A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage
Corresponding Author: Xifei Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 6
Abstract
As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
Highlights:
1 Two-dimensional transition metal borides have high mechanical stability, high charge carrier mobility and great electrochemical performance.
2 The potential applications of two-dimensional transition metal borides in the direction of energy conversion and storage have not been systematically reviewed.
3 We summarize the research on the role of two-dimensional transition metal borides in catalysis and ion batteries, and put forward the new opportunities in preparation and biotechnology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Dusastre, L. Martiradonna, Materials for sustainable energy. Nat. Mater. 16, 15 (2017). https://doi.org/10.1038/nmat4838
- J. Tian, Q. Xue, Q. Yao, N. Li, C.J. Branes et al., Inorganic halide perovskite solar cells: progress and challenges. Adv. Energy Mater. 10(23), 2000183 (2020). https://doi.org/10.1002/aenm.202000183
- Q.A. Akkerman, M. Gandini, F.D. Stasio, P. Rastogi, F. Palazon et al., Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2(2), 16194 (2017). https://doi.org/10.1038/nenergy.2016.194
- A. Barre, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard et al., A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680–689 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.040
- Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara et al., Lithium and lithium ion batteries for applications in microelectronic devices: a review. J. Power Sources 286, 330–345 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.164
- L. Jin, C. Shen, A. Shellikeri, Q. Wu, J. Zheng et al., Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ. Sci. 13(8), 2341–2362 (2020). https://doi.org/10.1039/d0ee00807a
- A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h
- M. Soltani, S.H. Beheshti, A comprehensive review of lithium ion capacitor: development, modelling, thermal management and applications. J. Energy Storage 34, 102019 (2021). https://doi.org/10.1016/j.est.2020.102019
- N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y. Sun et al., Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51(40), 9994–10024 (2012). https://doi.org/10.1002/anie.201201429
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
- P. Kumar, A. Dey, J. Roques, L. Assaud, S. Franger et al., Photoexfoliation synthesis of 2D materials. ACS Mater. Lett. 4(2), 263–270 (2022). https://doi.org/10.1021/acsmaterialslett.1c00651
- W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
- D. Chen, W. Chen, L. Ma, G. Ji, K. Chang et al., Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Mater. Today 17(4), 184–193 (2014). https://doi.org/10.1016/j.mattod.2014.04.001
- M. Houssa, A. Dimoulas, A. Molle, Silicene: a review of recent experimental and theoretical investigations. J. Phys. Conden. Matter. 27(25), 253002 (2015). https://doi.org/10.1088/0953-8984/27/25/253002
- J. Gao, J. Zhang, H. Liu, Q. Zhang, J. Zhao et al., Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale 5(20), 9785–9792 (2013). https://doi.org/10.1039/c3nr02826g
- V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17(2), 992–1000 (2015). https://doi.org/10.1039/c4cp03890h
- L. Kou, T. Frauenheim, C. Chen, Phosphorene as a superior gas sensor: selective adsorption and distinct I-V response. J. Phys. Chem. Lett. 5(15), 2675–2681 (2014). https://doi.org/10.1021/jz501188k
- G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong et al., Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 54(51), 15473–15477 (2015). https://doi.org/10.1002/anie.201509285
- A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). https://doi.org/10.1126/science.aad1080
- C. Hou, G. Tai, J. Hao, L. Sheng, B. Liu et al., Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem. Int. Ed. 59(27), 10819–10825 (2020). https://doi.org/10.1002/anie.202001045
- S. Chahal, P. Ranjan, M. Motlag, S.S.R.K.C. Yamijala, D.J. Late et al., Borophene via micromechanical exfoliation. Adv. Mater. 33(34), 2102039 (2021). https://doi.org/10.1002/adma.202102039
- P. Ranjan, J.M. Lee, P. Kumar, A. Vinu, Borophene: new sensation in flatland. Adv. Mater. 32(34), 2000531 (2020). https://doi.org/10.1002/adma.202000531
- M. Ou, X. Wang, L. Yu, C. Liu, W. Tao et al., The emergence and evolution of borophene. Adv. Sci. 8(12), 2001801 (2021). https://doi.org/10.1002/advs.202001801
- E. Lee, Y.S. Yoon, D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3(10), 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
- R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun et al., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
- S. Chahal, S.M. Kauzlarich, P. Kumar, Microwave synthesis of hematene and other two-dimensional oxides. ACS Mater. Lett. 3(5), 631–640 (2021). https://doi.org/10.1021/acsmaterialslett.1c00102
- H. Xie, Z. Li, L. Cheng, A.A. Haidry, J. Tao et al., Recent advances in the fabrication of 2D metal oxides. Iscience 25(1), 103598 (2022). https://doi.org/10.1016/J.isci.2021.103598
- H.S. Gujral, G. Singh, A.V. Baskar, X. Guan, X. Geng et al., Metal nitride-based nanostructures for electrochemical and photocatalytic hydrogen production. Sci. Technol. Adv. Mater. 23(1), 76–119 (2022). https://doi.org/10.1080/14686996.2022.2029686
- P.M. Bodhankar, P.B. Sarawade, P. Kumar, A. Vinu, A.P. Kulkarni et al., Nanostructured metal phosphide based catalysts for electrochemical water splitting: a review. Small 18(21), 2107572 (2022). https://doi.org/10.1002/smll.202107572
- S. Chahal, A. Bandyopadhyay, S.P. Dash, P. Kuma, Microwave synthesized 2D gold and its 2D–2D hybrids. J. Phys. Chem. Lett. 13(28), 6487–6495 (2022). https://doi.org/10.1021/acs.jpclett.2c01540
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- A.L. Ivanovskii, A.N. Enyashin, Graphene-like transition-metal nanocarbides and nanonitrides. Russ. Chem. Rev. 82(8), 735–746 (2013). https://doi.org/10.1070/RC2013v082n08ABEH004398
- T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu et al., Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH). Monosheets by first-principles calculations: a comparative study. Phys. Chem. Chem. Phys. 17(15), 9997–10003 (2015). https://doi.org/10.1039/c4cp05666c
- X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. Rev. Sect. Phys. Lett. 848, 1–58 (2020). https://doi.org/10.1016/J.physrep.2019.12.006
- Z. He, H. Xie, H. Wu, J. Chen, S. Ma et al., Recent advances in MXene/polyaniline-based composites for electrochemical devices and electromagnetic interference shielding applications. ACS Omega 6(35), 22468–22477 (2021). https://doi.org/10.1021/acsomega.1c02996
- F. Jamil, H.M. Ali, M.M. Janjua, MXene based advanced materials for thermal energy storage: a recent review. J. Energy Storage 35, 102322 (2021). https://doi.org/10.1016/J.est.2021.102322
- J.C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10(3), 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
- H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
- K. Zhu, H. Zhang, K. Ye, W. Zhao, J. Yan et al., Two-dimensional titanium carbide MXene as a capacitor-type electrode for rechargeable aqueous Li-ion and Na-ion capacitor batteries. ChemElectroChem 4(11), 3018–3025 (2017). https://doi.org/10.1002/celc.201700523
- D. Wei, W. Wu, J. Zhu, C. Wang, C. Zhao et al., A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. J. Electroanal. Chem. 877, 114538 (2020). https://doi.org/10.1016/J.jelechem.2020.114538
- J. Fu, L. Li, D. Lee, J.M. Yun, B.K. Ryu et al., Enhanced electrochemical performance of Ti3C2Tx MXene film based supercapacitors in H2SO4/KI redox additive electrolyte. Appl. Surf. Sci. 504, 144250 (2020). https://doi.org/10.1016/J.apsusc.2019.144250
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P.L. Taberna et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- Y. Dall’Agnese, P. Rozier, P.L. Taberna, Y. Gogotsi, P. Simon et al., Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016). https://doi.org/10.1016/J.jpowsour.2015.12.036
- L. Li, J. Wen, X. Zhang, Progress of two-dimensional Ti3C2Tx in supercapacitors. Chemsuschem 13(6), 1296–1329 (2020). https://doi.org/10.1002/cssc.201902679
- Y. Tian, Y. An, J. Feng, Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 11(10), 10004–10011 (2019). https://doi.org/10.1021/acsami.8b21893
- J. Jyoti, B.P. Singh, M. Sandhu, S.K. Tripath, New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustain. Energy Fuels 6(4), 971–1013 (2022). https://doi.org/10.1039/d1se01681d
- S. Sun, Z. Xie, Y. Yan, S. Wu, Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. Chem. Eng. J. 366, 460–467 (2019). https://doi.org/10.1016/J.ceJ.2019.01.185
- Y. Zhang, C. Ma, W. He, C. Zhang, C. Zhang et al., MXene and MXene-based materials for lithium-sulfur batteries. Prog. Nat. Sci. Mater. Int. 31(4), 501–513 (2021). https://doi.org/10.1016/J.pnsc.2021.07.003
- M.K. Aslam, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries supercapacitors. Adv. Energy Mater. 11(2), 2000681 (2021). https://doi.org/10.1002/aenm.202000681
- J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao et al., Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 405, 126664 (2021). https://doi.org/10.1016/J.ceJ.2020.126664
- M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2(33), 13193–13206 (2014). https://doi.org/10.1039/c4ta01183j
- Y.V. Kaneti, D.P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi et al., Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications. Chem. Rev. 122(1), 1000–1051 (2022). https://doi.org/10.1021/acs.chemrev.1c00233
- B. Kiraly, X. Liu, L. Wang, Z. Zhang, A.J. Brandon et al., Borophene synthesis on Au(111). ACS Nano 13(4), 3816–3822 (2019). https://doi.org/10.1021/acsnano.8b09339
- N. Liu, G. Bo, Y. Liu, X. Xu, Y. Du et al., Recent progress on germanene and functionalized germanene: preparation, characterizations, applications, and challenges. Small 15(32), 1805147 (2019). https://doi.org/10.1002/smll.201805147
- F. Li, W. Wei, X. Lv, B. Huang, Y. Dai et al., Evolution of the linear band dispersion of monolayer and bilayer germanene on Cu(111). Phys. Chem. Chem. Phys. 19(34), 22844–22851 (2017). https://doi.org/10.1039/c7cp03597g
- M.A. Pamungkas, V.K.R. Sari, Irwansyah, S.A. Putra, Abdurrouf et al., Tuning electronic structure and magnetic properties of flat stanene by hydrogenation and Al/P doping: a first principle DFT study. Coatings 11(1), 47 (2021). https://doi.org/10.3390/coatings11010047
- P.C. Shen, C. Su, Y. Lin, A. Chou, C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593(7858), 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
- M.J. Armstrong, D.M. Burke, T. Gabriel, C. O’Dwyer, N. Petkov et al., Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. J. Mater. Chem. A 1(40), 12568–12578 (2013). https://doi.org/10.1039/c3ta12652h
- J. Wang, Y. Fu, H. Chen, J. Shen, Effect of supports on the supported Ni2P catalysts prepared by the phosphidation using triphenylphosphine in liquid phase. Chem. Eng. J. 275, 89–101 (2015). https://doi.org/10.1016/J.ceJ.2015.03.129
- Y. Li, X. Yang, L. Zhu, H. Zhang, B. Chen et al., Hydrodeoxygenation of phenol as a bio-oil model compound over intimate contact noble metal-Ni2P/SiO2 catalysts. RSC Adv. 5(98), 80388–80396 (2015). https://doi.org/10.1039/c5ra11203f
- C.T. Crespo, The effect of the halide anion on the optical properties of lead halide perovskites. Sol. Energy Mater. Sol. Cells 195, 269–273 (2019). https://doi.org/10.1016/J.solmat.2019.03.023
- F. Chen, Q. Tang, T. Ma, B. Zhu, L. Wang et al., Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. Infomat 4(5), e12299 (2022). https://doi.org/10.1002/inf2.12299
- Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5(5), 6717–6731 (2012). https://doi.org/10.1039/c2ee03479d
- C.L. Tan, X.H. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- L.Y. Chen, Q. Xu, Metal-organic framework composites for catalysis. Matter 1(1), 57–89 (2019). https://doi.org/10.1016/J.matt.2019.05.018
- D.H. Ho, Y.Y. Choi, S.B. Jo, J. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33(47), 2005846 (2021). https://doi.org/10.1002/adma.202005846
