doi.org/10.1016/j.snb.2013.12.011
- X. Huang, B. Li, L. Wang, X. Lai, H. Xue et al., Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 11, 24533–24543 (2019). https://doi.org/10.1021/acsami.9b04304
- B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
- S.Y. Cho, H. Yu, J. Choi, H. Kang, S. Park et al., Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 13, 9332–9341 (2019). https://doi.org/10.1021/acsnano.9b03971
- S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li et al., Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29, 1900138 (2019). https://doi.org/10.1002/adfm.201900138
- C.E. Cava, R.V. Salvatierra, D.C.B. Alves, A.S. Ferlauto, A.J.G. Zarbin et al., Self-assembled films of multi-wall carbon nanotubes used in gas sensors to increase the sensitivity limit for oxygen detection. Carbon 50, 1953–1958 (2012). https://doi.org/10.1016/j.carbon.2011.12.048
- J.-W. Kim, Y. Porte, K.Y. Ko, H. Kim, J.-M. Myoung, Micropatternable double-faced ZnO nanoflowers for flexible gas sensor. ACS Appl. Mater. Interfaces 9, 32876–32886 (2017). https://doi.org/10.1021/acsami.7b09251
- Z. Zhu, C. Liu, F. Jiang, J. Liu, X. Ma et al., Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J. Hazard. Mater. 399, 123054 (2020). https://doi.org/10.1016/j.jhazmat.2020.123054
- Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren et al., Stabilizing Ti3C2Tx-MXenes with TiOF2 nanospheres intercalation to improve hydrogen evolution reaction and humidity-sensing performance. Appl. Surf. Sci. 496, 143729 (2019). https://doi.org/10.1016/j.apsusc.2019.143729
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- H. An, T. Habib, S. Shah, H. Gao, A. Patel et al., Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl. Nano Mater. 2, 948–955 (2019). https://doi.org/10.1021/acsanm.8b02265
- H. Zhi, X. Zhang, F. Wang, P. Wan, L. Feng, Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987–45994 (2021). https://doi.org/10.1021/acsami.1c12991
- Y. Tang, Y. Xu, J. Yang, Y. Song, F. Yin et al., Stretchable and wearable conductometric VOC sensors based on microstructured MXene/polyurethane core-sheath fibers. Sens. Actuat. B Chem. 346, 130500 (2021). https://doi.org/10.1016/j.snb.2021.130500
- L. Jin, C. Wu, K. Wei, L. He, H. Gao et al., Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 3, 12071–12079 (2020). https://doi.org/10.1021/acsanm.0c02577
- X. Wang, K. Sun, K. Li, X. Li, Y. Gogotsi, Ti3C2Tx/PEDOT: PSS hybrid materials for room-temperature methanol sensor. Chin. Chem. Lett. 31, 1018–1021 (2020). https://doi.org/10.1016/j.cclet.2019.11.031
- L. Zhao, K. Wang, W. Wei, L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407–416 (2019). https://doi.org/10.1002/inf2.12032
- D. Kuang, X. Guo, Z. Zhu, Y. Ding, X. Sun et al., Enhanced room temperature ammonia response of 2D-Ti3C2Tx MXene decorated with Ni(OH)2 nanops. Ceram. Int. 47, 19471–19480 (2021). https://doi.org/10.1016/j.ceramint.2021.03.284
- S. Zou, J. Gao, L. Liu, Z. Lin, P. Fu et al., Enhanced gas sensing properties at low working temperature of iron molybdate/MXene composite. J. Alloys Compd. 817, 152785 (2020). https://doi.org/10.1016/j.jallcom.2019.152785
- L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- W.Y. Chen, S.N. Lai, C.C. Yen, X. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14, 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
- E.S. Muckley, M. Naguib, H.-W. Wang, L. Vlcek, N.C. Osti et al., Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 11, 11118–11126 (2017). https://doi.org/10.1021/acsnano.7b05264
- N. Li, Y. Jiang, Y. Xiao, B. Meng, C. Xing et al., A fully inkjet-printed transparent humidity sensor based on a Ti3C2/Ag hybrid for touchless sensing of finger motion. Nanoscale 11, 21522–21531 (2019). https://doi.org/10.1039/c9nr06751e
- X. Li, Y. Lu, Z. Shi, G. Liu, G. Xu et al., Onion-inspired MXene/chitosan-quercetin multilayers: Enhanced response to H2O molecules for wearable human physiological monitoring. Sens. Actuat. B Chem. 329, 129209 (2021). https://doi.org/10.1016/j.snb.2020.129209
- F. Liu, Y. Li, S. Hao, Y. Cheng, Y. Zhan et al., Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr. Polym. 243, 116467 (2020). https://doi.org/10.1016/j.carbpol.2020.116467
- Y. Sun, H. Wang, High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanops. Adv. Mater. 19, 2818–2823 (2007). https://doi.org/10.1002/adma.200602975
- R. Zhu, M. Desroches, B. Yoon, T.M. Swager, Wireless oxygen sensors enabled by Fe(II)-polymer wrapped carbon nanotubes. ACS Sens. 2, 1044–1050 (2017). https://doi.org/10.1021/acssensors.7b00327
- Y. Zheng, H. Li, W. Shen, J. Jian, Wearable electronic nose for human skin odor identification: a preliminary study. Sens. Actuat. A Phys. 285, 395–405 (2019). https://doi.org/10.1016/j.sna.2018.11.048
- M. Acuautla, S. Bernardini, L. Gallais, T. Fiorido, L. Patout et al., Ozone flexible sensors fabricated by photolithography and laser ablation processes based on ZnO nanops. Sens. Actuat. B Chem. 203, 602–611 (2014). https://doi.org/10.1016/j.snb.2014.07.010
- E. Bihar, Y. Deng, T. Miyake, M. Saadaoui, G.G. Malliaras et al., A Disposable paper Breathalyzer with an alcohol sensing organic electrochemical transistor. Sci. Rep. 6, 27582 (2016). https://doi.org/10.1038/srep27582
- N. Nguyen, J.G. Park, S. Zhang, R. Liang, Recent advances on 3D printing technique for thermal-related applications. Adv. Eng. Mater. 20, 1700876 (2018). https://doi.org/10.1002/adem.201700876
- K. Crowley, A. Morrin, A. Hernandez, E. O’Malley, P.G. Whitten et al., Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanops. Talanta 77, 710–717 (2008). https://doi.org/10.1016/j.talanta.2008.07.022
- X. Wang, F. Sun, G. Yin, Y. Wang, B. Liu et al., Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review. Sensors (Basel) 18, 330 (2018). https://doi.org/10.3390/s18020330
- Y. Wang, T. Yokota, T. Someya, Electrospun nanofiber-based soft electronics. NPG Asia Mater. 13, 22 (2021). https://doi.org/10.1038/s41427-020-00267-8
- T.A. Arica, T. Isık, T. Guner, N. Horzum, M.M. Demir, Advances in electrospun fiber-based flexible nanogenerators for wearable applications. Macromol. Mater. Eng. 306, 2100143 (2021). https://doi.org/10.1002/mame.202100143
- C. Linghu, S. Zhang, C. Wang, J. Song, Transfer printing techniques for flexible and stretchable inorganic electronics. NPJ Flex. Electron. 2, 26 (2018). https://doi.org/10.1038/s41528-018-0037-x
- P.C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev et al., 2, 4, 6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv. Mater. 22, 1900–1904 (2010). https://doi.org/10.1002/adma.200904005
- A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24, 5284–5318 (2012). https://doi.org/10.1002/adma.201201386
- Y. An, Y. Tian, J. Feng, Y. Qian, MXenes for advanced separator in rechargeable batteries. Mater. Today 57, 146–179 (2022). https://doi.org/10.1016/j.mattod.2022.06.006
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- M. Aakyiir, S. Araby, A. Michelmore, Q. Meng, Y. Amer et al., Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology 31, 315715 (2020). https://doi.org/10.1088/1361-6528/ab88eb
- S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu et al., Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29, 1700874 (2017). https://doi.org/10.1002/adma.201700874
- G.R. Berdiyorov, Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. EPL Europhys. Lett. 111, 67002 (2015). https://doi.org/10.1209/0295-5075/111/67002
- C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 3737–3749 (2017). https://doi.org/10.1002/adma.201702678
- Z. Wang, H. Kim, H.N. Alshareef, Oxide thin-film electronics using all-MXene electrical contacts. Adv. Mater. 30, e1706656 (2018). https://doi.org/10.1002/adma.201706656
- B. Jiang, T. Yang, T. Wang, C. Chen, M. Yang et al., Edge stimulated hydrogen evolution reaction on monodispersed MXene quantum dots. Chem. Eng. J. 442, 136119 (2022). https://doi.org/10.1016/j.cej.2022.136119
- M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
- C. Si, J. Zhou, Z. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7, 17510–17515 (2015). https://doi.org/10.1021/acsami.5b05401