- W.S.V. Lee, T. Xiong, X.P. Wang, J. Xue, Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: a perspective. Small Methods 5(1), 2000815 (2021). https://doi.org/10.1002/smtd.202000815
- M. Ade, H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 54(13), 6122–6135 (2015). https://doi.org/10.1021/acs.inorgchem.5b00049
- Q. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian et al., Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017). https://doi.org/10.1038/ncomms14949
- M. Dahlqvist, J. Lu, R. Meshkian, Q. Tao, L. Hultman et al., Prediction and synthesis of a family of atomic laminate phases with Kagome-like and in-plane chemical ordering. Sci. Adv. 3(7), 1700642 (2017). https://doi.org/10.1126/sciadv.1700642
- R. Meshkian, M. Dahlqvist, J. Lu, B. Wickman, J. Halim et al., W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater. 30(21), 1706409 (2018). https://doi.org/10.1002/adma.201706409
- I. Persson, A. Ghazaly, Q. Tao, J. Halim, S. Kota et al., Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 14(17), 1703676 (2018). https://doi.org/10.1002/smll.201703676
- S.K. Kailasa, D.J. Joshi, J.R. Koduru, N. Malek, Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. J. Mol. Liq. 342, 117524 (2021). https://doi.org/10.1016/J.molliq.2021.117524
- M. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna et al., MXenes-a new class of two-dimensional materials: structure, properties and potential applications. Nanomaterials 11(12), 3412 (2021). https://doi.org/10.3390/nano11123412
- A.K. Singh, P. Kumbhakar, A. Krishnamoorthy et al., Review of strategies toward the development of alloy two-dimensional (2D) transition metal dichalcogenides. Iscience 24(12), 103532 (2021). https://doi.org/10.1016/J.isci.2021.103532
- B. Ahmed, A. Ghazaly, J. Rosen, i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 30(47), 200894 (2020). https://doi.org/10.1002/adfm.202000894
- M. Dahlqvist, A. Petruhins, J. Lu, L. Hultman, J. Rosen, Origin of chemically ordered atomic laminates (i-MAX): expanding the elemental space by a theoretical/experimental approach. ACS Nano 12(8), 7761–7770 (2018). https://doi.org/10.1021/acsnano.8b01774
- A. Mockute, Q. Tao, M. Dahlqvist, J. Lu, S. Calder et al., Materials synthesis, neutron powder diffraction, and first-principles calculations of (MoxSc1−x)2 AlC i-MAX phase used as parent material for MXene derivation. Phys. Rev. Mater. 3(11), 113607 (2019). https://doi.org/10.1103/PhysRevMaterials.3.113607
- J. Thornberg, J. Halim, J. Lu, R. Meshkian, J. Palisaitis et al., Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2−xC MXene scrolls. Nanoscale 11(31), 14720–14726 (2019). https://doi.org/10.1039/c9nr02354b
- M. Dahlqvist, Q. Tao, J. Zhou, J. Palisaitis, P.O.Å. Persson et al., Theoretical prediction and synthesis of a family of atomic laminate metal borides with in-plane chemical ordering. J. Am. Chem. Soc. 142(43), 18583–18591 (2020). https://doi.org/10.1021/jacs.0c08113
- J. Zhou, J. Palisaitis, J. Halim, M. Dahlqvist, Q. Tao et al., Boridene: two-dimensional Mo4/3B2−x with ordered metal vacancies obtained by chemical exfoliation. Science 373(6556), 801–805 (2021). https://doi.org/10.1126/science.abf6239
- F. Wei, S. Xu, J. Li, S. Yuan, B. Jia et al., Computational investigation of two-dimensional vanadium boride compounds for Na-ion batteries. ACS Omega 7(17), 14765–14771 (2022). https://doi.org/10.1021/acsomega.2c00134
- W. Xiong, X. Feng, Y. Xiao, T. Huang, X. Li et al., Fluorine-free prepared two-dimensional molybdenum boride (MBene) as a promising anode for lithium-ion batteries with superior electrochemical performance. Chem. Eng. J. 446, 137466 (2022). https://doi.org/10.1016/J.ceJ.2022.137466
- Z. Guo, J. Zhoue, Z. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5(45), 23530–23535 (2017). https://doi.org/10.1039/c7ta08665b
- L.T. Alameda, P. Moradifar, Z.P. Metzger, N. Alem, R.E. Schaak, Topochemical deintercalation of Al from MoAIB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140(28), 8833–8840 (2018). https://doi.org/10.1021/jacs.8b04705
- H. Zhang, H. Xiang, F. Dai, Z. Zhang, Y. Zhou et al., First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. J. Mater. Sci. Technol. 34(11), 2022–2026 (2018). https://doi.org/10.1016/J.jmst.2018.02.024
- G. Bhaskar, V. Gvozdetskyi, M. Batuk, K.M. Wiaderek, Y. Sun et al., Topochemical deintercalation of Li from layered LiNiB: toward 2D MBene. J. Am. Chem. Soc. 143(11), 4213–4223 (2021). https://doi.org/10.1021/jacs.0c11397
- J. Wang, T.N. Ye, Y. Gong, J. Wu, N. Miao et al., Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat. Commun. 10, 2284 (2019). https://doi.org/10.1038/s41467-019-10297-8
- S. Zhou, X.W. Yang, W. Pei, Z. Jiang, J. Zhao, MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface. J. Phys. Energy 3(1), 012002 (2021). https://doi.org/10.1088/2515-7655/abb6d1
- J. Jia, B. Li, S. Duan, Z. Cui, H. Gao et al., Monolayer MBenes: prediction of anode materials for high-performance lithium/sodium ion batteries. Nanoscale 11(42), 20307–20314 (2019). https://doi.org/10.1039/c9nr05708k
- D. Chen, Z. Jin, B. Zhao, Y. Wang, Q. He, MBene as a theranostic nanoplatform for photocontrolled intratumoral retention and drug release. Adv. Mater. 33(16), 2008089 (2021). https://doi.org/10.1002/adma.202008089
- Y. Xiao, C. Shen, N. Hadaeghi, Quantum mechanical screening of 2D MBenes for the electroreduction of CO2 to C1 hydrocarbon fuels. J. Phys. Chem. Lett. 12(27), 6370–6382 (2021). https://doi.org/10.1021/acs.jpclett.1c01499
- M. Jakubczak, A. Szuplewska, A. Rozmysłowska-Wojciechowska, A. Rosenkranz, A.M. Jastrzębska, Novel 2D MBenes—synthesis, structure, and biotechnological potential. Adv. Funct. Mater. 31(38), 2103048 (2021). https://doi.org/10.1002/adfm.202103048
- V. Natu, S.S. Kota, M.W. Barsoum, X-ray photoelectron spectroscopy of the MAB phases, MoAlB, M2AlB2 (M = Cr, Fe), Cr3AlB4 and their binary monoborides. J. Eur. Ceram. Soc. 40(2), 305–314 (2020). https://doi.org/10.1016/J.jeurceramsoc.2019.09.040
- D. Music, J.M. Schneider, The correlation between the electronic structure and elastic properties of nanolaminates. JOM 59(7), 60–64 (2007). https://doi.org/10.1007/s11837-007-0091-7
- M.W. Barsoume, M. Radovic, Elastic and mechanical properties of the MAX phases. Ann Rev. Mater, Res. 41, 195–227 (2011). https://doi.org/10.1146/annurev-matsci-062910-100448
- L.T. Alameda, C.F. Holder, J.L. Fenton, J.L. Fenton, R.E. Schaak, Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem. Mater. 29(21), 8953–8957 (2017). https://doi.org/10.1021/acs.chemmater.7b02511
- H. Zhang, F.Z. Dai, H. Xiang, X. Wang, Z. Zhang et al., Phase pure and well crystalline Cr2AlB2: a key precursor for two-dimensional CrB. J. Mater. Sci. Technol. 35(8), 1593–1600 (2019). https://doi.org/10.1016/J.jmst.2019.03.031
- J. Wang, M. Khazaei, M. Arai, N. Umezawa, T. Tada et al., Semimetallic two-dimensional TiB12: improved stability and electronic properties tunable by biaxial strain. Chem. Mater. 29(14), 5922–5930 (2017). https://doi.org/10.1021/acs.chemmater.7b01433
- M.A. Ali, M.M. Hossain, M.M. Uddin, A.K.M.A. Islam, D. Jana et al., DFT insights into new B-containing 212 MAX phases: Hf2AB2. (A = In, Sn). J. Alloys Compd. 860, 158408 (2021). https://doi.org/10.1016/J.jallcom.2020.158408
- R. Khaledialidusti, M. Khazaei, V. Wang, N. Miao, C. Si et al., Exploring structural, electronic, and mechanical properties of 2D hexagonal MBenes. J. Phys. Conden. Matter 33(15), 155503 (2021). https://doi.org/10.1088/1361-648X/abbb0e
- P. Li, R. Zhou, X.C. Zeng, Computational analysis of stable hard structures in the Ti-B system. ACS Appl. Mater. Interfaces 7(28), 15607–15617 (2015). https://doi.org/10.1021/acsami.5b04332
- Z. Liu, E. Wu, J. Wang, Y. Qian, H. Xiang et al., Crystal structure and formation mechanism of (Cr2/3Ti1/3)3A1C2. MAX Phase. Acta Mater. 73, 186–193 (2014). https://doi.org/10.1016/J.actamat.2014.04.006
- E.N. Caspi, P. Chartier, F. Porcher, F. Damay, T. Cabioc’h et al., Ordering of (Cr, V) layers in nanolamellar (Cr0.5V0.5)n+1AlCn compounds. Mater. Res. Lett. 3(2), 100–106 (2015). https://doi.org/10.1080/21663831.2014.975294
- Q. Tao, J. Lu, M. Dahlqvist, A. Mockute, S. Calder et al., Atomically layered and ordered rare-earth i-MAX phases: a new class of magnetic quaternary compounds. Chem. Mater. 31(7), 2476–2485 (2019). https://doi.org/10.1021/acs.chemmater.8b05298
- H. Pazniak, M. Stevens, M. Dahlqvist, B. Zingsem, L. Kibkalo et al., Phase stability of nanolaminated epitaxial (Cr1−xFex)2AlC MAX phase thin films on MgO(111) and Al2O3 (0001) for use as conductive coatings. ACS Appl. Nano Mater. 4(12), 13761–13770 (2021). https://doi.org/10.1021/acsanm.1c03166
- K. Sobolev, H. Pazniak, M. Farle, V. Rodionova, U. Wiedwald et al., Synthesis, phase purification and magnetic characterization of the (Cr1−x, Mn−x)2AlC MAX-phase. J. Mater. Chem. C 9(46), 16516–16522 (2021). https://doi.org/10.1039/d1tc03092b
- J. Yang, R. Liu, N. Jia, K. Wu, X. Fu et al., Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er, Tm and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon 183, 76–83 (2021). https://doi.org/10.1016/J.carbon.2021.07.010
- J. Yang, G. Yao, S. Sun, Z. Chen, S. Yuan et al., Structural, magnetic properties of in-plane chemically ordered (Mo2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er and Y) MAX phase and enhanced capacitance of Mo1.33C MXene derivatives. Carbon 179, 104–110 (2021). https://doi.org/10.1016/J.carbon.2021.03.062
- H. Zhang, F. Dai, H. Xiang, Z. Zhang, Y. Zhou et al., Crystal structure of Cr4AlB4: a new MAB phase compound discovered in Cr-Al-B system. J. Mater. Sci. Technol. 35(4), 530–534 (2019). https://doi.org/10.1016/J.jmst.2018.10.006
- J. Lu, S. Kota, M.W. Barsoum, L. Hultman, Atomic structure and lattice defects in nanolaminated ternary transition metal borides. Mater. Res. Lett. 5(4), 235–241 (2017). https://doi.org/10.1080/21663831.2016.1245682
- P. Chai, S.A. Stoian, X. Tan, P.A. Dube, M. Shatruk et al., Investigation of magnetic properties and electronic structure of layered-structure borides AlT2B2 (T = Fe, Mn, Cr) and AlFe2−xMnxB2. J. Solid State Chem. 224, 52–61 (2015). https://doi.org/10.1016/J.jssc.2014.04.027
- J. Liu, S. Li, B. Yao, S. Hu, J. Zhang et al., Rapid synthesis and characterization of a nanolaminated Fe2AlB2 compound. J. Alloys Compd. 766, 488–497 (2018). https://doi.org/10.1016/J.jallcom.2018.06.352
- K. Kadas, D. Iusan, J. Hellsvik, J. Cedervall, M. Sahlberg et al., AlM2B2 (M = Cr, Mn, Fe Co, Ni): a group of nanolaminated materials. J. Phys. Conden. Matter 29(15), 155402 (2017). https://doi.org/10.1088/1361-648X/aa602a
- S. Kota, M. Agne, E. Zapata-Solvas, O. Dezellus, D. Lopez et al., Elastic properties, thermal stability, and thermodynamic parameters of MoAlB. Phys. Rev. B 95(14), 144108 (2017). https://doi.org/10.1103/PhysRevB.95.144108
- S. Kota, E. Zapata-Solvas, A. Ly, J. Lu, O. Elkassabany et al., Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Sci. Rep. 6, 26475 (2016). https://doi.org/10.1038/srep26475
- F.Z. Dai, H. Xiang, Y. Sun, Y. Zhou, M2M’AlB4 (M = Mn, Fe Co, M’ = Cr, Mo, W): theoretical predicted ordered MAB phases with Cr3AlB4 crystal structure. J. Mater. Sci. Technol. 35(7), 1432–1438 (2019). https://doi.org/10.1016/J.jmst.2019.03.005
- M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao et al., Acid-responsive H2-releasing 2D MgB2 nanosheet for therapeutic synergy and side effect attenuation of gastric cancer chemotherapy. Adv. Healthc. Mater. 8(13), 1900157 (2019). https://doi.org/10.1002/adhm.201900157
- Z. Jin, D. Chen, P. Zhao, Y. Wen, M. Fan et al., Coordination-induced exfoliation to monolayer Bi-anchored MnB2 nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics 10(4), 1861–1872 (2020). https://doi.org/10.7150/thno.39715
- N. Chen, H. Huang, Z. Xu, Y. Xie, D. Xiong et al., From high-yield Ti3AlCN ceramics to high-quality Ti3CNTx MXenes through eliminating Al segregation. Chin. Chem. Lett. 31(4), 1044–1048 (2020). https://doi.org/10.1016/J.cclet.2019.10.004
- L.L. Li, X. Chang, X.Y. Lin, Z. Zhao, J. Gong, Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 49(22), 8156–8178 (2020). https://doi.org/10.1039/d0cs00795a
- H.Y. Zhuo, X. Zhang, J.X. Liang, Q. Yu, H. Xiao et al., Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem. Rev. 120(21), 12315–12341 (2020). https://doi.org/10.1021/acs.chemrev.0c00818
- M.D. Hossain, Z.J. Liu, M.H. Zhuang, X. Yan, G. Xu et al., Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 9(10), 1803689 (2019). https://doi.org/10.1002/aenm.201803689
- Y.Y. Qiao, J.Y. Cui, F.R. Qian, X. Xue, X. Zhang et al., Pt3Fe Nanops on B, N-codoped carbon as oxygen reduction and pH-universal hydrogen evolution electrocatalysts. ACS Appl. Nano Mater. 5(1), 318–325 (2022). https://doi.org/10.1021/acsanm.1c03046
- L. Rakocevic, I.S. Simatovic, A. Maksic, V. Rajić, S. Štrbac et al., PtAu nanops supported by reduced graphene oxide as a highly active catalyst for hydrogen evolution. Catalysts 12(1), 43 (2022). https://doi.org/10.3390/catal12010043
- H.J. Chun, V. Apaja, A. Clayborne, K. Honkala, J. Greeley, Atomistic insights into nitrogen-cycle electrochemistry: a combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt(100). ACS Catal. 7(6), 3869–3882 (2017). https://doi.org/10.1021/acscatal.7b00547
- H.G. Shiraz, X. Crispin, M. Berggren, Transition metal sulfides for electrochemical hydrogen evolution. Int. J. Hydrog. Energy 46(47), 24060–24077 (2021). https://doi.org/10.1016/J.ijhydene.2021.04.194
- Q.M. Yu, Y.T. Luo, S.Y. Qiu, Q. Li, Z. Cai et al., Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano 13(10), 11874–11881 (2019). https://doi.org/10.1021/acsnano.9b05933
- Q.M. Yu, Z.Y. Zhang, S.Y. Qiu, Y. Luo, F. Yang et al., A Ta–TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 12, 6051 (2021). https://doi.org/10.1038/s41467-021-26315-7
- S. Chandrasekaran, C.L. Zhang, Y.Q. Shu, H. Wang, S. Chen et al., Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord. Chem. Rev. 449, 214209 (2021). https://doi.org/10.1016/J.ccr.2021.214209
- B. Ding, W.J. Ong, J.Z. Jiang, X. Chen, N. Li, Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo) Appl. Surf. Sci. 500, 143987 (2020). https://doi.org/10.1016/J.apsusc.2019.143987
- J.Z. Jiang, Y.L. Zou, Arramel, F. Li, J. Wang et al., Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 9(43), 24195–24214 (2021). https://doi.org/10.1039/d1ta07332j
- S. Jin, Z.H. Shi, H.J. Jing, L. Wang, Q. Hu et al., Mo2C-MXene/CdS heterostructures as visible-light photocatalysts with an ultrahigh hydrogen production rate. ACS Appl. Energy Mater. 4(11), 12754–12766 (2021). https://doi.org/10.1021/acsaem.1c02456
- Y.Y. Cao, G.B. Zhou, X.L. Chen, Q. Qiao, C. Zhao et al., Hydrogen peroxide synthesis on porous graphitic carbon nitride using water as a hydrogen source. J. Mater. Chem. A 8(1), 124–137 (2020). https://doi.org/10.1039/c9ta08103h
- X.Z. Chen, W.J. Ong, X.J. Zhao, P. Zhang, N. Li, Insights into electrochemical nitrogen reduction reaction mechanisms: combined effect of single transition-metal and boron atom. J. Energy Chem. 58, 577–585 (2021). https://doi.org/10.1016/J.jechem.2020.10.043
- S. Ji, J.X. Zhao, Boron-doped graphene as a promising electrocatalyst for NO electrochemical reduction: a computational study. New J. Chem. 42(19), 16346–16353 (2018). https://doi.org/10.1039/c8nj03279c
- S.B. Tang, Q. Dang, T.Y. Liu, S. Zhang, Z. Zhou et al., Realizing a not-strong-not-weak polarization electric field in single-atom catalysts sandwiched by boron nitride and graphene sheets for efficient nitrogen fixation. J. Am. Chem. Soc. 142(45), 19308–19315 (2020). https://doi.org/10.1021/jacs.0c09527
- X. Sun, J. Zheng, Y. Gao, C. Qiu, Y. Yan et al., Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials. Appl. Surf. Sci. 526, 146522 (2020). https://doi.org/10.1016/J.apsusc.2020.146522
- B. Li, Y. Wu, N. Li, X. Chen, X. Zeng et al., Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 12(8), 9261–9267 (2020). https://doi.org/10.1021/acsami.9b20552
- X. Yang, C. Shang, S. Zhou, J. Zhao, MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horiz. 5(7), 1106–1115 (2020). https://doi.org/10.1039/d0nh00242a
- C. He, J. Wang, L. Fu, C. Zhao, J. Huo, Associative versus dissociative mechanism: electrocatalysis of nitric oxide to ammonia. Chin. Chem. Lett. 33(2), 1051–1057 (2022). https://doi.org/10.1016/J.cclet.2021.09.009
- X. Liu, X. Ge, Y. Dong, K. Fu, F. Meng et al., First-principle calculations on the structure, electronic property and catalytic activity for hydrogen evolution reaction of 2D transition-metal borides. Mater. Chem. Phys. 253, 123334 (2020). https://doi.org/10.1016/J.matchemphys.2020.123334
- G.P. Gao, A.P. O’Mullane, A.J. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7(1), 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754
- B. Zhang, J. Zhou, Z. Guo, Q. Peng, Z. Sun et al., Two-dimensional chromium boride MBenes with high HER catalytic activity. Appl. Surf. Sci. 500, 144248 (2020). https://doi.org/10.1016/J.apsusc.2019.144248
- Y.W. Cheng, J.H. Dai, Y.M. Zhang, Y. Song et al., Two-dimensional, ordered, double transition metal carbides (MXenes): a new family of promising catalysts for the hydrogen evolution reaction. J. Phys. Chem. C 122(49), 28113–28122 (2018). https://doi.org/10.1021/acs.jpcc.8b08914
- P.K. Li, J.G. Zhu, A.D. Handoko, R. Zhang, H. Wang et al., High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. J. Mater. Chem. A 6(10), 4271–4278 (2018). https://doi.org/10.1039/c8ta00173a
- C.Y. Ling, L. Shi, Y.X. Ouyang, J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated mxenes through a simple descriptor. Chem. Mater. 28(24), 9026–9032 (2016). https://doi.org/10.1021/acs.chemmater.6b03972
- Y.Y. Liu, Y.J. Ji, Y.Y. Li, Multilevel theoretical screening of novel two-dimensional MA2Z4 family for hydrogen evolution. J. Phys. Chem. Lett. 12(37), 9149–9154 (2021). https://doi.org/10.1021/acs.jpclett.1c02487
- Z.W. Seh, K.D. Fredrickson, B. Anasori et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
- F. Li, Q. Tang, First-principles calculations of TiB MBene monolayers for hydrogen evolution. ACS Appl. Nano Mater. 2(11), 7220–7229 (2019). https://doi.org/10.1021/acsanm.9b01718
- Y.W. Cheng, J.H. Dai, Y.M. Zhang, Y. Song, Transition metal modification and carbon vacancy promoted Cr2CO2 (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 6(42), 20956–20965 (2018). https://doi.org/10.1039/c8ta07749e
- P. Helmer, J. Halim, J. Zhou, R. Mahan, B. Wickman et al., Investigation of 2D boridene from first principles and experiments. Adv. Funct. Mater. 32(14), 2109060 (2022). https://doi.org/10.1002/adfm.202109060
- W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao et al., MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 6(7), 8976–8982 (2018). https://doi.org/10.1021/acssuschemeng.8b01348
- D.A. Kuznetsov, Z. Chen, P.V. Kumar, A. Tsoukalou, A. Kiezkowska et al., Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 141(44), 17809–17816 (2019). https://doi.org/10.1021/jacs.9b08897
- C. Zamfirescu, I. Dincer, Using ammonia as a sustainable fuel. J. Power Sources 185(1), 459–465 (2008). https://doi.org/10.1016/J.jpowsour.2008.02.097
- Q.Y. Li, L.Z. He, C.H. Sun, X. Zhang, Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction. J. Phys. Chem. C 121(49), 27563–27568 (2017). https://doi.org/10.1021/acs.jpcc.7b10522
- J.H. Montoya, C. Tsai, A. Vojvodic, X. Zhang, The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. Chemsuschem 8(13), 2180–2186 (2015). https://doi.org/10.1002/cssc.201500322
- T. Kandemir, M.E. Schuster, A. Senyshyn, M. Benrens, The haber-bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 52(48), 12723–12726 (2013). https://doi.org/10.1002/anie.201305812
- J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock et al., Beyond fossil fuel-driven nitrogen transformations. Science 360(6391), aar6611 (2018). https://doi.org/10.1126/science.aar6611
- F.Y. Guo, H.W. Li, M.Z. Zhou, Z. Xu, Y. Zheng et al., Electroreduction of nitrogen to ammonia catalyzed by non-noble metal catalysts under ambient conditions. Prog. Chem. 32(1), 33–45 (2020). https://doi.org/10.7536/pc190606
- M. Li, H. Huang, J.X. Low, C. Gao, R. Long et al., Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 3(6), 1800388 (2019). https://doi.org/10.1002/smtd.201800388
- D.R. MacFarlane, P.V. Cherepanov, J. Choi, B.H.R. Suryanto, R.Y. Hodgetts et al., A roadmap to the ammonia economy. Joule 4(6), 1186–1205 (2020). https://doi.org/10.1016/J.joule.2020.04.004
- G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani et al., Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120(12), 5437–5516 (2020). https://doi.org/10.1021/acs.chemrev.9b00659
- C. Choi, S. Back, N.Y. Kim, J. Lim, Y. Kim et al., Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal. 8(8), 7517–7525 (2018). https://doi.org/10.1021/acscatal.8b00905
- K. Liu, J.W. Fu, L. Zhu, X. Zhang, H. Li et al., Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 12(8), 4903–4908 (2020). https://doi.org/10.1039/c9nr09117c
- W.H. Zhao, L.F. Zhang, Q.Q. Luo, Z. Hu, W. Zhang et al., Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 9(4), 3419–3425 (2019). https://doi.org/10.1021/acscatal.8b05061
- C.N. Cui, H.C. Zhang, Z.X. Luo, Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: a theoretical study of the atomically precise active-site mechanism. Nano Res. 13(8), 2280–2288 (2020). https://doi.org/10.1007/s12274-020-2847-0
- Y. Wan, J. Xu, R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/J.mattod.2019.03.002
- X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen et al., Establishing a theoretical landscape for identifying basal plane active 2D metal borides (MBenes) toward nitrogen electroreduction. Adv. Funct. Mater. 31(6), 2008056 (2020). https://doi.org/10.1002/adfm.202008056
- X. Zhu, X. Zhou, Y. Jing, Y. Li, Electrochemical synthesis of urea on MBenes. Nat. Commun. 12, 4080 (2021). https://doi.org/10.1038/s41467-021-24400-5
- Y.J. Gao, Y.Y. Cao, H. Zhuo et al., Mo2TiC2 MXene: a promising catalyst for electrocatalytic ammonia synthesis. Catal. Today 339, 120–126 (2020). https://doi.org/10.1016/J.cattod.2018.12.029
- B. Huang, N. Li, W.J. Ong, N. Zhou, Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. J. Mater. Chem. A 7(48), 27620–27631 (2019). https://doi.org/10.1039/c9ta09776g
- Z.Y. Jin, C.W. Liu, Z.C. Liu, J. Han, Y. Fang et al., Rational design of hydroxyl-rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater. 10(22), 2000797 (2020). https://doi.org/10.1002/aenm.202000797
- W. Peng, M. Luo, X.D. Xu, K. Jiang, M. Peng et al., Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10(25), 2001364 (2020). https://doi.org/10.1002/aenm.202001364
- J.X. Xia, S.Z. Yang, B. Wang, P. Wu, I. Popovs et al., Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2. Nano Energy 72, 104681 (2020). https://doi.org/10.1016/J.nanoen.2020.104681
- X.S. Xu, B.T. Sun, Z.Q. Liang, H. Cui, J. Tian et al., High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2 anchored on Ti3C2 MXene under ambient conditions. ACS Appl. Mater. Interfaces 12(23), 26060–26067 (2020). https://doi.org/10.1021/acsami.0c06744
- S. Qi, Y. Fan, L. Zhao, W. Li, M. Zhao et al., Two-dimensional transition metal borides as highly efficient N2 fixation catalysts. Appl. Surf. Sci. 536, 147742 (2021). https://doi.org/10.1016/J.apsusc.2020.147742
- Y. Li, L. Li, R. Huang, Y. Wen, Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction. Nanoscale 13(35), 15002–15009 (2021). https://doi.org/10.1039/d1nr04652g
- J. Wang, C. He, J. Huo, L. Fu, C. Zhao, A theoretical evaluation of possible N2 reduction mechanism on Mo2B2. Adv. Theory Simul. 4(5), 2100003 (2021). https://doi.org/10.1002/adts.202100003
- L. Lin, P. Shi, L. Fu, C. He, J. Huo et al., First-principles study of two-dimensional material Cr2B2 as catalyst for electrochemical nitrogen reduction reaction. J. Electroanal. Chem. 899, 115677 (2021). https://doi.org/10.1016/J.jelechem.2021.115677
- Y. Xiao, C. Shen, T. Long, Theoretical establishment and screening of an efficient catalyst for N2 electroreduction on two-dimensional transition-metal borides (MBenes). Chem. Mater. 33(11), 4023–4034 (2021). https://doi.org/10.1021/acs.chemmater.1c00424