- J. Yang, X. Zhou, X. Luo, S. Zhang, L. Chen Tunable electronic and magnetic properties of Cr2M’C2T2 (M’ = Ti or V; T = O, OH or F). Appl. Phys. Lett. 109, 203109 (2016). https://doi.org/10.1063/1.4967983
- Y. Zhang, Z. Zhou, J. Lan, P. Zhang, Prediction of Ti3C2O2 MXene as an effective capturer of formaldehyde. Appl. Surf. Sci. 469, 770–774 (2019). https://doi.org/10.1016/j.apsusc.2018.11.018
- S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang et al., Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 12, 10434–10442 (2020). https://doi.org/10.1021/acsami.9b21765
- M. Liu, Z. Wang, P. Song, Z. Yang, Q. Wang, Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuat. B Chem. 340, 129946 (2021). https://doi.org/10.1016/j.snb.2021.129946
- Y. Wang, Y. Zhou, Y. Wang, Humidity activated ionic-conduction formaldehyde sensing of reduced graphene oxide decorated nitrogen-doped MXene/titanium dioxide composite film. Sens. Actuat. B Chem. 323, 128695 (2020). https://doi.org/10.1016/j.snb.2020.128695
- Y. Zhou, Y. Wang, Y. Wang, X. Li, Humidity-enabled ionic conductive trace carbon dioxide sensing of nitrogen-doped Ti3C2Tx MXene/polyethyleneimine composite films decorated with reduced graphene oxide nanosheets. Anal. Chem. 92, 16033–16042 (2020). https://doi.org/10.1021/acs.analchem.0c03664
- Y. Song, Y. Xu, Q. Guo, Z. Hua, F. Yin et al., MXene-derived TiO2 nanops intercalating between RGO nanosheets: an assembly for highly sensitive gas detection. ACS Appl. Mater. Interfaces 13, 39772–39780 (2021). https://doi.org/10.1021/acsami.1c12154
- H. Tai, Z. Duan, Z. He, X. Li, J. Xu et al., Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanops at room temperature. Sens. Actuat. B Chem. 298, 126874 (2019). https://doi.org/10.1016/j.snb.2019.126874
- A. Hermawan, B. Zhang, A. Taufik, Y. Asakura, T. Hasegawa et al., CuO nanops/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl. Nano Mater. 3, 4755–4766 (2020). https://doi.org/10.1021/acsanm.0c00749
- B. Sun, H. Lv, Z. Liu, J. Wang, X. Bai et al., Co3O4@PEI/Ti3C2Tx MXene nanocomposites for a highly sensitive NOx gas sensor with a low detection limit. J. Mater. Chem. A 9, 6335–6344 (2021). https://doi.org/10.1039/d0ta11392a
- D. Zhang, Q. Mi, D. Wang, T. Li, MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sens. Actuat. B Chem. 339, 129923 (2021). https://doi.org/10.1016/j.snb.2021.129923
- H. Pazniak, I.A. Plugin, M.J. Loes, T.M. Inerbaev, I.N. Burmistrov et al., Partially oxidized Ti3C2Tx MXenes for fast and selective detection of organic vapors at part-per-million concentrations. ACS Appl. Nano Mater. 3, 3195–3204 (2020). https://doi.org/10.1021/acsanm.9b02223
- M. Hou, S. Guo, L. Yang, J. Gao, T. Hu et al., Improvement of gas sensing property for two-dimensional Ti3C2Tx treated with oxygen plasma by microwave energy excitation. Ceram. Int. 47, 7728–7737 (2021). https://doi.org/10.1016/j.ceramint.2020.11.117
- Q. Sun, J. Wang, X. Wang, J. Dai, X. Wang et al., Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. Nanoscale 12, 16987–16994 (2020). https://doi.org/10.1039/c9nr08350b
- X. Guo, Y. Ding, D. Kuang, Z. Wu, X. Sun et al., Enhanced ammonia sensing performance based on MXene-Ti3C2Tx multilayer nanoflakes functionalized by tungsten trioxide nanops. J. Colloid Interface Sci. 595, 6–14 (2021). https://doi.org/10.1016/j.jcis.2021.03.115
- T. He, W. Liu, T. Lv, M. Ma, Z. Liu et al., MXene/SnO2 heterojunction based chemical gas sensors. Sens. Actuat. B Chem. 329, 129275 (2021). https://doi.org/10.1016/j.snb.2020.129275
- Z. Wang, F. Wang, A. Hermawan, Y. Asakura, T. Hasegawa et al., SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature. J. Mater. Sci. Technol. 73, 128–138 (2021). https://doi.org/10.1016/j.jmst.2020.07.040
- D. Kuang, L. Wang, X. Guo, Y. She, B. Du et al., Facile hydrothermal synthesis of Ti3C2Tx-TiO2 nanocomposites for gaseous volatile organic compounds detection at room temperature. J. Hazard. Mater. 416, 126171 (2021). https://doi.org/10.1016/j.jhazmat.2021.126171
- M. Liu, J. Ji, P. Song, M. Liu, Q. Wang, α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sens. Actuat. B Chem. 349, 130782 (2021). https://doi.org/10.1016/j.snb.2021.130782
- M. Liu, Z. Wang, P. Song, Z. Yang, Q. Wang, In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature. Ceram. Int. 47, 23028–23037 (2021). https://doi.org/10.1016/j.ceramint.2021.05.016
- Q.T.H. Ta, D. Thakur, J.S. Noh, Enhanced gas sensing performance of ZnO/Ti3C2Tx MXene nanocomposite. Micromachines 13, 1710 (2022). https://doi.org/10.3390/mi13101710
- Z. Sima, P. Song, Y. Ding, Z. Lu, Q. Wang, ZnSnO3 nanocubes/Ti3C2Tx MXene composites for enhanced formaldehyde gas sensing properties at room temperature. Appl. Surf. Sci. 598, 153861 (2022). https://doi.org/10.1016/j.apsusc.2022.153861
- N. Li, Y. Jiang, C. Zhou, Y. Xiao, B. Meng et al., High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl. Mater. Interfaces 11, 38116–38125 (2019). https://doi.org/10.1021/acsami.9b12168
- J. Wu, P. Lu, J. Dai, C. Zheng, T. Zhang et al., High performance humidity sensing property of Ti3C2Tx MXene-derived Ti3C2Tx/K2Ti4O9 composites. Sens. Actuat. B Chem. 326, 128969 (2021). https://doi.org/10.1016/j.snb.2020.128969
- Q. Thanh Hoai Ta, N. NgocTri, J.-S. Noh, Improved NO2 gas sensing performance of 2D MoS2/Ti3C2Tx MXene nanocomposite. Appl. Surf. Sci. 604, 154624 (2022). https://doi.org/10.1016/j.apsusc.2022.154624
- W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
- D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang et al., Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 15, 2911–2919 (2021). https://doi.org/10.1021/acsnano.0c09015
- Y. Chang, M. Chen, Z. Fu, R. Lu, Y. Gao et al., Building porphyrin-based MOFs on MXenes for ppb-level NO sensing. J. Mater. Chem. A 11, 6966–6977 (2023). https://doi.org/10.1039/d3ta00072a
- X. Li, J. Xu, Y. Jiang, Z. He, B. Liu et al., Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens. Actuat. B Chem. 316, 128144 (2020). https://doi.org/10.1016/j.snb.2020.128144
- L. Zhao, Y. Zheng, K. Wang, C. Lv, W. Wei et al., Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 5, 2000248 (2020). https://doi.org/10.1002/admt.202000248
- O. Mashtalir, M.R. Lukatskaya, A.I. Kolesnikov, E. Raymundo-Piñero, M. Naguib et al., The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8, 9128–9133 (2016). https://doi.org/10.1039/C6NR01462C
- Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- C. Hu, F. Shen, D. Zhu, H. Zhang, J. Xue et al., Characteristics of Ti3C2X–chitosan films with enhanced mechanical properties. Front. Energy Res. 4, 41 (2017). https://doi.org/10.3389/fenrg.2016.00041
- K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang et al., Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42, 8419–8424 (2016). https://doi.org/10.1016/j.ceramint.2016.02.059
- J.-H. Chen, C. Jang, S.M. Xiao, M.S. Ishigami, Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). https://doi.org/10.1038/nnano.2008.58
- J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J. Alloys Compd. 619, 38–43 (2015). https://doi.org/10.1016/j.jallcom.2014.09.008
- M. Mariano, O. Mashtalir, F.Q. Antonio, W.-H. Ryu, B. Deng et al., Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 8, 16371–16378 (2016). https://doi.org/10.1039/C6NR03682A
- Y. Wang, Y. Li, Z. Qiu, X. Wu, P. Zhou et al., Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6, 11189–11197 (2018). https://doi.org/10.1039/C8TA00122G
- K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori et al., Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016). https://doi.org/10.1002/aelm.201600050
- A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
- V.N. Borysiuk, V.N. Mochalin, Y. Gogotsi, Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes). Nanotechnology 26, 265705 (2015). https://doi.org/10.1088/0957-4484/26/26/265705
- M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter et al., Selective etching of silicon from Ti3 SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57, 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
- X.-H. Zha, Q. Huang, J. He, H. He, J. Zhai et al., The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 6, 27971 (2016). https://doi.org/10.1038/srep27971
- S. Uzun, M. Han, C.J. Strobel, K. Hantanasirisakul, A. Goad et al., Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. Carbon 174, 382–389 (2021). https://doi.org/10.1016/j.carbon.2020.12.021
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Correction: Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 6889 (2018). https://doi.org/10.1039/C8CS90090F
- D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, e1703419 (2018). https://doi.org/10.1002/smll.201703419
- A. Lipatov, M.J. Loes, H. Lu, J. Dai, P. Patoka et al., Quasi-1D TiS3 nanoribbons: mechanical exfoliation and thickness-dependent Raman spectroscopy. ACS Nano 12, 12713–12720 (2018). https://doi.org/10.1021/acsnano.8b07703
- S.A.M. Chachuli, M.N. Hamidon, M. Ertugrul, M.S. Mamat, O. Coban et al., Effects of MWCNTs/graphene nanoflakes/MXene addition to TiO2 thick film on hydrogen gas sensing. J. Alloys Compd. 882, 160671 (2021). https://doi.org/10.1016/j.jallcom.2021.160671
- P.-G. Su, S.-L. Peng, Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132, 398–405 (2015). https://doi.org/10.1016/j.talanta.2014.09.034
- H. Naderi, S. Hajati, M. Ghaedi, K. Dashtian, M.M. Sabzehmeidani, Sensitive, selective and rapid ammonia-sensing by gold nanop-sensitized V2O5/CuWO4 heterojunctions for exhaled breath analysis. Appl. Surf. Sci. 501, 144270 (2020). https://doi.org/10.1016/j.apsusc.2019.144270
- T. Xu, J. Wei, P. He, J. Wu, N. Chen et al., CuS-doped Ti3C2 MXene nanosheets for highly efficient adsorption of elemental mercury in flue gas. Energy Fuels 36, 2503–2514 (2022). https://doi.org/10.1021/acs.energyfuels.1c03705
- J. Kim, J. You, E. Kim, Flexible conductive polymer patterns from vapor polymerizable and photo-cross-linkable EDOT. Macromolecules 43, 2322–2327 (2010). https://doi.org/10.1021/ma9025306
- L. Qin, Z. Ding, M. Hanif, J. Jiang, L. Liu et al., Poly(3, 4-dioxythiophene) soft nano-network with a compatible ion transporting channel for improved electrochromic performance. Polym. Chem. 7, 6954–6963 (2016). https://doi.org/10.1039/C6PY01642A
- S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004). https://doi.org/10.1038/nature02498
- L. Qin, J. Xu, B. Lu, Y. Lu, X. Duan et al., Synthesis and electrochromic properties of polyacrylate functionalized poly(3, 4-ethylenedioxythiophene) network films. J. Mater. Chem. 22, 18345–18353 (2012). https://doi.org/10.1039/C2JM32457A
- Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696 (2015). https://doi.org/10.1039/C5CS00362H
- C. Reese, M. Roberts, M.-M. Ling, Z. Bao, Organic thin film transistors. Mater. Today 7, 20–27 (2004). https://doi.org/10.1016/S1369-7021(04)00398-0
- A. Ali, P.K. Shen, Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2, 99–121 (2020). https://doi.org/10.1002/cey2.26
- H.F. Zhang, J.Y. Xuan, Q. Zhang, M.L. Sun, F.C. Jia, AStrategies and challenges for enhancing performance of MXene-based gas sensors: a review. Rare Met. 41, 3976–3999 (2022). https://doi.org/10.1007/s12598-022-02087-x
- M.S. Bhargava Reddy, S. Kailasa, B.C.G. Marupalli, K.K. Sadasivuni, S. Aich, A family of 2D-MXenes: synthesis, properties, and gas sensing applications. ACS Sens. 7, 2132–2163 (2022). https://doi.org/10.1021/acssensors.2c01046
- J. Li, X. Chen, X. Zhu, Y. Jiang, X. Chang et al., Two-dimensional transition metal MXene-based gas sensors: a review. Chin. Chem. Lett. 35, 108286 (2024). https://doi.org/10.1016/j.cclet.2023.108286
- E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
- S. He, Y. Gui, Y. Wang, J. Yang, A self-powered β-Ni(OH)2/MXene based ethanol sensor driven by an enhanced triboelectric nanogenerator based on β-Ni(OH)2@PVDF at room temperature. Nano Energy 107, 108132 (2023). https://doi.org/10.1016/j.nanoen.2022.108132
- X. Wang, L. Gong, Z. Li, Y. Yin, D. Zhang, A room temperature ammonia gas sensor based on cerium oxide/MXene and self-powered by a freestanding-mode triboelectric nanogenerator and its multifunctional monitoring application. J. Mater. Chem. A 11, 7690–7701 (2023). https://doi.org/10.1039/d2ta07917h
- S. Sardana, H. Kaur, B. Arora, D.K. Aswal, A. Mahajan, Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 7, 312–321 (2022). https://doi.org/10.1021/acssensors.1c02388
- S. Sardana, A. Mahajan, Edge-site-enriched Ti3C2Tx MXene/MoS2 nanosheet heterostructures for self-powered breath and environmental monitoring. ACS Appl. Nano Mater. 6, 469–481 (2023). https://doi.org/10.1021/acsanm.2c04581
- R. Saini, A. Mahajan, R.K. Bedi, D.K. Aswal, Room temperature detection of amine vapours using copper phthalocyanine based thin films. Phys. Status Solidi A 209, 1245–1250 (2012). https://doi.org/10.1002/pssa.201127569
- R. Saini, A. Mahajan, R.K. Bedi, D.K. Aswal, A.K. Debnath, Phthalocyanine based nanowires and nanoflowers as highly sensitive room temperature Cl2 sensors. RSC Adv. 4, 15945–15951 (2014). https://doi.org/10.1039/C3RA47002D
- K.K. Khun, A. Mahajan, R.K. Bedi, Surfactant assisted growth of nanostructured tin oxide films for gas sensing applications. Electron. Mater. Lett. 7, 303–308 (2011). https://doi.org/10.1007/s13391-011-0140-9
- D. Wang, D. Zhang, M. Tang, H. Zhang, T. Sun et al., Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring. Nano Energy 100, 107509 (2022). https://doi.org/10.1016/j.nanoen.2022.107509
- J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9, 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
- C. Yang, D. Zhang, D. Wang, H. Luan, X. Chen et al., In situ polymerized MXene/polypyrrole/hydroxyethyl cellulose-based flexible strain sensor enabled by machine learning for handwriting recognition. ACS Appl. Mater. Interfaces 15, 5811–5821 (2023). https://doi.org/10.1021/acsami.2c18989
- D. Wang, D. Zhang, M. Tang, H. Zhang, F. Chen et al., Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chem. Eng. J. 446, 136914 (2022). https://doi.org/10.1016/j.cej.2022.136914
- W. Lin, Z. Hui, A.O. Govorov, M. Ouyang, Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun. 5, 4792 (2014). https://doi.org/10.1038/ncomms5792
- D. Zhang, S. Yu, X. Wang, J. Huang, W. Pan et al., UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 423, 127160 (2022). https://doi.org/10.1016/j.jhazmat.2021.127160
- M.C. Tang, Z.J. Wang, D.Y. Wang, R.Y. Mao, H. Zhang et al., Construction of LaF3 QD-modified SnS2 nanorod composites for ultrasensitive detection of H2S. ChemElectroChem 11(18), 9942–9954 (2023). https://doi.org/10.1039/d2ta08496a
- M. Tang, D. Zhang, Q. Chen, Z. Wang, D. Wang et al., Heterostructure construction of SnS2 Debye nanowires modified with ZnO nanorods for chemiresistive H2S detection in sulfur hexafluoride decomposition products. Sens. Actuat. B Chem. 390, 133952 (2023). https://doi.org/10.1016/j.snb.2023.133952
- Y. Wang, Y. Wang, Y. Kuai, M. Jian, “Visualization” gas—gas sensors based on high performance novel MXenes materials. Small 20, 2305250 (2024). https://doi.org/10.1002/smll.202305250
- M. Wu, M. He, Q. Hu, Q. Wu, G. Sun et al., Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 4, 2763–2770 (2019). https://doi.org/10.1021/acssensors.9b01308
- B. Xiao, Y.-C. Li, X.-F. Yu, J.-B. Cheng, MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens. Actuat. B Chem. 235, 103–109 (2016). https://doi.org/10.1016/j.snb.2016.05.062
- S. Ma, D. Yuan, Z. Jiao, T. Wang, X. Dai, Monolayer Sc2CO2: a promising candidate as a SO2 gas sensor or capturer. J. Phys. Chem. C 121, 24077–24084 (2017). https://doi.org/10.1021/acs.jpcc.7b07921
- A. Junkaew, R. Arróyave, Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and-separation. Phys. Chem. Chem. Phys. 20, 6073–6082 (2018). https://doi.org/10.1039/C7CP08622A
- P. Khakbaz, M. Moshayedi, S. Hajian, M. Soleimani, B.B. Narakathu et al., Titanium carbide MXene as NH3 sensor: realistic first-principles study. J. Phys. Chem. C 123, 29794–29803 (2019). https://doi.org/10.1021/acs.jpcc.9b09823