- C. Chen, X.R. Zhu, X.J. Wen, Y. Zhou, H. Li et al., Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12(8), 717–724 (2020). https://doi.org/10.1038/s41557-020-0481-9
- B.M. Comer, P. Fuentes, C.O. Dimkpa, Y. Liu, C.A. Fernandez et al., Prospects and challenges for solar fertilizers. Joule 3(7), 1578–1605 (2019). https://doi.org/10.1016/J.joule.2019.05.001
- L. Celleno, Topical urea in skincare: a review. Dermato. Therapy 31(6), e12690 (2018). https://doi.org/10.1111/dth.12690
- H.M. Huang, J.J.W. McDou, D.J. Procter, Radical anions from urea-type carbonyls: radical cyclizations and cyclization cascades. Angew. Chem. Int. Ed. 57(18), 4995–4999 (2018). https://doi.org/10.1002/anie.201800667
- Y.L. Liu, X.W. Zhao, L. Ye, A novel elastic urea-melamine-formaldehyde foam: structure and properties. Ind. Eng. Chem. Res. 55(32), 8743–8750 (2016). https://doi.org/10.1021/acs.iecr.6b01957
- M. Seneque, F. Can, D. Duprez, X. Courtois, NOx selective catalytic reduction (NOx-SCR) by urea: evidence of the reactivity of HNCO, including a specific reaction pathway for NOx reduction involving NO + NO2. ACS Catal. 6(7), 4064–4067 (2016). https://doi.org/10.1021/acscatal.6b00785
- F. Barzagli, F. Mani, M. Peruzzini, From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chem. 13(5), 1267–1274 (2011). https://doi.org/10.1039/c0gc00674b
- A.S. Alshehri, F.Q. You, Machine learning for multiscale modeling in computational molecular design. Curr. Opin. Chem. Eng. 36, 100752 (2022). https://doi.org/10.1016/J.coche.2021.100752
- L.T. Chen, X. Zhang, A. Chen, S. Yao, X. Hu et al., Targeted design of advanced electrocatalysts by machine learning. Chin. J. Catal. 43(1), 11–32 (2022). https://doi.org/10.1016/s1872-2067(21)63852-4
- K. Tran, Z.W. Ulissi, Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1(9), 696–703 (2018). https://doi.org/10.1038/s41929-018-0142-1
- Z.W. Ulissi, A.J. Medford, T. Bligaard, J.K. Nørskov et al., To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017). https://doi.org/10.1038/ncomms14621
- B.R. Goldsmith, J. Esterhuizen, J.X. Liu, C.J. Bartel, C. Sutton, Machine learning for heterogeneous catalyst design and discovery. AIChE J. 64(9), 3553–3553 (2018). https://doi.org/10.1002/aic.16340
- C. Sutton, L.M. Ghiringhelli, T. Yamamoto, Y. Lysogorskiy, L. Blumenthal et al., Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition. Npj Comput. Mater. 5, 111 (2019). https://doi.org/10.1038/s41524-019-0239-3
- S. Back, K. Tran, Z.W. Ulissi, Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning. ACS Catal. 9(9), 7651–7659 (2019). https://doi.org/10.1021/acscatal.9b02416
- F. Dinic, K. Singh, T. Dong, M. Rezazadeh, Z. Wang et al., Applied machine learning for developing next-generation functional materials. Adv. Funct. Mater. 31(51), 2104195 (2021). https://doi.org/10.1002/adfm.202104195
- N. Jiang, Z.W. Zhu, W.J. Xue, B.Y. Xia, B. You et al., Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Adv. Mater. 34(2), 2105852 (2022). https://doi.org/10.1002/adma.202105852
- M. Majumder, H. Saini, I. Dedek, A. Schneemann, N.R. Chodankar et al., Rational design of graphene derivatives for electrochemical reduction of nitrogen to ammonia. ACS Nano 15(11), 17275–17298 (2021). https://doi.org/10.1021/acsnano.1c08455
- M. Steiner, M. Reiher, Autonomous reaction network exploration in homogeneous and heterogeneous catalysis. Top. Catal. 65(1–4), 6–39 (2022). https://doi.org/10.1007/s11244-021-01543-9
- N. Zhang, B.P. Yang, K. Liu, H. Li, G. Chen et al., Machine learning in screening high performance electrocatalysts for CO2 reduction. Small Methods (2021). https://doi.org/10.1002/smtd.202100987
- M. Zafari, A.S. Nissimagoudar, M. Umer, G. Lee, K.S. Kim et al., First principles and machine learning based superior catalytic activities and selectivities for N2 reduction in MBenes, defective 2D materials and 2D π-conjugated polymer-supported single atom catalysts. J. Mater. Chem. A 9(14), 9203–9213 (2021). https://doi.org/10.1039/d1ta00751c
- J. Yang, A computational study on the electrified Pt(111) surface by the cluster model. Phys. Chem. Chem. Phys. 21(11), 6112–6125 (2019). https://doi.org/10.1039/c8cp07241h
- J. Long, S. Chen, Y. Zhang, C. Guo, X. Fu et al., Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem. Int. Ed. 59(24), 9711–9718 (2020). https://doi.org/10.1002/anie.202002337
- Y. Xiao, C. Shen, Transition-metal borides (MBenes) as new high-efficiency catalysts for nitric oxide electroreduction to ammonia by a high-throughput approach. Small 17(24), e2100776 (2021). https://doi.org/10.1002/smll.202100776
- X. Liu, Z. Liu, H. Deng, Theoretical evaluation of MBenes as catalysts for the CO2 reduction reaction. J. Phys. Chem. C 125(35), 19183–19189 (2021). https://doi.org/10.1021/acs.jpcc.1c02749
- M. Abdinejad, Z. Mirza, X.A. Zhang, H. Kraatz, Enhanced electrocatalytic activity of primary amines for CO2 reduction using copper electrodes in aqueous solution. ACS Sustain. Chem. Eng. 8(4), 1715–1720 (2020). https://doi.org/10.1021/acssuschemeng.9b06837
- W. Choi, H. Seong, V. Efremov, Y. Lee, S. Im et al., Controlled syngas production by electrocatalytic CO2 reduction on formulated Au-25(SR)18 and PtAu24(SR)18 nanoclusters. J. Chem. Phys. 155(1), 014305 (2021). https://doi.org/10.1063/5.0057470
- A. Dutta, C.E. Morstein, M. Rahaman, M. Rahaman, A.C. López et al., Beyond copper in CO2 electrolysis: effective hydrocarbon production on silver-nanofoam catalysts. ACS Catal. 8(9), 8357–8368 (2018). https://doi.org/10.1021/acscatal.8b01738
- M.H. Islam, H. Mehrabi, R.H. Coridan, O.S. Burheim, J. Hihn et al., The effects of power ultrasound (24 kHz) on the electrochemical reduction of CO2 on polycrystalline copper electrodes. Ultrason. Sonochem. 72, 105401 (2021). https://doi.org/10.1016/J.ultsonch.2020.105401
- N. Rashid, M.A. Bhat, P.P. Ingole, Unravelling the chemistry of catalyst surfaces and solvents towards C–C bond formation through activation and electrochemical conversion of CO2 into hydrocarbons over micro-structured dendritic copper. Sustain. Energy Fuels 6(1), 128–142 (2021). https://doi.org/10.1039/d1se01255j
- C.J. Chang, S.C. Lin, H.C. Chen, J. Wang, K.J. Zheng et al., Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 142(28), 12119–12132 (2020). https://doi.org/10.1021/jacs.0c01859
- B.W. Zhou, P.F. Ou, N. Pant, Z. Mi, Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. PNAS 117(3), 1330–1338 (2020). https://doi.org/10.1073/pnas.1911159117
- Y.W. Li, Q. Sun, Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6(17), 1600463 (2016). https://doi.org/10.1002/aenm.201600463
- A.A. Peterson, J.K. Norskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3(2), 251–258 (2012). https://doi.org/10.1021/jz201461p
- H. Yuan, Z. Li, J. Yang, Transition-metal diboride: a new family of two-dimensional materials designed for selective CO2 electroreduction. J. Phys. Chem. C 123(26), 16294–16299 (2019). https://doi.org/10.1021/acs.jpcc.9b04221
- T. Zhang, B. Zhang, Q. Peng, J. Zhou, Z. Sun et al., Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 9(1), 433–441 (2021). https://doi.org/10.1039/d0ta08630d
- M. Yao, Z. Shi, P. Zhang, W. Ong, J. Jiang et al., Density functional theory study of single metal atoms embedded into mbene for electrocatalytic conversion of N2 to NH3. ACS Appl. Nano Mater. 3(10), 9870–9879 (2020). https://doi.org/10.1021/acsanm.0c01922
- S. Feng, N. Miao, J. Wang, Hexagonal MBene (Hf2BO2): a promising platform for the electrocatalysis of hydrogen evolution reaction. ACS Appl. Mater. Interfaces 13(47), 56131–56139 (2021). https://doi.org/10.1021/acsami.1c16449
- G. Kucinskis, G. Bajars, J. Kleperis, Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66–79 (2013). https://doi.org/10.1016/J.jpowsour.2013.03.160
- M. Mortazavi, C. Wang, J.K. Deng, V.B. Shenoy, N.V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 268, 279–286 (2014). https://doi.org/10.1016/J.jpowsour.2014.06.049
- Q.L. Sun, Y. Dai, Y.D. Ma, T. Jing, W. Wei et al., Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries. J. Phys. Chem. Lett. 7(6), 937–943 (2016). https://doi.org/10.1021/acs.jpclett.6b00171
- D.D. Sun, M.S. Wang, Z.Y. Li, G. Fan, L. Fan et al., Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014). https://doi.org/10.1016/J.elecom.2014.07.026
- K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng et al., Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1(8), 1176–1180 (2010). https://doi.org/10.1021/jz100188d
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- R. Li, Y. Liu, H. Deng, C. Yu, Z. Liu, A first-principles study of MBene as anode material for Mg-ion battery. J. Electrochem. Energy Conversi Storage 17(4), 041002 (2020). https://doi.org/10.1115/1.4046615
- T. Bo, P.F. Liu, J. Zhang, F. Wang, B. Wang et al., Tetragonal and trigonal Mo2B2 monolayers: two new low-dimensional materials for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 21(9), 5178–5188 (2019). https://doi.org/10.1039/c9cp00012g
- X.H. Zha, P. Xu, Q. Huang, S. Du, R. Zhang et al., Mo2B, an MBene member with high electrical and thermal conductivities, and satisfactory performances in lithium ion batteries. Nanoscale Adv. 2(1), 347–355 (2020). https://doi.org/10.1039/c9na00610a
- G. Yuan, T. Bo, X. Qi, P. Liu, Z. Huang et al., Monolayer Zr2B2: a promising two-dimensional anode material for Li-ion batteries. Appl. Surf. Sci. 480, 448–453 (2019). https://doi.org/10.1016/J.apsusc.2019.02.222
- R. Li, Y. Wang, L.C. Xu, J. Shen, W. Zhao et al., A boron-exposed TiB3 monolayer with a lower electrostatic-potential surface as a higher-performance anode material for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 22(39), 22236–22243 (2020). https://doi.org/10.1039/d0cp04204h
- T. Bo, P.F. Liu, J. Xu, J. Zhang, Y. Chen et al., Hexagonal Ti2B2 monolayer: a promising anode material offering high rate capability for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 20(34), 22168–22178 (2018). https://doi.org/10.1039/c8cp03362e
- N. Ma, T. Wang, N. Li, Y. Li, J. Fan et al., New phases of MBenes M2B (M = Sc, Ti, and V) as high-capacity electrode materials for rechargeable magnesium ion batteries. Appl. Surf. Sci. 571, 151275 (2022). https://doi.org/10.1016/J.apsusc.2021.151275
- S. Gao, J. Hao, X. Zhang, L. Li, C. Zhang et al., Two dimension transition metal boride Y2B2 as a promising anode in Li-ion and Na-ion batteries. Comput. Mater. Science 200, 110776 (2021). https://doi.org/10.1016/J.commatsci.2021.110776
- Y. Li, T. Zhao, L. Li, R. Huang, Y. Wen, Computational evaluation of ScB and TiB MBenes as promising anode materials for high-performance metal-ion batteries. Phys. Rev. Mater. 6(4), 045801 (2022). https://doi.org/10.1103/PhysRevMaterials.6.045801
- L. Yu, L. Lu, X. Zhou, L. Xu, Z. Alhalili et al., Strategies for fabricating high-performance electrochemical energy-storage devices by MXenes. ChemElectroChem 8(11), 1948–1987 (2021). https://doi.org/10.1002/celc.202100385
- D. Cakir, C. Sevik, O. Gulseren, F.M. Peeters, Mo2C as a high capacity anode material: a first-principles study. J. Mater. Chem. A 4(16), 6029–6035 (2016). https://doi.org/10.1039/c6ta01918h
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
- M.L. Sun, Y. Yan, U. Schwingenschlogl, Beryllene: a promising anode material for Na- and K-ion batteries with ultrafast charge/discharge and high specific capacity. J. Phys. Chem. Lett. 11(21), 9051–9056 (2020). https://doi.org/10.1021/acs.jpclett.0c02426
- P. Xiang, X. Chen, B. Xiao, Z.M. Wang et al., Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl. Mater. Interfaces 11(8), 8115–8125 (2019). https://doi.org/10.1021/acsami.8b22214
- K. Liu, B. Zhang, X. Chen, Y. Huang, P. Zhang et al., Modulating the open-circuit voltage of two-dimensional MoB MBene electrode via specific surface chemistry for Na/K ion batteries: a first-principles study. J. Phys. Chem. C 125(33), 18098–18107 (2021). https://doi.org/10.1021/acs.jpcc.1c04039
- L. Cai, Z. Li, S. Zhang, K. Prenger, M. Naguib et al., Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. Chem. Eng. J. (2021). https://doi.org/10.1016/J.ceJ.2021.129387
- C. Wang, H. Shou, S. Chen, S. Wei, Y. Lin et al., HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 33(27), 2101015 (2021). https://doi.org/10.1002/adma.202101015