- S.R. Naqvi, V. Shukla, N.K. Jena, W. Luo, R. Ahuja, Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. Appl. Mater. Today 19, 100574 (2020). https://doi.org/10.1016/j.apmt.2020.100574
- H.J. Koh, S.J. Kim, K. Maleski, S.Y. Cho, Y.J. Kim et al., Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ X-ray diffraction study. ACS Sens. 4, 1365–1372 (2019). https://doi.org/10.1021/acssensors.9b00310
References
H. Wang, X. Yuan, G. Zeng, Y. Wu, Y. Liu et al., Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface Sci. 221, 41–59 (2015). https://doi.org/10.1016/j.cis.2015.04.005
L. Qin, Q. Tao, X. Liu, M. Fahlman, J. Halim et al., Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 60, 734–742 (2019). https://doi.org/10.1016/j.nanoen.2019.04.002
Y. Zhang, S. Yu, G. Lou, Y. Shen, H. Chen, Review of macroporous materials as electrochemical supercapacitor electrodes. J. Mater. Sci. 52, 11201–11228 (2017). https://doi.org/10.1007/s10853-017-0955-3
L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang et al., A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 30, e1805268 (2018). https://doi.org/10.1002/adma.201805268
H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl. Mater. Interfaces 12, 31037–31053 (2020). https://doi.org/10.1021/acsami.0c06435
H. Tai, S. Wang, Z. Duan, Y. Jiang, Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuat. B Chem. 318, 128104 (2020). https://doi.org/10.1016/j.snb.2020.128104
P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang et al., Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8, 1703259 (2018). https://doi.org/10.1002/aenm.201703259
V. Sharma, H.L. Kagdada, P.K. Jha, P. Śpiewak, K.J. Kurzydłowski, Thermal transport properties of boron nitride based materials: a review. Renew. Sustain. Energy Rev. 120, 109622 (2020). https://doi.org/10.1016/j.rser.2019.109622
A.C. Bouali, M. Serdechnova, C. Blawert, J. Tedim, M.G.S. Ferreira et al., Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: a review. Appl. Mater. Today 21, 100857 (2020). https://doi.org/10.1016/j.apmt.2020.100857
A.M. Kuchkaev, S. Lavate, A.M. Kuchkaev, A.V. Sukhov, R. Srivastava et al., Chemical functionalization of 2D black phosphorus toward its applications in energy devices and catalysis: a review. Energy Technol. 9, 2100581 (2021). https://doi.org/10.1002/ente.202100581
D.H. Ho, Y.Y. Choi, S.B. Jo, J.-M. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33, 2005846 (2021). https://doi.org/10.1002/adma.202005846
K. Nataf, T.H. Bradley, An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities. Appl. Energy 164, 133–139 (2016). https://doi.org/10.1016/j.apenergy.2015.11.102
H. Zheng, Y. Zeng, H. Zhang, X. Zhao, M. Chen et al., Oxygen vacancy activated Bi2O3 nanoflowers as a high-performance anode for rechargeable alkaline battery. J. Power. Sources 433, 126684 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.090
A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017). https://doi.org/10.1016/j.matdes.2016.10.053
T. Bashir, S. Zhou, S. Yang, S.A. Ismail, T. Ali et al., Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem. Energy Rev. 6, 5 (2023). https://doi.org/10.1007/s41918-022-00174-2
X. Hui, X. Ge, R. Zhao, Z. Li, L. Yin, Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
Q.-N. Zhao, Y.-J. Zhang, Z.-H. Duan, S. Wang, C. Liu et al., A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 40, 1459–1476 (2021). https://doi.org/10.1007/s12598-020-01602-2
A. Hermawan, T. Amrillah, A. Riapanitra, W.-J. Ong, S. Yin, Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis. Adv. Healthc. Mater. 10, e2100970 (2021). https://doi.org/10.1002/adhm.202100970
E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
Z. Yang, W. Li, G. Zhang, J. Wang, J. Zuo et al., Constructing SbOC bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano Energy 93, 106764 (2022). https://doi.org/10.1016/j.nanoen.2021.106764
C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
Y. Liang, X. Luo, W. Weng, Z. Hu, Y. Zhang et al., Activated carbon nanotube fiber fabric as a high-performance flexible electrode for solid-state supercapacitors. ACS Appl. Mater. Interfaces 13, 28433–28441 (2021). https://doi.org/10.1021/acsami.1c02758
H. Shan, J. Qin, Y. Ding, H.M.K. Sari, X. Song et al., Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Adv. Mater. 33, e2102471 (2021). https://doi.org/10.1002/adma.202102471
H. Hwang, S. Byun, S. Yuk, S. Kim, S.H. Song et al., High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710 (2021). https://doi.org/10.1016/j.apsusc.2021.149710
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
K. Li, X. Wang, X. Wang, M. Liang, V. Nicolosi et al., All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy 75, 104971 (2020). https://doi.org/10.1016/j.nanoen.2020.104971
H.T.M. Hoa, K.J. Lee, H.P. Pham, T.A. Doan, H.H. Nguyen et al., Ammonia gas sensing behavior of hybridization between reduced graphene oxide and gold nanops. J. Nanomater. 2020, 7680508 (2020). https://doi.org/10.1155/2020/7680508
X. Li, Y. Zhao, X. Wang, J. Wang, A.M. Gaskov et al., Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuat. B Chem. 230, 330–336 (2016). https://doi.org/10.1016/j.snb.2016.02.069
W. Zhang, M. Gong, J. Yang, J. Gu, Zr-MOFs integrated with a guest capturer and a photosensitizer for the simultaneous adsorption and degradation of 4-chlorophenol. Langmuir 37, 8157–8166 (2021). https://doi.org/10.1021/acs.langmuir.1c00823
P. Guo, H. Pan, Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens. Actuat. B Chem. 114, 762–767 (2006). https://doi.org/10.1016/j.snb.2005.07.040
J. Li, Y. Wang, H. Song, Y. Guo, S. Hu et al., Photocatalytic hydrogen under visible light by nitrogen-doped rutile titania graphitic carbon nitride composites: an experimental and theoretical study. Adv. Compos. Hybrid Mater. 6, 83 (2023). https://doi.org/10.1007/s42114-023-00659-8
Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.-Z. Zhang et al., MXenes for energy harvesting. Adv. Mater. 34, 2108560 (2022). https://doi.org/10.1002/adma.202108560
X. He, H. Zhang, X. Zhao, P. Zhang, M. Chen et al., Stabilized molybdenum trioxide nanowires as novel ultrahigh-capacity cathode for rechargeable zinc ion battery. Adv. Sci. 6, 1900151 (2019). https://doi.org/10.1002/advs.201900151
K.C. Divya, J. Østergaard, Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 79, 511–520 (2009). https://doi.org/10.1016/j.epsr.2008.09.017
C.J. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3, 29–55 (2020). https://doi.org/10.1002/eem2.12058
Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao et al., Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 405, 126664 (2021). https://doi.org/10.1016/j.cej.2020.126664
X. Xu, Y. Zhang, H. Sun, J. Zhou, F. Yang et al., Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices. Adv. Electron. Mater. 7, 2000967 (2021). https://doi.org/10.1002/aelm.202000967
F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017). https://doi.org/10.1039/C7CS00205J
M. Hu, C. Cui, C. Shi, Z.-S. Wu, J. Yang et al., High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 13, 6899–6905 (2019). https://doi.org/10.1021/acsnano.9b01762
S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
S.N. Shuvo, A.M. Ulloa Gomez, A. Mishra, W.Y. Chen, A.M. Dongare et al., Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 5, 2915–2924 (2020). https://doi.org/10.1021/acssensors.0c01287
J. Choi, Y.-J. Kim, S.-Y. Cho, K. Park, H. Kang et al., In situ formation of multiple Schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30, 2003998 (2020). https://doi.org/10.1002/adfm.202003998
S. Sun, M. Wang, X. Chang, Y. Jiang, D. Zhang et al., W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuat. B Chem. 304, 127274 (2020). https://doi.org/10.1016/j.snb.2019.127274
H. Qian, H. Ren, Y. Zhang, X. He, W. Li et al., Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: a review. Electrochem. Energy Rev. 5, 2 (2022). https://doi.org/10.1007/s41918-022-00155-5
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
D. Zhang, M. Luo, K. Yang, P. Yang, C. Liu et al., Porosity-adjustable MXene film with transverse and longitudinal ion channels for flexible supercapacitors. Microporous Mesoporous Mater. 326, 111389 (2021). https://doi.org/10.1016/j.micromeso.2021.111389