- J. Wu, Y. Wang, Y. Zhang, H. Meng, Y. Xu et al., Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage. J. Energy Chem. 47, 203–209 (2020). https://doi.org/10.1016/J.jechem.2019.11.029
- Y. Zhang, H. Geng, W. Wei, J. Ma, L. Chen et al., Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Mater. 20, 118–138 (2019). https://doi.org/10.1016/J.ensm.2018.11.033
- F. Liu, T. Wang, X. Liu, L. Fan, Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 11(2), 2000787 (2021). https://doi.org/10.1002/aenm.202000787
- W. Guo, Y. Fu, A perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials. Energy Environ. Mater. 1(1), 20–27 (2018). https://doi.org/10.1002/eem2.12003
- D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano 13(10), 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
- Y. Xiao, Y. Li, Z. Guo, C. Tang, B. Sa et al., Functionalized Mo2B2 MBenes: promising anchoring and electrocatalysis materials for lithium-sulfur battery. Appl. Surf. Sci. 566, 150634 (2021). https://doi.org/10.1016/J.apsusc.2021.150634
- Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 9(12), 2106004 (2022). https://doi.org/10.1002/advs.202106004
References
V. Dusastre, L. Martiradonna, Materials for sustainable energy. Nat. Mater. 16, 15 (2017). https://doi.org/10.1038/nmat4838
J. Tian, Q. Xue, Q. Yao, N. Li, C.J. Branes et al., Inorganic halide perovskite solar cells: progress and challenges. Adv. Energy Mater. 10(23), 2000183 (2020). https://doi.org/10.1002/aenm.202000183
Q.A. Akkerman, M. Gandini, F.D. Stasio, P. Rastogi, F. Palazon et al., Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2(2), 16194 (2017). https://doi.org/10.1038/nenergy.2016.194
A. Barre, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard et al., A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680–689 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.040
Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara et al., Lithium and lithium ion batteries for applications in microelectronic devices: a review. J. Power Sources 286, 330–345 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.164
L. Jin, C. Shen, A. Shellikeri, Q. Wu, J. Zheng et al., Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ. Sci. 13(8), 2341–2362 (2020). https://doi.org/10.1039/d0ee00807a
A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h
M. Soltani, S.H. Beheshti, A comprehensive review of lithium ion capacitor: development, modelling, thermal management and applications. J. Energy Storage 34, 102019 (2021). https://doi.org/10.1016/j.est.2020.102019
N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y. Sun et al., Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51(40), 9994–10024 (2012). https://doi.org/10.1002/anie.201201429
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
P. Kumar, A. Dey, J. Roques, L. Assaud, S. Franger et al., Photoexfoliation synthesis of 2D materials. ACS Mater. Lett. 4(2), 263–270 (2022). https://doi.org/10.1021/acsmaterialslett.1c00651
W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
D. Chen, W. Chen, L. Ma, G. Ji, K. Chang et al., Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Mater. Today 17(4), 184–193 (2014). https://doi.org/10.1016/j.mattod.2014.04.001
M. Houssa, A. Dimoulas, A. Molle, Silicene: a review of recent experimental and theoretical investigations. J. Phys. Conden. Matter. 27(25), 253002 (2015). https://doi.org/10.1088/0953-8984/27/25/253002
J. Gao, J. Zhang, H. Liu, Q. Zhang, J. Zhao et al., Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale 5(20), 9785–9792 (2013). https://doi.org/10.1039/c3nr02826g
V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17(2), 992–1000 (2015). https://doi.org/10.1039/c4cp03890h
L. Kou, T. Frauenheim, C. Chen, Phosphorene as a superior gas sensor: selective adsorption and distinct I-V response. J. Phys. Chem. Lett. 5(15), 2675–2681 (2014). https://doi.org/10.1021/jz501188k
G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong et al., Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 54(51), 15473–15477 (2015). https://doi.org/10.1002/anie.201509285
A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). https://doi.org/10.1126/science.aad1080
C. Hou, G. Tai, J. Hao, L. Sheng, B. Liu et al., Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem. Int. Ed. 59(27), 10819–10825 (2020). https://doi.org/10.1002/anie.202001045
S. Chahal, P. Ranjan, M. Motlag, S.S.R.K.C. Yamijala, D.J. Late et al., Borophene via micromechanical exfoliation. Adv. Mater. 33(34), 2102039 (2021). https://doi.org/10.1002/adma.202102039
P. Ranjan, J.M. Lee, P. Kumar, A. Vinu, Borophene: new sensation in flatland. Adv. Mater. 32(34), 2000531 (2020). https://doi.org/10.1002/adma.202000531
M. Ou, X. Wang, L. Yu, C. Liu, W. Tao et al., The emergence and evolution of borophene. Adv. Sci. 8(12), 2001801 (2021). https://doi.org/10.1002/advs.202001801
E. Lee, Y.S. Yoon, D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3(10), 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun et al., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
S. Chahal, S.M. Kauzlarich, P. Kumar, Microwave synthesis of hematene and other two-dimensional oxides. ACS Mater. Lett. 3(5), 631–640 (2021). https://doi.org/10.1021/acsmaterialslett.1c00102
H. Xie, Z. Li, L. Cheng, A.A. Haidry, J. Tao et al., Recent advances in the fabrication of 2D metal oxides. Iscience 25(1), 103598 (2022). https://doi.org/10.1016/J.isci.2021.103598
H.S. Gujral, G. Singh, A.V. Baskar, X. Guan, X. Geng et al., Metal nitride-based nanostructures for electrochemical and photocatalytic hydrogen production. Sci. Technol. Adv. Mater. 23(1), 76–119 (2022). https://doi.org/10.1080/14686996.2022.2029686
P.M. Bodhankar, P.B. Sarawade, P. Kumar, A. Vinu, A.P. Kulkarni et al., Nanostructured metal phosphide based catalysts for electrochemical water splitting: a review. Small 18(21), 2107572 (2022). https://doi.org/10.1002/smll.202107572
S. Chahal, A. Bandyopadhyay, S.P. Dash, P. Kuma, Microwave synthesized 2D gold and its 2D–2D hybrids. J. Phys. Chem. Lett. 13(28), 6487–6495 (2022). https://doi.org/10.1021/acs.jpclett.2c01540
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
A.L. Ivanovskii, A.N. Enyashin, Graphene-like transition-metal nanocarbides and nanonitrides. Russ. Chem. Rev. 82(8), 735–746 (2013). https://doi.org/10.1070/RC2013v082n08ABEH004398
T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu et al., Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH). Monosheets by first-principles calculations: a comparative study. Phys. Chem. Chem. Phys. 17(15), 9997–10003 (2015). https://doi.org/10.1039/c4cp05666c
X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. Rev. Sect. Phys. Lett. 848, 1–58 (2020). https://doi.org/10.1016/J.physrep.2019.12.006
Z. He, H. Xie, H. Wu, J. Chen, S. Ma et al., Recent advances in MXene/polyaniline-based composites for electrochemical devices and electromagnetic interference shielding applications. ACS Omega 6(35), 22468–22477 (2021). https://doi.org/10.1021/acsomega.1c02996
F. Jamil, H.M. Ali, M.M. Janjua, MXene based advanced materials for thermal energy storage: a recent review. J. Energy Storage 35, 102322 (2021). https://doi.org/10.1016/J.est.2021.102322
J.C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10(3), 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
K. Zhu, H. Zhang, K. Ye, W. Zhao, J. Yan et al., Two-dimensional titanium carbide MXene as a capacitor-type electrode for rechargeable aqueous Li-ion and Na-ion capacitor batteries. ChemElectroChem 4(11), 3018–3025 (2017). https://doi.org/10.1002/celc.201700523
D. Wei, W. Wu, J. Zhu, C. Wang, C. Zhao et al., A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. J. Electroanal. Chem. 877, 114538 (2020). https://doi.org/10.1016/J.jelechem.2020.114538
J. Fu, L. Li, D. Lee, J.M. Yun, B.K. Ryu et al., Enhanced electrochemical performance of Ti3C2Tx MXene film based supercapacitors in H2SO4/KI redox additive electrolyte. Appl. Surf. Sci. 504, 144250 (2020). https://doi.org/10.1016/J.apsusc.2019.144250
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P.L. Taberna et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
Y. Dall’Agnese, P. Rozier, P.L. Taberna, Y. Gogotsi, P. Simon et al., Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016). https://doi.org/10.1016/J.jpowsour.2015.12.036
L. Li, J. Wen, X. Zhang, Progress of two-dimensional Ti3C2Tx in supercapacitors. Chemsuschem 13(6), 1296–1329 (2020). https://doi.org/10.1002/cssc.201902679
Y. Tian, Y. An, J. Feng, Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 11(10), 10004–10011 (2019). https://doi.org/10.1021/acsami.8b21893
J. Jyoti, B.P. Singh, M. Sandhu, S.K. Tripath, New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustain. Energy Fuels 6(4), 971–1013 (2022). https://doi.org/10.1039/d1se01681d
S. Sun, Z. Xie, Y. Yan, S. Wu, Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. Chem. Eng. J. 366, 460–467 (2019). https://doi.org/10.1016/J.ceJ.2019.01.185
Y. Zhang, C. Ma, W. He, C. Zhang, C. Zhang et al., MXene and MXene-based materials for lithium-sulfur batteries. Prog. Nat. Sci. Mater. Int. 31(4), 501–513 (2021). https://doi.org/10.1016/J.pnsc.2021.07.003
M.K. Aslam, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries supercapacitors. Adv. Energy Mater. 11(2), 2000681 (2021). https://doi.org/10.1002/aenm.202000681
J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao et al., Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 405, 126664 (2021). https://doi.org/10.1016/J.ceJ.2020.126664
M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2(33), 13193–13206 (2014). https://doi.org/10.1039/c4ta01183j
Y.V. Kaneti, D.P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi et al., Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications. Chem. Rev. 122(1), 1000–1051 (2022). https://doi.org/10.1021/acs.chemrev.1c00233
B. Kiraly, X. Liu, L. Wang, Z. Zhang, A.J. Brandon et al., Borophene synthesis on Au(111). ACS Nano 13(4), 3816–3822 (2019). https://doi.org/10.1021/acsnano.8b09339
N. Liu, G. Bo, Y. Liu, X. Xu, Y. Du et al., Recent progress on germanene and functionalized germanene: preparation, characterizations, applications, and challenges. Small 15(32), 1805147 (2019). https://doi.org/10.1002/smll.201805147
F. Li, W. Wei, X. Lv, B. Huang, Y. Dai et al., Evolution of the linear band dispersion of monolayer and bilayer germanene on Cu(111). Phys. Chem. Chem. Phys. 19(34), 22844–22851 (2017). https://doi.org/10.1039/c7cp03597g
M.A. Pamungkas, V.K.R. Sari, Irwansyah, S.A. Putra, Abdurrouf et al., Tuning electronic structure and magnetic properties of flat stanene by hydrogenation and Al/P doping: a first principle DFT study. Coatings 11(1), 47 (2021). https://doi.org/10.3390/coatings11010047
P.C. Shen, C. Su, Y. Lin, A. Chou, C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593(7858), 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
M.J. Armstrong, D.M. Burke, T. Gabriel, C. O’Dwyer, N. Petkov et al., Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. J. Mater. Chem. A 1(40), 12568–12578 (2013). https://doi.org/10.1039/c3ta12652h
J. Wang, Y. Fu, H. Chen, J. Shen, Effect of supports on the supported Ni2P catalysts prepared by the phosphidation using triphenylphosphine in liquid phase. Chem. Eng. J. 275, 89–101 (2015). https://doi.org/10.1016/J.ceJ.2015.03.129
Y. Li, X. Yang, L. Zhu, H. Zhang, B. Chen et al., Hydrodeoxygenation of phenol as a bio-oil model compound over intimate contact noble metal-Ni2P/SiO2 catalysts. RSC Adv. 5(98), 80388–80396 (2015). https://doi.org/10.1039/c5ra11203f
C.T. Crespo, The effect of the halide anion on the optical properties of lead halide perovskites. Sol. Energy Mater. Sol. Cells 195, 269–273 (2019). https://doi.org/10.1016/J.solmat.2019.03.023
F. Chen, Q. Tang, T. Ma, B. Zhu, L. Wang et al., Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. Infomat 4(5), e12299 (2022). https://doi.org/10.1002/inf2.12299
Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5(5), 6717–6731 (2012). https://doi.org/10.1039/c2ee03479d
C.L. Tan, X.H. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
L.Y. Chen, Q. Xu, Metal-organic framework composites for catalysis. Matter 1(1), 57–89 (2019). https://doi.org/10.1016/J.matt.2019.05.018
D.H. Ho, Y.Y. Choi, S.B. Jo, J. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33(47), 2005846 (2021). https://doi.org/10.1002/adma.202005846
W.S.V. Lee, T. Xiong, X.P. Wang, J. Xue, Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: a perspective. Small Methods 5(1), 2000815 (2021). https://doi.org/10.1002/smtd.202000815
M. Ade, H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 54(13), 6122–6135 (2015). https://doi.org/10.1021/acs.inorgchem.5b00049
Q. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian et al., Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017). https://doi.org/10.1038/ncomms14949
M. Dahlqvist, J. Lu, R. Meshkian, Q. Tao, L. Hultman et al., Prediction and synthesis of a family of atomic laminate phases with Kagome-like and in-plane chemical ordering. Sci. Adv. 3(7), 1700642 (2017). https://doi.org/10.1126/sciadv.1700642
R. Meshkian, M. Dahlqvist, J. Lu, B. Wickman, J. Halim et al., W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater. 30(21), 1706409 (2018). https://doi.org/10.1002/adma.201706409
I. Persson, A. Ghazaly, Q. Tao, J. Halim, S. Kota et al., Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 14(17), 1703676 (2018). https://doi.org/10.1002/smll.201703676
S.K. Kailasa, D.J. Joshi, J.R. Koduru, N. Malek, Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. J. Mol. Liq. 342, 117524 (2021). https://doi.org/10.1016/J.molliq.2021.117524
M. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna et al., MXenes-a new class of two-dimensional materials: structure, properties and potential applications. Nanomaterials 11(12), 3412 (2021). https://doi.org/10.3390/nano11123412
A.K. Singh, P. Kumbhakar, A. Krishnamoorthy et al., Review of strategies toward the development of alloy two-dimensional (2D) transition metal dichalcogenides. Iscience 24(12), 103532 (2021). https://doi.org/10.1016/J.isci.2021.103532
B. Ahmed, A. Ghazaly, J. Rosen, i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 30(47), 200894 (2020). https://doi.org/10.1002/adfm.202000894
M. Dahlqvist, A. Petruhins, J. Lu, L. Hultman, J. Rosen, Origin of chemically ordered atomic laminates (i-MAX): expanding the elemental space by a theoretical/experimental approach. ACS Nano 12(8), 7761–7770 (2018). https://doi.org/10.1021/acsnano.8b01774
A. Mockute, Q. Tao, M. Dahlqvist, J. Lu, S. Calder et al., Materials synthesis, neutron powder diffraction, and first-principles calculations of (MoxSc1−x)2 AlC i-MAX phase used as parent material for MXene derivation. Phys. Rev. Mater. 3(11), 113607 (2019). https://doi.org/10.1103/PhysRevMaterials.3.113607
J. Thornberg, J. Halim, J. Lu, R. Meshkian, J. Palisaitis et al., Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2−xC MXene scrolls. Nanoscale 11(31), 14720–14726 (2019). https://doi.org/10.1039/c9nr02354b
M. Dahlqvist, Q. Tao, J. Zhou, J. Palisaitis, P.O.Å. Persson et al., Theoretical prediction and synthesis of a family of atomic laminate metal borides with in-plane chemical ordering. J. Am. Chem. Soc. 142(43), 18583–18591 (2020). https://doi.org/10.1021/jacs.0c08113
J. Zhou, J. Palisaitis, J. Halim, M. Dahlqvist, Q. Tao et al., Boridene: two-dimensional Mo4/3B2−x with ordered metal vacancies obtained by chemical exfoliation. Science 373(6556), 801–805 (2021). https://doi.org/10.1126/science.abf6239
F. Wei, S. Xu, J. Li, S. Yuan, B. Jia et al., Computational investigation of two-dimensional vanadium boride compounds for Na-ion batteries. ACS Omega 7(17), 14765–14771 (2022). https://doi.org/10.1021/acsomega.2c00134
W. Xiong, X. Feng, Y. Xiao, T. Huang, X. Li et al., Fluorine-free prepared two-dimensional molybdenum boride (MBene) as a promising anode for lithium-ion batteries with superior electrochemical performance. Chem. Eng. J. 446, 137466 (2022). https://doi.org/10.1016/J.ceJ.2022.137466
Z. Guo, J. Zhoue, Z. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5(45), 23530–23535 (2017). https://doi.org/10.1039/c7ta08665b
L.T. Alameda, P. Moradifar, Z.P. Metzger, N. Alem, R.E. Schaak, Topochemical deintercalation of Al from MoAIB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140(28), 8833–8840 (2018). https://doi.org/10.1021/jacs.8b04705
H. Zhang, H. Xiang, F. Dai, Z. Zhang, Y. Zhou et al., First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. J. Mater. Sci. Technol. 34(11), 2022–2026 (2018). https://doi.org/10.1016/J.jmst.2018.02.024
G. Bhaskar, V. Gvozdetskyi, M. Batuk, K.M. Wiaderek, Y. Sun et al., Topochemical deintercalation of Li from layered LiNiB: toward 2D MBene. J. Am. Chem. Soc. 143(11), 4213–4223 (2021). https://doi.org/10.1021/jacs.0c11397
J. Wang, T.N. Ye, Y. Gong, J. Wu, N. Miao et al., Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat. Commun. 10, 2284 (2019). https://doi.org/10.1038/s41467-019-10297-8
S. Zhou, X.W. Yang, W. Pei, Z. Jiang, J. Zhao, MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface. J. Phys. Energy 3(1), 012002 (2021). https://doi.org/10.1088/2515-7655/abb6d1
J. Jia, B. Li, S. Duan, Z. Cui, H. Gao et al., Monolayer MBenes: prediction of anode materials for high-performance lithium/sodium ion batteries. Nanoscale 11(42), 20307–20314 (2019). https://doi.org/10.1039/c9nr05708k
D. Chen, Z. Jin, B. Zhao, Y. Wang, Q. He, MBene as a theranostic nanoplatform for photocontrolled intratumoral retention and drug release. Adv. Mater. 33(16), 2008089 (2021). https://doi.org/10.1002/adma.202008089
Y. Xiao, C. Shen, N. Hadaeghi, Quantum mechanical screening of 2D MBenes for the electroreduction of CO2 to C1 hydrocarbon fuels. J. Phys. Chem. Lett. 12(27), 6370–6382 (2021). https://doi.org/10.1021/acs.jpclett.1c01499
M. Jakubczak, A. Szuplewska, A. Rozmysłowska-Wojciechowska, A. Rosenkranz, A.M. Jastrzębska, Novel 2D MBenes—synthesis, structure, and biotechnological potential. Adv. Funct. Mater. 31(38), 2103048 (2021). https://doi.org/10.1002/adfm.202103048
V. Natu, S.S. Kota, M.W. Barsoum, X-ray photoelectron spectroscopy of the MAB phases, MoAlB, M2AlB2 (M = Cr, Fe), Cr3AlB4 and their binary monoborides. J. Eur. Ceram. Soc. 40(2), 305–314 (2020). https://doi.org/10.1016/J.jeurceramsoc.2019.09.040
D. Music, J.M. Schneider, The correlation between the electronic structure and elastic properties of nanolaminates. JOM 59(7), 60–64 (2007). https://doi.org/10.1007/s11837-007-0091-7
M.W. Barsoume, M. Radovic, Elastic and mechanical properties of the MAX phases. Ann Rev. Mater, Res. 41, 195–227 (2011). https://doi.org/10.1146/annurev-matsci-062910-100448
L.T. Alameda, C.F. Holder, J.L. Fenton, J.L. Fenton, R.E. Schaak, Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem. Mater. 29(21), 8953–8957 (2017). https://doi.org/10.1021/acs.chemmater.7b02511
H. Zhang, F.Z. Dai, H. Xiang, X. Wang, Z. Zhang et al., Phase pure and well crystalline Cr2AlB2: a key precursor for two-dimensional CrB. J. Mater. Sci. Technol. 35(8), 1593–1600 (2019). https://doi.org/10.1016/J.jmst.2019.03.031
J. Wang, M. Khazaei, M. Arai, N. Umezawa, T. Tada et al., Semimetallic two-dimensional TiB12: improved stability and electronic properties tunable by biaxial strain. Chem. Mater. 29(14), 5922–5930 (2017). https://doi.org/10.1021/acs.chemmater.7b01433
M.A. Ali, M.M. Hossain, M.M. Uddin, A.K.M.A. Islam, D. Jana et al., DFT insights into new B-containing 212 MAX phases: Hf2AB2. (A = In, Sn). J. Alloys Compd. 860, 158408 (2021). https://doi.org/10.1016/J.jallcom.2020.158408
R. Khaledialidusti, M. Khazaei, V. Wang, N. Miao, C. Si et al., Exploring structural, electronic, and mechanical properties of 2D hexagonal MBenes. J. Phys. Conden. Matter 33(15), 155503 (2021). https://doi.org/10.1088/1361-648X/abbb0e
P. Li, R. Zhou, X.C. Zeng, Computational analysis of stable hard structures in the Ti-B system. ACS Appl. Mater. Interfaces 7(28), 15607–15617 (2015). https://doi.org/10.1021/acsami.5b04332
Z. Liu, E. Wu, J. Wang, Y. Qian, H. Xiang et al., Crystal structure and formation mechanism of (Cr2/3Ti1/3)3A1C2. MAX Phase. Acta Mater. 73, 186–193 (2014). https://doi.org/10.1016/J.actamat.2014.04.006
E.N. Caspi, P. Chartier, F. Porcher, F. Damay, T. Cabioc’h et al., Ordering of (Cr, V) layers in nanolamellar (Cr0.5V0.5)n+1AlCn compounds. Mater. Res. Lett. 3(2), 100–106 (2015). https://doi.org/10.1080/21663831.2014.975294
Q. Tao, J. Lu, M. Dahlqvist, A. Mockute, S. Calder et al., Atomically layered and ordered rare-earth i-MAX phases: a new class of magnetic quaternary compounds. Chem. Mater. 31(7), 2476–2485 (2019). https://doi.org/10.1021/acs.chemmater.8b05298
H. Pazniak, M. Stevens, M. Dahlqvist, B. Zingsem, L. Kibkalo et al., Phase stability of nanolaminated epitaxial (Cr1−xFex)2AlC MAX phase thin films on MgO(111) and Al2O3 (0001) for use as conductive coatings. ACS Appl. Nano Mater. 4(12), 13761–13770 (2021). https://doi.org/10.1021/acsanm.1c03166
K. Sobolev, H. Pazniak, M. Farle, V. Rodionova, U. Wiedwald et al., Synthesis, phase purification and magnetic characterization of the (Cr1−x, Mn−x)2AlC MAX-phase. J. Mater. Chem. C 9(46), 16516–16522 (2021). https://doi.org/10.1039/d1tc03092b
J. Yang, R. Liu, N. Jia, K. Wu, X. Fu et al., Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er, Tm and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon 183, 76–83 (2021). https://doi.org/10.1016/J.carbon.2021.07.010
J. Yang, G. Yao, S. Sun, Z. Chen, S. Yuan et al., Structural, magnetic properties of in-plane chemically ordered (Mo2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er and Y) MAX phase and enhanced capacitance of Mo1.33C MXene derivatives. Carbon 179, 104–110 (2021). https://doi.org/10.1016/J.carbon.2021.03.062
H. Zhang, F. Dai, H. Xiang, Z. Zhang, Y. Zhou et al., Crystal structure of Cr4AlB4: a new MAB phase compound discovered in Cr-Al-B system. J. Mater. Sci. Technol. 35(4), 530–534 (2019). https://doi.org/10.1016/J.jmst.2018.10.006
J. Lu, S. Kota, M.W. Barsoum, L. Hultman, Atomic structure and lattice defects in nanolaminated ternary transition metal borides. Mater. Res. Lett. 5(4), 235–241 (2017). https://doi.org/10.1080/21663831.2016.1245682
P. Chai, S.A. Stoian, X. Tan, P.A. Dube, M. Shatruk et al., Investigation of magnetic properties and electronic structure of layered-structure borides AlT2B2 (T = Fe, Mn, Cr) and AlFe2−xMnxB2. J. Solid State Chem. 224, 52–61 (2015). https://doi.org/10.1016/J.jssc.2014.04.027
J. Liu, S. Li, B. Yao, S. Hu, J. Zhang et al., Rapid synthesis and characterization of a nanolaminated Fe2AlB2 compound. J. Alloys Compd. 766, 488–497 (2018). https://doi.org/10.1016/J.jallcom.2018.06.352
K. Kadas, D. Iusan, J. Hellsvik, J. Cedervall, M. Sahlberg et al., AlM2B2 (M = Cr, Mn, Fe Co, Ni): a group of nanolaminated materials. J. Phys. Conden. Matter 29(15), 155402 (2017). https://doi.org/10.1088/1361-648X/aa602a
S. Kota, M. Agne, E. Zapata-Solvas, O. Dezellus, D. Lopez et al., Elastic properties, thermal stability, and thermodynamic parameters of MoAlB. Phys. Rev. B 95(14), 144108 (2017). https://doi.org/10.1103/PhysRevB.95.144108
S. Kota, E. Zapata-Solvas, A. Ly, J. Lu, O. Elkassabany et al., Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Sci. Rep. 6, 26475 (2016). https://doi.org/10.1038/srep26475
F.Z. Dai, H. Xiang, Y. Sun, Y. Zhou, M2M’AlB4 (M = Mn, Fe Co, M’ = Cr, Mo, W): theoretical predicted ordered MAB phases with Cr3AlB4 crystal structure. J. Mater. Sci. Technol. 35(7), 1432–1438 (2019). https://doi.org/10.1016/J.jmst.2019.03.005
M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao et al., Acid-responsive H2-releasing 2D MgB2 nanosheet for therapeutic synergy and side effect attenuation of gastric cancer chemotherapy. Adv. Healthc. Mater. 8(13), 1900157 (2019). https://doi.org/10.1002/adhm.201900157
Z. Jin, D. Chen, P. Zhao, Y. Wen, M. Fan et al., Coordination-induced exfoliation to monolayer Bi-anchored MnB2 nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics 10(4), 1861–1872 (2020). https://doi.org/10.7150/thno.39715
N. Chen, H. Huang, Z. Xu, Y. Xie, D. Xiong et al., From high-yield Ti3AlCN ceramics to high-quality Ti3CNTx MXenes through eliminating Al segregation. Chin. Chem. Lett. 31(4), 1044–1048 (2020). https://doi.org/10.1016/J.cclet.2019.10.004