Q. Wang, J. Liu, G. Tian, D. Zhang, Co@N-CNT/MXenes in situ grown on carbon nanotube film for multifunctional sensors and flexible supercapacitors. Nanoscale 13, 14460–14468 (2021). https://doi.org/10.1039/D1NR03641F
K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020). https://doi.org/10.1002/adfm.202000842
M.K. Aslam, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11, 2000681 (2021). https://doi.org/10.1002/aenm.202000681
L. Wan, Y. Tang, L. Chen, K. Wang, J. Zhang et al., In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability. Chem. Eng. J. 410, 128349 (2021). https://doi.org/10.1016/j.cej.2020.128349
Z. Yang, L. Jiang, J. Wang, F. Liu, J. He et al., Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuat. B Chem. 326, 128828 (2021). https://doi.org/10.1016/j.snb.2020.128828
V.T. Le, Y. Vasseghian, V.D. Doan, T.T.T. Nguyen, T.T. Thi Vo et al., Flexible and high-sensitivity sensor based on Ti3C2-MoS2 MXene composite for the detection of toxic gases. Chemosphere 291, 133025 (2022). https://doi.org/10.1016/j.chemosphere.2021.133025
L. Li, H. Cao, Z. Liang, Y. Cheng, T. Yin et al., First-principles study of Ti-deficient Ti3C2 MXene nanosheets as NH3 gas sensors. ACS Appl. Nano Mater. 5, 2470–2475 (2022). https://doi.org/10.1021/acsanm.1c04158
B. Sun, F. Qin, L. Jiang, J. Gao, Z. Liu et al., Room-temperature gas sensors based on three-dimensional Co3O4/Al2O3@Ti3C2Tx MXene nanocomposite for highly sensitive NOx detection. Sens. Actuat. B Chem. 368, 132206 (2022). https://doi.org/10.1016/j.snb.2022.132206
Z. Wang, S. Gao, T. Fei, S. Liu, T. Zhang, Construction of ZnO/SnO2 heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature. ACS Sens. 4, 2048–2057 (2019). https://doi.org/10.1021/acssensors.9b00648
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
Z. Li, D. Guo, D. Wang, M. Sun, H. Sun, Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor. J. Power. Sources 506, 230197 (2021). https://doi.org/10.1016/j.jpowsour.2021.230197
Y. Li, W. Zhang, X. Yang, J. Zhang, Z. Wang et al., A high-voltage and high-capacity Ti3C2Tx/BiCuS2.5 heterostructure to boost up the energy density and recyclability of zinc-ion-hybrid capacitors. Nano Energy 87, 106136 (2021). https://doi.org/10.1016/j.nanoen.2021.106136
A. VahidMohammadi, W. Liang, M. Mojtabavi, M. Wanunu, M. Beidaghi, 2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage. Energy Storage Mater. 41, 554–562 (2021). https://doi.org/10.1016/j.ensm.2021.06.014
Y. Gogotsi, What nano can do for energy storage. ACS Nano 8, 5369–5371 (2014). https://doi.org/10.1021/nn503164x
M. Yousaf, H.T.H. Shi, Y. Wang, Y. Chen, Z. Ma et al., Novel pliable electrodes for flexible electrochemical energy storage devices: recent progress and challenges. Adv. Energy Mater. 6, 1600490 (2016). https://doi.org/10.1002/aenm.201600490
L. Wen, F. Li, H.-M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28, 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang et al., A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy Environ. Sci. 10, 941–949 (2017). https://doi.org/10.1039/C6EE03773A
B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34, 249–256 (2017). https://doi.org/10.1016/j.nanoen.2017.02.043
L. Yang, N. Yi, J. Zhu, Z. Cheng, X. Yin et al., Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 8, 6487–6500 (2020). https://doi.org/10.1039/C9TA07855J
Z. Chen, J. Wang, A. Umar, Y. Wang, H. Li et al., Three-dimensional crumpled graphene-based nanosheets with ultrahigh NO2 gas sensibility. ACS Appl. Mater. Interfaces 9, 11819–11827 (2017). https://doi.org/10.1021/acsami.7b01229
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14, 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
Y. Yang, Z. Cao, P. He, L. Shi, G. Ding et al., Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 66, 104134 (2019). https://doi.org/10.1016/j.nanoen.2019.104134
D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan et al., Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014). https://doi.org/10.1016/j.elecom.2014.07.026
Y.-X. Zhang, Y.-H. Wang, Nonlinear optical properties of metal nanops: a review. RSC Adv. 7, 45129–45144 (2017). https://doi.org/10.1039/C7RA07551K
S. Alwarappan, N. Nesakumar, D. Sun, T.Y. Hu, C.-Z. Li, 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens. Bioelectron. 205, 113943 (2022). https://doi.org/10.1016/j.bios.2021.113943
K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang et al., Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12, 45306–45314 (2020). https://doi.org/10.1021/acsami.0c13653
D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28, 2601–2608 (2016). https://doi.org/10.1002/adma.201505739
M. Asad, M.H. Sheikhi, Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuat. B Chem. 231, 474–483 (2016). https://doi.org/10.1016/j.snb.2016.03.021
W. Li, C. Teng, Y. Sun, L. Cai, J.-L. Xu et al., Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl. Mater. Interfaces 10, 34485–34493 (2018). https://doi.org/10.1021/acsami.8b11254
H. Yan, M. Zhong, Z. Lv, P. Wan, Stretchable electronic sensors of nanocomposite network films for ultrasensitive chemical vapor sensing. Small 13, 1701697 (2017). https://doi.org/10.1002/smll.201701697
J. Hassinen, J. Kauppila, J. Leiro, A. Määttänen, P. Ihalainen et al., Low-cost reduced graphene oxide-based conductometric nitrogen dioxide-sensitive sensor on paper. Anal. Bioanal. Chem. 405, 3611–3617 (2013). https://doi.org/10.1007/s00216-013-6805-5
A. Abdellah, A. Abdelhalim, F. Loghin, P. Köhler, Z. Ahmad et al., Flexible carbon nanotube based gas sensors fabricated by large-scale spray deposition. IEEE Sens. J. 13, 4014–4021 (2013). https://doi.org/10.1109/JSEN.2013.2265775
J. Lee, W. Shim, E. Lee, J.-S. Noh, W. Lee, Highly mobile palladium thin films on an elastomeric substrate: nanogap-based hydrogen gas sensors. Angew. Chem. Int. Ed. 50, 5301–5305 (2011). https://doi.org/10.1002/anie.201100054
J. Lee, W. Shim, E. Lee, J.S. Noh, W. Lee, Highly mobile palladium thin films on an elastomeric substrate: Nanogap-based hydrogen gas sensors. Angew. Chem. Int. Ed. 123(23), 5413–5417 (2011). https://doi.org/10.1002/anie.201100054
Z. Zhao, G. Huang, Y. Kong, J. Cui, A.A. Solovev et al., Atomic layer deposition for electrochemical energy: from design to industrialization. Electrochem. Energy Rev. 5, 31 (2022). https://doi.org/10.1007/s41918-022-00146-6
J. Zhang, L. Huang, Y. Lin, L. Chen, Z. Zeng et al., Pencil-trace on printed silver interdigitated electrodes for paper-based NO2 gas sensors. Appl. Phys. Lett. 106, 143101 (2015). https://doi.org/10.1063/1.4917063
J.M. Azzarelli, K.A. Mirica, J.B. Ravnsbæk, T.M. Swager, Wireless gas detection with a smartphone via rf communication. Proc. Natl. Acad. Sci. U.S.A. 111, 18162–18166 (2014). https://doi.org/10.1073/pnas.1415403111
S.H. Lim, B. Radha, J.Y. Chan, M.S. Saifullah, G.U. Kulkarni et al., Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography. ACS Appl. Mater. Interfaces 5, 7274–7281 (2013). https://doi.org/10.1021/am401624r
N. Tang, C. Zhou, L. Xu, Y. Jiang, H. Qu et al., A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens. 4, 726–732 (2019). https://doi.org/10.1021/acssensors.8b01690
Y. Lin, J. Chen, M.M. Tavakoli, Y. Gao, Y. Zhu et al., Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 31, e1804285 (2019). https://doi.org/10.1002/adma.201804285
S. Wu, P. Liu, Y. Zhang, H. Zhang, X. Qin, Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sens. Actuat. B Chem. 252, 697–705 (2017). https://doi.org/10.1016/j.snb.2017.06.062
L.T. Duy, T.Q. Trung, A. Hanif, S. Siddiqui, E. Roh et al., A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibres with self-assembled reduced graphene oxide. 2D Mater. 4, 025062 (2017). https://doi.org/10.1088/2053-1583/aa6783
N. Kim, S. Choi, D. Yang, J. Bae, J. Park et al., Chemical Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens. Actuat. B Chem. 193, 574–581 (2014). https://doi.org/10.1016/j.snb.2013.12.011