L.L. Li, X. Chang, X.Y. Lin, Z. Zhao, J. Gong, Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 49(22), 8156–8178 (2020). https://doi.org/10.1039/d0cs00795a
H.Y. Zhuo, X. Zhang, J.X. Liang, Q. Yu, H. Xiao et al., Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem. Rev. 120(21), 12315–12341 (2020). https://doi.org/10.1021/acs.chemrev.0c00818
M.D. Hossain, Z.J. Liu, M.H. Zhuang, X. Yan, G. Xu et al., Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 9(10), 1803689 (2019). https://doi.org/10.1002/aenm.201803689
Y.Y. Qiao, J.Y. Cui, F.R. Qian, X. Xue, X. Zhang et al., Pt3Fe Nanops on B, N-codoped carbon as oxygen reduction and pH-universal hydrogen evolution electrocatalysts. ACS Appl. Nano Mater. 5(1), 318–325 (2022). https://doi.org/10.1021/acsanm.1c03046
L. Rakocevic, I.S. Simatovic, A. Maksic, V. Rajić, S. Štrbac et al., PtAu nanops supported by reduced graphene oxide as a highly active catalyst for hydrogen evolution. Catalysts 12(1), 43 (2022). https://doi.org/10.3390/catal12010043
H.J. Chun, V. Apaja, A. Clayborne, K. Honkala, J. Greeley, Atomistic insights into nitrogen-cycle electrochemistry: a combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt(100). ACS Catal. 7(6), 3869–3882 (2017). https://doi.org/10.1021/acscatal.7b00547
H.G. Shiraz, X. Crispin, M. Berggren, Transition metal sulfides for electrochemical hydrogen evolution. Int. J. Hydrog. Energy 46(47), 24060–24077 (2021). https://doi.org/10.1016/J.ijhydene.2021.04.194
Q.M. Yu, Y.T. Luo, S.Y. Qiu, Q. Li, Z. Cai et al., Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano 13(10), 11874–11881 (2019). https://doi.org/10.1021/acsnano.9b05933
Q.M. Yu, Z.Y. Zhang, S.Y. Qiu, Y. Luo, F. Yang et al., A Ta–TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 12, 6051 (2021). https://doi.org/10.1038/s41467-021-26315-7
S. Chandrasekaran, C.L. Zhang, Y.Q. Shu, H. Wang, S. Chen et al., Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord. Chem. Rev. 449, 214209 (2021). https://doi.org/10.1016/J.ccr.2021.214209
B. Ding, W.J. Ong, J.Z. Jiang, X. Chen, N. Li, Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo) Appl. Surf. Sci. 500, 143987 (2020). https://doi.org/10.1016/J.apsusc.2019.143987
J.Z. Jiang, Y.L. Zou, Arramel, F. Li, J. Wang et al., Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 9(43), 24195–24214 (2021). https://doi.org/10.1039/d1ta07332j
S. Jin, Z.H. Shi, H.J. Jing, L. Wang, Q. Hu et al., Mo2C-MXene/CdS heterostructures as visible-light photocatalysts with an ultrahigh hydrogen production rate. ACS Appl. Energy Mater. 4(11), 12754–12766 (2021). https://doi.org/10.1021/acsaem.1c02456
Y.Y. Cao, G.B. Zhou, X.L. Chen, Q. Qiao, C. Zhao et al., Hydrogen peroxide synthesis on porous graphitic carbon nitride using water as a hydrogen source. J. Mater. Chem. A 8(1), 124–137 (2020). https://doi.org/10.1039/c9ta08103h
X.Z. Chen, W.J. Ong, X.J. Zhao, P. Zhang, N. Li, Insights into electrochemical nitrogen reduction reaction mechanisms: combined effect of single transition-metal and boron atom. J. Energy Chem. 58, 577–585 (2021). https://doi.org/10.1016/J.jechem.2020.10.043
S. Ji, J.X. Zhao, Boron-doped graphene as a promising electrocatalyst for NO electrochemical reduction: a computational study. New J. Chem. 42(19), 16346–16353 (2018). https://doi.org/10.1039/c8nj03279c
S.B. Tang, Q. Dang, T.Y. Liu, S. Zhang, Z. Zhou et al., Realizing a not-strong-not-weak polarization electric field in single-atom catalysts sandwiched by boron nitride and graphene sheets for efficient nitrogen fixation. J. Am. Chem. Soc. 142(45), 19308–19315 (2020). https://doi.org/10.1021/jacs.0c09527
X. Sun, J. Zheng, Y. Gao, C. Qiu, Y. Yan et al., Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials. Appl. Surf. Sci. 526, 146522 (2020). https://doi.org/10.1016/J.apsusc.2020.146522
B. Li, Y. Wu, N. Li, X. Chen, X. Zeng et al., Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 12(8), 9261–9267 (2020). https://doi.org/10.1021/acsami.9b20552
X. Yang, C. Shang, S. Zhou, J. Zhao, MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horiz. 5(7), 1106–1115 (2020). https://doi.org/10.1039/d0nh00242a
C. He, J. Wang, L. Fu, C. Zhao, J. Huo, Associative versus dissociative mechanism: electrocatalysis of nitric oxide to ammonia. Chin. Chem. Lett. 33(2), 1051–1057 (2022). https://doi.org/10.1016/J.cclet.2021.09.009
X. Liu, X. Ge, Y. Dong, K. Fu, F. Meng et al., First-principle calculations on the structure, electronic property and catalytic activity for hydrogen evolution reaction of 2D transition-metal borides. Mater. Chem. Phys. 253, 123334 (2020). https://doi.org/10.1016/J.matchemphys.2020.123334
G.P. Gao, A.P. O’Mullane, A.J. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7(1), 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754
B. Zhang, J. Zhou, Z. Guo, Q. Peng, Z. Sun et al., Two-dimensional chromium boride MBenes with high HER catalytic activity. Appl. Surf. Sci. 500, 144248 (2020). https://doi.org/10.1016/J.apsusc.2019.144248
Y.W. Cheng, J.H. Dai, Y.M. Zhang, Y. Song et al., Two-dimensional, ordered, double transition metal carbides (MXenes): a new family of promising catalysts for the hydrogen evolution reaction. J. Phys. Chem. C 122(49), 28113–28122 (2018). https://doi.org/10.1021/acs.jpcc.8b08914
P.K. Li, J.G. Zhu, A.D. Handoko, R. Zhang, H. Wang et al., High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. J. Mater. Chem. A 6(10), 4271–4278 (2018). https://doi.org/10.1039/c8ta00173a
C.Y. Ling, L. Shi, Y.X. Ouyang, J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated mxenes through a simple descriptor. Chem. Mater. 28(24), 9026–9032 (2016). https://doi.org/10.1021/acs.chemmater.6b03972
Y.Y. Liu, Y.J. Ji, Y.Y. Li, Multilevel theoretical screening of novel two-dimensional MA2Z4 family for hydrogen evolution. J. Phys. Chem. Lett. 12(37), 9149–9154 (2021). https://doi.org/10.1021/acs.jpclett.1c02487
Z.W. Seh, K.D. Fredrickson, B. Anasori et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
F. Li, Q. Tang, First-principles calculations of TiB MBene monolayers for hydrogen evolution. ACS Appl. Nano Mater. 2(11), 7220–7229 (2019). https://doi.org/10.1021/acsanm.9b01718
Y.W. Cheng, J.H. Dai, Y.M. Zhang, Y. Song, Transition metal modification and carbon vacancy promoted Cr2CO2 (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 6(42), 20956–20965 (2018). https://doi.org/10.1039/c8ta07749e
P. Helmer, J. Halim, J. Zhou, R. Mahan, B. Wickman et al., Investigation of 2D boridene from first principles and experiments. Adv. Funct. Mater. 32(14), 2109060 (2022). https://doi.org/10.1002/adfm.202109060
W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao et al., MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 6(7), 8976–8982 (2018). https://doi.org/10.1021/acssuschemeng.8b01348
D.A. Kuznetsov, Z. Chen, P.V. Kumar, A. Tsoukalou, A. Kiezkowska et al., Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 141(44), 17809–17816 (2019). https://doi.org/10.1021/jacs.9b08897
C. Zamfirescu, I. Dincer, Using ammonia as a sustainable fuel. J. Power Sources 185(1), 459–465 (2008). https://doi.org/10.1016/J.jpowsour.2008.02.097
Q.Y. Li, L.Z. He, C.H. Sun, X. Zhang, Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction. J. Phys. Chem. C 121(49), 27563–27568 (2017). https://doi.org/10.1021/acs.jpcc.7b10522
J.H. Montoya, C. Tsai, A. Vojvodic, X. Zhang, The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. Chemsuschem 8(13), 2180–2186 (2015). https://doi.org/10.1002/cssc.201500322
T. Kandemir, M.E. Schuster, A. Senyshyn, M. Benrens, The haber-bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 52(48), 12723–12726 (2013). https://doi.org/10.1002/anie.201305812
J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock et al., Beyond fossil fuel-driven nitrogen transformations. Science 360(6391), aar6611 (2018). https://doi.org/10.1126/science.aar6611
F.Y. Guo, H.W. Li, M.Z. Zhou, Z. Xu, Y. Zheng et al., Electroreduction of nitrogen to ammonia catalyzed by non-noble metal catalysts under ambient conditions. Prog. Chem. 32(1), 33–45 (2020). https://doi.org/10.7536/pc190606
M. Li, H. Huang, J.X. Low, C. Gao, R. Long et al., Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 3(6), 1800388 (2019). https://doi.org/10.1002/smtd.201800388
D.R. MacFarlane, P.V. Cherepanov, J. Choi, B.H.R. Suryanto, R.Y. Hodgetts et al., A roadmap to the ammonia economy. Joule 4(6), 1186–1205 (2020). https://doi.org/10.1016/J.joule.2020.04.004
G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani et al., Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120(12), 5437–5516 (2020). https://doi.org/10.1021/acs.chemrev.9b00659
C. Choi, S. Back, N.Y. Kim, J. Lim, Y. Kim et al., Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal. 8(8), 7517–7525 (2018). https://doi.org/10.1021/acscatal.8b00905
K. Liu, J.W. Fu, L. Zhu, X. Zhang, H. Li et al., Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 12(8), 4903–4908 (2020). https://doi.org/10.1039/c9nr09117c
W.H. Zhao, L.F. Zhang, Q.Q. Luo, Z. Hu, W. Zhang et al., Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 9(4), 3419–3425 (2019). https://doi.org/10.1021/acscatal.8b05061
C.N. Cui, H.C. Zhang, Z.X. Luo, Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: a theoretical study of the atomically precise active-site mechanism. Nano Res. 13(8), 2280–2288 (2020). https://doi.org/10.1007/s12274-020-2847-0
Y. Wan, J. Xu, R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/J.mattod.2019.03.002
X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen et al., Establishing a theoretical landscape for identifying basal plane active 2D metal borides (MBenes) toward nitrogen electroreduction. Adv. Funct. Mater. 31(6), 2008056 (2020). https://doi.org/10.1002/adfm.202008056
X. Zhu, X. Zhou, Y. Jing, Y. Li, Electrochemical synthesis of urea on MBenes. Nat. Commun. 12, 4080 (2021). https://doi.org/10.1038/s41467-021-24400-5
Y.J. Gao, Y.Y. Cao, H. Zhuo et al., Mo2TiC2 MXene: a promising catalyst for electrocatalytic ammonia synthesis. Catal. Today 339, 120–126 (2020). https://doi.org/10.1016/J.cattod.2018.12.029
B. Huang, N. Li, W.J. Ong, N. Zhou, Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. J. Mater. Chem. A 7(48), 27620–27631 (2019). https://doi.org/10.1039/c9ta09776g
Z.Y. Jin, C.W. Liu, Z.C. Liu, J. Han, Y. Fang et al., Rational design of hydroxyl-rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater. 10(22), 2000797 (2020). https://doi.org/10.1002/aenm.202000797
W. Peng, M. Luo, X.D. Xu, K. Jiang, M. Peng et al., Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10(25), 2001364 (2020). https://doi.org/10.1002/aenm.202001364
J.X. Xia, S.Z. Yang, B. Wang, P. Wu, I. Popovs et al., Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2. Nano Energy 72, 104681 (2020). https://doi.org/10.1016/J.nanoen.2020.104681
X.S. Xu, B.T. Sun, Z.Q. Liang, H. Cui, J. Tian et al., High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2 anchored on Ti3C2 MXene under ambient conditions. ACS Appl. Mater. Interfaces 12(23), 26060–26067 (2020). https://doi.org/10.1021/acsami.0c06744
S. Qi, Y. Fan, L. Zhao, W. Li, M. Zhao et al., Two-dimensional transition metal borides as highly efficient N2 fixation catalysts. Appl. Surf. Sci. 536, 147742 (2021). https://doi.org/10.1016/J.apsusc.2020.147742
Y. Li, L. Li, R. Huang, Y. Wen, Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction. Nanoscale 13(35), 15002–15009 (2021). https://doi.org/10.1039/d1nr04652g
J. Wang, C. He, J. Huo, L. Fu, C. Zhao, A theoretical evaluation of possible N2 reduction mechanism on Mo2B2. Adv. Theory Simul. 4(5), 2100003 (2021). https://doi.org/10.1002/adts.202100003
L. Lin, P. Shi, L. Fu, C. He, J. Huo et al., First-principles study of two-dimensional material Cr2B2 as catalyst for electrochemical nitrogen reduction reaction. J. Electroanal. Chem. 899, 115677 (2021). https://doi.org/10.1016/J.jelechem.2021.115677
Y. Xiao, C. Shen, T. Long, Theoretical establishment and screening of an efficient catalyst for N2 electroreduction on two-dimensional transition-metal borides (MBenes). Chem. Mater. 33(11), 4023–4034 (2021). https://doi.org/10.1021/acs.chemmater.1c00424