X. Huang, B. Li, L. Wang, X. Lai, H. Xue et al., Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 11, 24533–24543 (2019). https://doi.org/10.1021/acsami.9b04304
B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
S.Y. Cho, H. Yu, J. Choi, H. Kang, S. Park et al., Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 13, 9332–9341 (2019). https://doi.org/10.1021/acsnano.9b03971
S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li et al., Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29, 1900138 (2019). https://doi.org/10.1002/adfm.201900138
C.E. Cava, R.V. Salvatierra, D.C.B. Alves, A.S. Ferlauto, A.J.G. Zarbin et al., Self-assembled films of multi-wall carbon nanotubes used in gas sensors to increase the sensitivity limit for oxygen detection. Carbon 50, 1953–1958 (2012). https://doi.org/10.1016/j.carbon.2011.12.048
J.-W. Kim, Y. Porte, K.Y. Ko, H. Kim, J.-M. Myoung, Micropatternable double-faced ZnO nanoflowers for flexible gas sensor. ACS Appl. Mater. Interfaces 9, 32876–32886 (2017). https://doi.org/10.1021/acsami.7b09251
Z. Zhu, C. Liu, F. Jiang, J. Liu, X. Ma et al., Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J. Hazard. Mater. 399, 123054 (2020). https://doi.org/10.1016/j.jhazmat.2020.123054
Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren et al., Stabilizing Ti3C2Tx-MXenes with TiOF2 nanospheres intercalation to improve hydrogen evolution reaction and humidity-sensing performance. Appl. Surf. Sci. 496, 143729 (2019). https://doi.org/10.1016/j.apsusc.2019.143729
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
H. An, T. Habib, S. Shah, H. Gao, A. Patel et al., Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl. Nano Mater. 2, 948–955 (2019). https://doi.org/10.1021/acsanm.8b02265
H. Zhi, X. Zhang, F. Wang, P. Wan, L. Feng, Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987–45994 (2021). https://doi.org/10.1021/acsami.1c12991
Y. Tang, Y. Xu, J. Yang, Y. Song, F. Yin et al., Stretchable and wearable conductometric VOC sensors based on microstructured MXene/polyurethane core-sheath fibers. Sens. Actuat. B Chem. 346, 130500 (2021). https://doi.org/10.1016/j.snb.2021.130500
L. Jin, C. Wu, K. Wei, L. He, H. Gao et al., Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 3, 12071–12079 (2020). https://doi.org/10.1021/acsanm.0c02577
X. Wang, K. Sun, K. Li, X. Li, Y. Gogotsi, Ti3C2Tx/PEDOT: PSS hybrid materials for room-temperature methanol sensor. Chin. Chem. Lett. 31, 1018–1021 (2020). https://doi.org/10.1016/j.cclet.2019.11.031
L. Zhao, K. Wang, W. Wei, L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407–416 (2019). https://doi.org/10.1002/inf2.12032
D. Kuang, X. Guo, Z. Zhu, Y. Ding, X. Sun et al., Enhanced room temperature ammonia response of 2D-Ti3C2Tx MXene decorated with Ni(OH)2 nanops. Ceram. Int. 47, 19471–19480 (2021). https://doi.org/10.1016/j.ceramint.2021.03.284
S. Zou, J. Gao, L. Liu, Z. Lin, P. Fu et al., Enhanced gas sensing properties at low working temperature of iron molybdate/MXene composite. J. Alloys Compd. 817, 152785 (2020). https://doi.org/10.1016/j.jallcom.2019.152785
L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019). https://doi.org/10.1002/adfm.201905197
W.Y. Chen, S.N. Lai, C.C. Yen, X. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14, 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
E.S. Muckley, M. Naguib, H.-W. Wang, L. Vlcek, N.C. Osti et al., Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 11, 11118–11126 (2017). https://doi.org/10.1021/acsnano.7b05264
N. Li, Y. Jiang, Y. Xiao, B. Meng, C. Xing et al., A fully inkjet-printed transparent humidity sensor based on a Ti3C2/Ag hybrid for touchless sensing of finger motion. Nanoscale 11, 21522–21531 (2019). https://doi.org/10.1039/c9nr06751e
X. Li, Y. Lu, Z. Shi, G. Liu, G. Xu et al., Onion-inspired MXene/chitosan-quercetin multilayers: Enhanced response to H2O molecules for wearable human physiological monitoring. Sens. Actuat. B Chem. 329, 129209 (2021). https://doi.org/10.1016/j.snb.2020.129209
F. Liu, Y. Li, S. Hao, Y. Cheng, Y. Zhan et al., Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr. Polym. 243, 116467 (2020). https://doi.org/10.1016/j.carbpol.2020.116467
Y. Sun, H. Wang, High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanops. Adv. Mater. 19, 2818–2823 (2007). https://doi.org/10.1002/adma.200602975
R. Zhu, M. Desroches, B. Yoon, T.M. Swager, Wireless oxygen sensors enabled by Fe(II)-polymer wrapped carbon nanotubes. ACS Sens. 2, 1044–1050 (2017). https://doi.org/10.1021/acssensors.7b00327
Y. Zheng, H. Li, W. Shen, J. Jian, Wearable electronic nose for human skin odor identification: a preliminary study. Sens. Actuat. A Phys. 285, 395–405 (2019). https://doi.org/10.1016/j.sna.2018.11.048
M. Acuautla, S. Bernardini, L. Gallais, T. Fiorido, L. Patout et al., Ozone flexible sensors fabricated by photolithography and laser ablation processes based on ZnO nanops. Sens. Actuat. B Chem. 203, 602–611 (2014). https://doi.org/10.1016/j.snb.2014.07.010
E. Bihar, Y. Deng, T. Miyake, M. Saadaoui, G.G. Malliaras et al., A Disposable paper Breathalyzer with an alcohol sensing organic electrochemical transistor. Sci. Rep. 6, 27582 (2016). https://doi.org/10.1038/srep27582
N. Nguyen, J.G. Park, S. Zhang, R. Liang, Recent advances on 3D printing technique for thermal-related applications. Adv. Eng. Mater. 20, 1700876 (2018). https://doi.org/10.1002/adem.201700876
K. Crowley, A. Morrin, A. Hernandez, E. O’Malley, P.G. Whitten et al., Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanops. Talanta 77, 710–717 (2008). https://doi.org/10.1016/j.talanta.2008.07.022
X. Wang, F. Sun, G. Yin, Y. Wang, B. Liu et al., Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review. Sensors (Basel) 18, 330 (2018). https://doi.org/10.3390/s18020330
Y. Wang, T. Yokota, T. Someya, Electrospun nanofiber-based soft electronics. NPG Asia Mater. 13, 22 (2021). https://doi.org/10.1038/s41427-020-00267-8
T.A. Arica, T. Isık, T. Guner, N. Horzum, M.M. Demir, Advances in electrospun fiber-based flexible nanogenerators for wearable applications. Macromol. Mater. Eng. 306, 2100143 (2021). https://doi.org/10.1002/mame.202100143
C. Linghu, S. Zhang, C. Wang, J. Song, Transfer printing techniques for flexible and stretchable inorganic electronics. NPJ Flex. Electron. 2, 26 (2018). https://doi.org/10.1038/s41528-018-0037-x
P.C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev et al., 2, 4, 6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv. Mater. 22, 1900–1904 (2010). https://doi.org/10.1002/adma.200904005
A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24, 5284–5318 (2012). https://doi.org/10.1002/adma.201201386
Y. An, Y. Tian, J. Feng, Y. Qian, MXenes for advanced separator in rechargeable batteries. Mater. Today 57, 146–179 (2022). https://doi.org/10.1016/j.mattod.2022.06.006
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
M. Aakyiir, S. Araby, A. Michelmore, Q. Meng, Y. Amer et al., Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology 31, 315715 (2020). https://doi.org/10.1088/1361-6528/ab88eb
S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu et al., Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29, 1700874 (2017). https://doi.org/10.1002/adma.201700874
G.R. Berdiyorov, Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. EPL Europhys. Lett. 111, 67002 (2015). https://doi.org/10.1209/0295-5075/111/67002
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 3737–3749 (2017). https://doi.org/10.1002/adma.201702678
Z. Wang, H. Kim, H.N. Alshareef, Oxide thin-film electronics using all-MXene electrical contacts. Adv. Mater. 30, e1706656 (2018). https://doi.org/10.1002/adma.201706656
B. Jiang, T. Yang, T. Wang, C. Chen, M. Yang et al., Edge stimulated hydrogen evolution reaction on monodispersed MXene quantum dots. Chem. Eng. J. 442, 136119 (2022). https://doi.org/10.1016/j.cej.2022.136119
M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
C. Si, J. Zhou, Z. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces 7, 17510–17515 (2015). https://doi.org/10.1021/acsami.5b05401
J. Yang, X. Zhou, X. Luo, S. Zhang, L. Chen Tunable electronic and magnetic properties of Cr2M’C2T2 (M’ = Ti or V; T = O, OH or F). Appl. Phys. Lett. 109, 203109 (2016). https://doi.org/10.1063/1.4967983
Y. Zhang, Z. Zhou, J. Lan, P. Zhang, Prediction of Ti3C2O2 MXene as an effective capturer of formaldehyde. Appl. Surf. Sci. 469, 770–774 (2019). https://doi.org/10.1016/j.apsusc.2018.11.018
S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang et al., Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 12, 10434–10442 (2020). https://doi.org/10.1021/acsami.9b21765
M. Liu, Z. Wang, P. Song, Z. Yang, Q. Wang, Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuat. B Chem. 340, 129946 (2021). https://doi.org/10.1016/j.snb.2021.129946
Y. Wang, Y. Zhou, Y. Wang, Humidity activated ionic-conduction formaldehyde sensing of reduced graphene oxide decorated nitrogen-doped MXene/titanium dioxide composite film. Sens. Actuat. B Chem. 323, 128695 (2020). https://doi.org/10.1016/j.snb.2020.128695
Y. Zhou, Y. Wang, Y. Wang, X. Li, Humidity-enabled ionic conductive trace carbon dioxide sensing of nitrogen-doped Ti3C2Tx MXene/polyethyleneimine composite films decorated with reduced graphene oxide nanosheets. Anal. Chem. 92, 16033–16042 (2020). https://doi.org/10.1021/acs.analchem.0c03664
Y. Song, Y. Xu, Q. Guo, Z. Hua, F. Yin et al., MXene-derived TiO2 nanops intercalating between RGO nanosheets: an assembly for highly sensitive gas detection. ACS Appl. Mater. Interfaces 13, 39772–39780 (2021). https://doi.org/10.1021/acsami.1c12154
H. Tai, Z. Duan, Z. He, X. Li, J. Xu et al., Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanops at room temperature. Sens. Actuat. B Chem. 298, 126874 (2019). https://doi.org/10.1016/j.snb.2019.126874
A. Hermawan, B. Zhang, A. Taufik, Y. Asakura, T. Hasegawa et al., CuO nanops/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl. Nano Mater. 3, 4755–4766 (2020). https://doi.org/10.1021/acsanm.0c00749
B. Sun, H. Lv, Z. Liu, J. Wang, X. Bai et al., Co3O4@PEI/Ti3C2Tx MXene nanocomposites for a highly sensitive NOx gas sensor with a low detection limit. J. Mater. Chem. A 9, 6335–6344 (2021). https://doi.org/10.1039/d0ta11392a
D. Zhang, Q. Mi, D. Wang, T. Li, MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sens. Actuat. B Chem. 339, 129923 (2021). https://doi.org/10.1016/j.snb.2021.129923
H. Pazniak, I.A. Plugin, M.J. Loes, T.M. Inerbaev, I.N. Burmistrov et al., Partially oxidized Ti3C2Tx MXenes for fast and selective detection of organic vapors at part-per-million concentrations. ACS Appl. Nano Mater. 3, 3195–3204 (2020). https://doi.org/10.1021/acsanm.9b02223
M. Hou, S. Guo, L. Yang, J. Gao, T. Hu et al., Improvement of gas sensing property for two-dimensional Ti3C2Tx treated with oxygen plasma by microwave energy excitation. Ceram. Int. 47, 7728–7737 (2021). https://doi.org/10.1016/j.ceramint.2020.11.117
Q. Sun, J. Wang, X. Wang, J. Dai, X. Wang et al., Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. Nanoscale 12, 16987–16994 (2020). https://doi.org/10.1039/c9nr08350b
X. Guo, Y. Ding, D. Kuang, Z. Wu, X. Sun et al., Enhanced ammonia sensing performance based on MXene-Ti3C2Tx multilayer nanoflakes functionalized by tungsten trioxide nanops. J. Colloid Interface Sci. 595, 6–14 (2021). https://doi.org/10.1016/j.jcis.2021.03.115
T. He, W. Liu, T. Lv, M. Ma, Z. Liu et al., MXene/SnO2 heterojunction based chemical gas sensors. Sens. Actuat. B Chem. 329, 129275 (2021). https://doi.org/10.1016/j.snb.2020.129275
Z. Wang, F. Wang, A. Hermawan, Y. Asakura, T. Hasegawa et al., SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature. J. Mater. Sci. Technol. 73, 128–138 (2021). https://doi.org/10.1016/j.jmst.2020.07.040
D. Kuang, L. Wang, X. Guo, Y. She, B. Du et al., Facile hydrothermal synthesis of Ti3C2Tx-TiO2 nanocomposites for gaseous volatile organic compounds detection at room temperature. J. Hazard. Mater. 416, 126171 (2021). https://doi.org/10.1016/j.jhazmat.2021.126171
M. Liu, J. Ji, P. Song, M. Liu, Q. Wang, α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sens. Actuat. B Chem. 349, 130782 (2021). https://doi.org/10.1016/j.snb.2021.130782
M. Liu, Z. Wang, P. Song, Z. Yang, Q. Wang, In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature. Ceram. Int. 47, 23028–23037 (2021). https://doi.org/10.1016/j.ceramint.2021.05.016
Q.T.H. Ta, D. Thakur, J.S. Noh, Enhanced gas sensing performance of ZnO/Ti3C2Tx MXene nanocomposite. Micromachines 13, 1710 (2022). https://doi.org/10.3390/mi13101710
Z. Sima, P. Song, Y. Ding, Z. Lu, Q. Wang, ZnSnO3 nanocubes/Ti3C2Tx MXene composites for enhanced formaldehyde gas sensing properties at room temperature. Appl. Surf. Sci. 598, 153861 (2022). https://doi.org/10.1016/j.apsusc.2022.153861
N. Li, Y. Jiang, C. Zhou, Y. Xiao, B. Meng et al., High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl. Mater. Interfaces 11, 38116–38125 (2019). https://doi.org/10.1021/acsami.9b12168
J. Wu, P. Lu, J. Dai, C. Zheng, T. Zhang et al., High performance humidity sensing property of Ti3C2Tx MXene-derived Ti3C2Tx/K2Ti4O9 composites. Sens. Actuat. B Chem. 326, 128969 (2021). https://doi.org/10.1016/j.snb.2020.128969
Q. Thanh Hoai Ta, N. NgocTri, J.-S. Noh, Improved NO2 gas sensing performance of 2D MoS2/Ti3C2Tx MXene nanocomposite. Appl. Surf. Sci. 604, 154624 (2022). https://doi.org/10.1016/j.apsusc.2022.154624
W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang et al., Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 15, 2911–2919 (2021). https://doi.org/10.1021/acsnano.0c09015
Y. Chang, M. Chen, Z. Fu, R. Lu, Y. Gao et al., Building porphyrin-based MOFs on MXenes for ppb-level NO sensing. J. Mater. Chem. A 11, 6966–6977 (2023). https://doi.org/10.1039/d3ta00072a
X. Li, J. Xu, Y. Jiang, Z. He, B. Liu et al., Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens. Actuat. B Chem. 316, 128144 (2020). https://doi.org/10.1016/j.snb.2020.128144
L. Zhao, Y. Zheng, K. Wang, C. Lv, W. Wei et al., Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 5, 2000248 (2020). https://doi.org/10.1002/admt.202000248
O. Mashtalir, M.R. Lukatskaya, A.I. Kolesnikov, E. Raymundo-Piñero, M. Naguib et al., The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8, 9128–9133 (2016). https://doi.org/10.1039/C6NR01462C
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
C. Hu, F. Shen, D. Zhu, H. Zhang, J. Xue et al., Characteristics of Ti3C2X–chitosan films with enhanced mechanical properties. Front. Energy Res. 4, 41 (2017). https://doi.org/10.3389/fenrg.2016.00041
K. Wang, Y. Zhou, W. Xu, D. Huang, Z. Wang et al., Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42, 8419–8424 (2016). https://doi.org/10.1016/j.ceramint.2016.02.059
J.-H. Chen, C. Jang, S.M. Xiao, M.S. Ishigami, Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008). https://doi.org/10.1038/nnano.2008.58
J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J. Alloys Compd. 619, 38–43 (2015). https://doi.org/10.1016/j.jallcom.2014.09.008
M. Mariano, O. Mashtalir, F.Q. Antonio, W.-H. Ryu, B. Deng et al., Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 8, 16371–16378 (2016). https://doi.org/10.1039/C6NR03682A
Y. Wang, Y. Li, Z. Qiu, X. Wu, P. Zhou et al., Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6, 11189–11197 (2018). https://doi.org/10.1039/C8TA00122G
K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori et al., Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016). https://doi.org/10.1002/aelm.201600050
A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
V.N. Borysiuk, V.N. Mochalin, Y. Gogotsi, Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes). Nanotechnology 26, 265705 (2015). https://doi.org/10.1088/0957-4484/26/26/265705
M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter et al., Selective etching of silicon from Ti3 SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57, 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
X.-H. Zha, Q. Huang, J. He, H. He, J. Zhai et al., The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 6, 27971 (2016). https://doi.org/10.1038/srep27971
S. Uzun, M. Han, C.J. Strobel, K. Hantanasirisakul, A. Goad et al., Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. Carbon 174, 382–389 (2021). https://doi.org/10.1016/j.carbon.2020.12.021
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Correction: Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 6889 (2018). https://doi.org/10.1039/C8CS90090F
D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, e1703419 (2018). https://doi.org/10.1002/smll.201703419
A. Lipatov, M.J. Loes, H. Lu, J. Dai, P. Patoka et al., Quasi-1D TiS3 nanoribbons: mechanical exfoliation and thickness-dependent Raman spectroscopy. ACS Nano 12, 12713–12720 (2018). https://doi.org/10.1021/acsnano.8b07703
S.A.M. Chachuli, M.N. Hamidon, M. Ertugrul, M.S. Mamat, O. Coban et al., Effects of MWCNTs/graphene nanoflakes/MXene addition to TiO2 thick film on hydrogen gas sensing. J. Alloys Compd. 882, 160671 (2021). https://doi.org/10.1016/j.jallcom.2021.160671
P.-G. Su, S.-L. Peng, Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132, 398–405 (2015). https://doi.org/10.1016/j.talanta.2014.09.034
H. Naderi, S. Hajati, M. Ghaedi, K. Dashtian, M.M. Sabzehmeidani, Sensitive, selective and rapid ammonia-sensing by gold nanop-sensitized V2O5/CuWO4 heterojunctions for exhaled breath analysis. Appl. Surf. Sci. 501, 144270 (2020). https://doi.org/10.1016/j.apsusc.2019.144270
T. Xu, J. Wei, P. He, J. Wu, N. Chen et al., CuS-doped Ti3C2 MXene nanosheets for highly efficient adsorption of elemental mercury in flue gas. Energy Fuels 36, 2503–2514 (2022). https://doi.org/10.1021/acs.energyfuels.1c03705
J. Kim, J. You, E. Kim, Flexible conductive polymer patterns from vapor polymerizable and photo-cross-linkable EDOT. Macromolecules 43, 2322–2327 (2010). https://doi.org/10.1021/ma9025306
L. Qin, Z. Ding, M. Hanif, J. Jiang, L. Liu et al., Poly(3, 4-dioxythiophene) soft nano-network with a compatible ion transporting channel for improved electrochromic performance. Polym. Chem. 7, 6954–6963 (2016). https://doi.org/10.1039/C6PY01642A
S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004). https://doi.org/10.1038/nature02498
L. Qin, J. Xu, B. Lu, Y. Lu, X. Duan et al., Synthesis and electrochromic properties of polyacrylate functionalized poly(3, 4-ethylenedioxythiophene) network films. J. Mater. Chem. 22, 18345–18353 (2012). https://doi.org/10.1039/C2JM32457A
Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696 (2015). https://doi.org/10.1039/C5CS00362H
C. Reese, M. Roberts, M.-M. Ling, Z. Bao, Organic thin film transistors. Mater. Today 7, 20–27 (2004). https://doi.org/10.1016/S1369-7021(04)00398-0
A. Ali, P.K. Shen, Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2, 99–121 (2020). https://doi.org/10.1002/cey2.26
H.F. Zhang, J.Y. Xuan, Q. Zhang, M.L. Sun, F.C. Jia, AStrategies and challenges for enhancing performance of MXene-based gas sensors: a review. Rare Met. 41, 3976–3999 (2022). https://doi.org/10.1007/s12598-022-02087-x
M.S. Bhargava Reddy, S. Kailasa, B.C.G. Marupalli, K.K. Sadasivuni, S. Aich, A family of 2D-MXenes: synthesis, properties, and gas sensing applications. ACS Sens. 7, 2132–2163 (2022). https://doi.org/10.1021/acssensors.2c01046
J. Li, X. Chen, X. Zhu, Y. Jiang, X. Chang et al., Two-dimensional transition metal MXene-based gas sensors: a review. Chin. Chem. Lett. 35, 108286 (2024). https://doi.org/10.1016/j.cclet.2023.108286
E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
S. He, Y. Gui, Y. Wang, J. Yang, A self-powered β-Ni(OH)2/MXene based ethanol sensor driven by an enhanced triboelectric nanogenerator based on β-Ni(OH)2@PVDF at room temperature. Nano Energy 107, 108132 (2023). https://doi.org/10.1016/j.nanoen.2022.108132
X. Wang, L. Gong, Z. Li, Y. Yin, D. Zhang, A room temperature ammonia gas sensor based on cerium oxide/MXene and self-powered by a freestanding-mode triboelectric nanogenerator and its multifunctional monitoring application. J. Mater. Chem. A 11, 7690–7701 (2023). https://doi.org/10.1039/d2ta07917h
S. Sardana, H. Kaur, B. Arora, D.K. Aswal, A. Mahajan, Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 7, 312–321 (2022). https://doi.org/10.1021/acssensors.1c02388
S. Sardana, A. Mahajan, Edge-site-enriched Ti3C2Tx MXene/MoS2 nanosheet heterostructures for self-powered breath and environmental monitoring. ACS Appl. Nano Mater. 6, 469–481 (2023). https://doi.org/10.1021/acsanm.2c04581
R. Saini, A. Mahajan, R.K. Bedi, D.K. Aswal, Room temperature detection of amine vapours using copper phthalocyanine based thin films. Phys. Status Solidi A 209, 1245–1250 (2012). https://doi.org/10.1002/pssa.201127569
R. Saini, A. Mahajan, R.K. Bedi, D.K. Aswal, A.K. Debnath, Phthalocyanine based nanowires and nanoflowers as highly sensitive room temperature Cl2 sensors. RSC Adv. 4, 15945–15951 (2014). https://doi.org/10.1039/C3RA47002D
K.K. Khun, A. Mahajan, R.K. Bedi, Surfactant assisted growth of nanostructured tin oxide films for gas sensing applications. Electron. Mater. Lett. 7, 303–308 (2011). https://doi.org/10.1007/s13391-011-0140-9
D. Wang, D. Zhang, M. Tang, H. Zhang, T. Sun et al., Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring. Nano Energy 100, 107509 (2022). https://doi.org/10.1016/j.nanoen.2022.107509
J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9, 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
C. Yang, D. Zhang, D. Wang, H. Luan, X. Chen et al., In situ polymerized MXene/polypyrrole/hydroxyethyl cellulose-based flexible strain sensor enabled by machine learning for handwriting recognition. ACS Appl. Mater. Interfaces 15, 5811–5821 (2023). https://doi.org/10.1021/acsami.2c18989
D. Wang, D. Zhang, M. Tang, H. Zhang, F. Chen et al., Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chem. Eng. J. 446, 136914 (2022). https://doi.org/10.1016/j.cej.2022.136914
W. Lin, Z. Hui, A.O. Govorov, M. Ouyang, Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun. 5, 4792 (2014). https://doi.org/10.1038/ncomms5792
D. Zhang, S. Yu, X. Wang, J. Huang, W. Pan et al., UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 423, 127160 (2022). https://doi.org/10.1016/j.jhazmat.2021.127160
M.C. Tang, Z.J. Wang, D.Y. Wang, R.Y. Mao, H. Zhang et al., Construction of LaF3 QD-modified SnS2 nanorod composites for ultrasensitive detection of H2S. ChemElectroChem 11(18), 9942–9954 (2023). https://doi.org/10.1039/d2ta08496a
M. Tang, D. Zhang, Q. Chen, Z. Wang, D. Wang et al., Heterostructure construction of SnS2 Debye nanowires modified with ZnO nanorods for chemiresistive H2S detection in sulfur hexafluoride decomposition products. Sens. Actuat. B Chem. 390, 133952 (2023). https://doi.org/10.1016/j.snb.2023.133952
Y. Wang, Y. Wang, Y. Kuai, M. Jian, “Visualization” gas—gas sensors based on high performance novel MXenes materials. Small 20, 2305250 (2024). https://doi.org/10.1002/smll.202305250
M. Wu, M. He, Q. Hu, Q. Wu, G. Sun et al., Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 4, 2763–2770 (2019). https://doi.org/10.1021/acssensors.9b01308
B. Xiao, Y.-C. Li, X.-F. Yu, J.-B. Cheng, MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens. Actuat. B Chem. 235, 103–109 (2016). https://doi.org/10.1016/j.snb.2016.05.062
S. Ma, D. Yuan, Z. Jiao, T. Wang, X. Dai, Monolayer Sc2CO2: a promising candidate as a SO2 gas sensor or capturer. J. Phys. Chem. C 121, 24077–24084 (2017). https://doi.org/10.1021/acs.jpcc.7b07921
A. Junkaew, R. Arróyave, Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and-separation. Phys. Chem. Chem. Phys. 20, 6073–6082 (2018). https://doi.org/10.1039/C7CP08622A
P. Khakbaz, M. Moshayedi, S. Hajian, M. Soleimani, B.B. Narakathu et al., Titanium carbide MXene as NH3 sensor: realistic first-principles study. J. Phys. Chem. C 123, 29794–29803 (2019). https://doi.org/10.1021/acs.jpcc.9b09823
S.R. Naqvi, V. Shukla, N.K. Jena, W. Luo, R. Ahuja, Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. Appl. Mater. Today 19, 100574 (2020). https://doi.org/10.1016/j.apmt.2020.100574
H.J. Koh, S.J. Kim, K. Maleski, S.Y. Cho, Y.J. Kim et al., Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ X-ray diffraction study. ACS Sens. 4, 1365–1372 (2019). https://doi.org/10.1021/acssensors.9b00310