C. Chen, X.R. Zhu, X.J. Wen, Y. Zhou, H. Li et al., Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12(8), 717–724 (2020). https://doi.org/10.1038/s41557-020-0481-9
B.M. Comer, P. Fuentes, C.O. Dimkpa, Y. Liu, C.A. Fernandez et al., Prospects and challenges for solar fertilizers. Joule 3(7), 1578–1605 (2019). https://doi.org/10.1016/J.joule.2019.05.001
L. Celleno, Topical urea in skincare: a review. Dermato. Therapy 31(6), e12690 (2018). https://doi.org/10.1111/dth.12690
H.M. Huang, J.J.W. McDou, D.J. Procter, Radical anions from urea-type carbonyls: radical cyclizations and cyclization cascades. Angew. Chem. Int. Ed. 57(18), 4995–4999 (2018). https://doi.org/10.1002/anie.201800667
Y.L. Liu, X.W. Zhao, L. Ye, A novel elastic urea-melamine-formaldehyde foam: structure and properties. Ind. Eng. Chem. Res. 55(32), 8743–8750 (2016). https://doi.org/10.1021/acs.iecr.6b01957
M. Seneque, F. Can, D. Duprez, X. Courtois, NOx selective catalytic reduction (NOx-SCR) by urea: evidence of the reactivity of HNCO, including a specific reaction pathway for NOx reduction involving NO + NO2. ACS Catal. 6(7), 4064–4067 (2016). https://doi.org/10.1021/acscatal.6b00785
F. Barzagli, F. Mani, M. Peruzzini, From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chem. 13(5), 1267–1274 (2011). https://doi.org/10.1039/c0gc00674b
A.S. Alshehri, F.Q. You, Machine learning for multiscale modeling in computational molecular design. Curr. Opin. Chem. Eng. 36, 100752 (2022). https://doi.org/10.1016/J.coche.2021.100752
L.T. Chen, X. Zhang, A. Chen, S. Yao, X. Hu et al., Targeted design of advanced electrocatalysts by machine learning. Chin. J. Catal. 43(1), 11–32 (2022). https://doi.org/10.1016/s1872-2067(21)63852-4
K. Tran, Z.W. Ulissi, Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1(9), 696–703 (2018). https://doi.org/10.1038/s41929-018-0142-1
Z.W. Ulissi, A.J. Medford, T. Bligaard, J.K. Nørskov et al., To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017). https://doi.org/10.1038/ncomms14621
B.R. Goldsmith, J. Esterhuizen, J.X. Liu, C.J. Bartel, C. Sutton, Machine learning for heterogeneous catalyst design and discovery. AIChE J. 64(9), 3553–3553 (2018). https://doi.org/10.1002/aic.16340
C. Sutton, L.M. Ghiringhelli, T. Yamamoto, Y. Lysogorskiy, L. Blumenthal et al., Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition. Npj Comput. Mater. 5, 111 (2019). https://doi.org/10.1038/s41524-019-0239-3
S. Back, K. Tran, Z.W. Ulissi, Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning. ACS Catal. 9(9), 7651–7659 (2019). https://doi.org/10.1021/acscatal.9b02416
F. Dinic, K. Singh, T. Dong, M. Rezazadeh, Z. Wang et al., Applied machine learning for developing next-generation functional materials. Adv. Funct. Mater. 31(51), 2104195 (2021). https://doi.org/10.1002/adfm.202104195
N. Jiang, Z.W. Zhu, W.J. Xue, B.Y. Xia, B. You et al., Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Adv. Mater. 34(2), 2105852 (2022). https://doi.org/10.1002/adma.202105852
M. Majumder, H. Saini, I. Dedek, A. Schneemann, N.R. Chodankar et al., Rational design of graphene derivatives for electrochemical reduction of nitrogen to ammonia. ACS Nano 15(11), 17275–17298 (2021). https://doi.org/10.1021/acsnano.1c08455
M. Steiner, M. Reiher, Autonomous reaction network exploration in homogeneous and heterogeneous catalysis. Top. Catal. 65(1–4), 6–39 (2022). https://doi.org/10.1007/s11244-021-01543-9
N. Zhang, B.P. Yang, K. Liu, H. Li, G. Chen et al., Machine learning in screening high performance electrocatalysts for CO2 reduction. Small Methods (2021). https://doi.org/10.1002/smtd.202100987
M. Zafari, A.S. Nissimagoudar, M. Umer, G. Lee, K.S. Kim et al., First principles and machine learning based superior catalytic activities and selectivities for N2 reduction in MBenes, defective 2D materials and 2D π-conjugated polymer-supported single atom catalysts. J. Mater. Chem. A 9(14), 9203–9213 (2021). https://doi.org/10.1039/d1ta00751c
J. Yang, A computational study on the electrified Pt(111) surface by the cluster model. Phys. Chem. Chem. Phys. 21(11), 6112–6125 (2019). https://doi.org/10.1039/c8cp07241h
J. Long, S. Chen, Y. Zhang, C. Guo, X. Fu et al., Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem. Int. Ed. 59(24), 9711–9718 (2020). https://doi.org/10.1002/anie.202002337
Y. Xiao, C. Shen, Transition-metal borides (MBenes) as new high-efficiency catalysts for nitric oxide electroreduction to ammonia by a high-throughput approach. Small 17(24), e2100776 (2021). https://doi.org/10.1002/smll.202100776
X. Liu, Z. Liu, H. Deng, Theoretical evaluation of MBenes as catalysts for the CO2 reduction reaction. J. Phys. Chem. C 125(35), 19183–19189 (2021). https://doi.org/10.1021/acs.jpcc.1c02749
M. Abdinejad, Z. Mirza, X.A. Zhang, H. Kraatz, Enhanced electrocatalytic activity of primary amines for CO2 reduction using copper electrodes in aqueous solution. ACS Sustain. Chem. Eng. 8(4), 1715–1720 (2020). https://doi.org/10.1021/acssuschemeng.9b06837
W. Choi, H. Seong, V. Efremov, Y. Lee, S. Im et al., Controlled syngas production by electrocatalytic CO2 reduction on formulated Au-25(SR)18 and PtAu24(SR)18 nanoclusters. J. Chem. Phys. 155(1), 014305 (2021). https://doi.org/10.1063/5.0057470
A. Dutta, C.E. Morstein, M. Rahaman, M. Rahaman, A.C. López et al., Beyond copper in CO2 electrolysis: effective hydrocarbon production on silver-nanofoam catalysts. ACS Catal. 8(9), 8357–8368 (2018). https://doi.org/10.1021/acscatal.8b01738
M.H. Islam, H. Mehrabi, R.H. Coridan, O.S. Burheim, J. Hihn et al., The effects of power ultrasound (24 kHz) on the electrochemical reduction of CO2 on polycrystalline copper electrodes. Ultrason. Sonochem. 72, 105401 (2021). https://doi.org/10.1016/J.ultsonch.2020.105401
N. Rashid, M.A. Bhat, P.P. Ingole, Unravelling the chemistry of catalyst surfaces and solvents towards C–C bond formation through activation and electrochemical conversion of CO2 into hydrocarbons over micro-structured dendritic copper. Sustain. Energy Fuels 6(1), 128–142 (2021). https://doi.org/10.1039/d1se01255j
C.J. Chang, S.C. Lin, H.C. Chen, J. Wang, K.J. Zheng et al., Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 142(28), 12119–12132 (2020). https://doi.org/10.1021/jacs.0c01859
B.W. Zhou, P.F. Ou, N. Pant, Z. Mi, Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. PNAS 117(3), 1330–1338 (2020). https://doi.org/10.1073/pnas.1911159117
Y.W. Li, Q. Sun, Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6(17), 1600463 (2016). https://doi.org/10.1002/aenm.201600463
A.A. Peterson, J.K. Norskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3(2), 251–258 (2012). https://doi.org/10.1021/jz201461p
H. Yuan, Z. Li, J. Yang, Transition-metal diboride: a new family of two-dimensional materials designed for selective CO2 electroreduction. J. Phys. Chem. C 123(26), 16294–16299 (2019). https://doi.org/10.1021/acs.jpcc.9b04221
T. Zhang, B. Zhang, Q. Peng, J. Zhou, Z. Sun et al., Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 9(1), 433–441 (2021). https://doi.org/10.1039/d0ta08630d
M. Yao, Z. Shi, P. Zhang, W. Ong, J. Jiang et al., Density functional theory study of single metal atoms embedded into mbene for electrocatalytic conversion of N2 to NH3. ACS Appl. Nano Mater. 3(10), 9870–9879 (2020). https://doi.org/10.1021/acsanm.0c01922
S. Feng, N. Miao, J. Wang, Hexagonal MBene (Hf2BO2): a promising platform for the electrocatalysis of hydrogen evolution reaction. ACS Appl. Mater. Interfaces 13(47), 56131–56139 (2021). https://doi.org/10.1021/acsami.1c16449
G. Kucinskis, G. Bajars, J. Kleperis, Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66–79 (2013). https://doi.org/10.1016/J.jpowsour.2013.03.160
M. Mortazavi, C. Wang, J.K. Deng, V.B. Shenoy, N.V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 268, 279–286 (2014). https://doi.org/10.1016/J.jpowsour.2014.06.049
Q.L. Sun, Y. Dai, Y.D. Ma, T. Jing, W. Wei et al., Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries. J. Phys. Chem. Lett. 7(6), 937–943 (2016). https://doi.org/10.1021/acs.jpclett.6b00171
D.D. Sun, M.S. Wang, Z.Y. Li, G. Fan, L. Fan et al., Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014). https://doi.org/10.1016/J.elecom.2014.07.026
K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng et al., Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1(8), 1176–1180 (2010). https://doi.org/10.1021/jz100188d
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
R. Li, Y. Liu, H. Deng, C. Yu, Z. Liu, A first-principles study of MBene as anode material for Mg-ion battery. J. Electrochem. Energy Conversi Storage 17(4), 041002 (2020). https://doi.org/10.1115/1.4046615
T. Bo, P.F. Liu, J. Zhang, F. Wang, B. Wang et al., Tetragonal and trigonal Mo2B2 monolayers: two new low-dimensional materials for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 21(9), 5178–5188 (2019). https://doi.org/10.1039/c9cp00012g
X.H. Zha, P. Xu, Q. Huang, S. Du, R. Zhang et al., Mo2B, an MBene member with high electrical and thermal conductivities, and satisfactory performances in lithium ion batteries. Nanoscale Adv. 2(1), 347–355 (2020). https://doi.org/10.1039/c9na00610a
G. Yuan, T. Bo, X. Qi, P. Liu, Z. Huang et al., Monolayer Zr2B2: a promising two-dimensional anode material for Li-ion batteries. Appl. Surf. Sci. 480, 448–453 (2019). https://doi.org/10.1016/J.apsusc.2019.02.222
R. Li, Y. Wang, L.C. Xu, J. Shen, W. Zhao et al., A boron-exposed TiB3 monolayer with a lower electrostatic-potential surface as a higher-performance anode material for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 22(39), 22236–22243 (2020). https://doi.org/10.1039/d0cp04204h
T. Bo, P.F. Liu, J. Xu, J. Zhang, Y. Chen et al., Hexagonal Ti2B2 monolayer: a promising anode material offering high rate capability for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 20(34), 22168–22178 (2018). https://doi.org/10.1039/c8cp03362e
N. Ma, T. Wang, N. Li, Y. Li, J. Fan et al., New phases of MBenes M2B (M = Sc, Ti, and V) as high-capacity electrode materials for rechargeable magnesium ion batteries. Appl. Surf. Sci. 571, 151275 (2022). https://doi.org/10.1016/J.apsusc.2021.151275
S. Gao, J. Hao, X. Zhang, L. Li, C. Zhang et al., Two dimension transition metal boride Y2B2 as a promising anode in Li-ion and Na-ion batteries. Comput. Mater. Science 200, 110776 (2021). https://doi.org/10.1016/J.commatsci.2021.110776
Y. Li, T. Zhao, L. Li, R. Huang, Y. Wen, Computational evaluation of ScB and TiB MBenes as promising anode materials for high-performance metal-ion batteries. Phys. Rev. Mater. 6(4), 045801 (2022). https://doi.org/10.1103/PhysRevMaterials.6.045801
L. Yu, L. Lu, X. Zhou, L. Xu, Z. Alhalili et al., Strategies for fabricating high-performance electrochemical energy-storage devices by MXenes. ChemElectroChem 8(11), 1948–1987 (2021). https://doi.org/10.1002/celc.202100385
D. Cakir, C. Sevik, O. Gulseren, F.M. Peeters, Mo2C as a high capacity anode material: a first-principles study. J. Mater. Chem. A 4(16), 6029–6035 (2016). https://doi.org/10.1039/c6ta01918h
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
M.L. Sun, Y. Yan, U. Schwingenschlogl, Beryllene: a promising anode material for Na- and K-ion batteries with ultrafast charge/discharge and high specific capacity. J. Phys. Chem. Lett. 11(21), 9051–9056 (2020). https://doi.org/10.1021/acs.jpclett.0c02426
P. Xiang, X. Chen, B. Xiao, Z.M. Wang et al., Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl. Mater. Interfaces 11(8), 8115–8125 (2019). https://doi.org/10.1021/acsami.8b22214
K. Liu, B. Zhang, X. Chen, Y. Huang, P. Zhang et al., Modulating the open-circuit voltage of two-dimensional MoB MBene electrode via specific surface chemistry for Na/K ion batteries: a first-principles study. J. Phys. Chem. C 125(33), 18098–18107 (2021). https://doi.org/10.1021/acs.jpcc.1c04039
L. Cai, Z. Li, S. Zhang, K. Prenger, M. Naguib et al., Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. Chem. Eng. J. (2021). https://doi.org/10.1016/J.ceJ.2021.129387
C. Wang, H. Shou, S. Chen, S. Wei, Y. Lin et al., HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 33(27), 2101015 (2021). https://doi.org/10.1002/adma.202101015
J. Wu, Y. Wang, Y. Zhang, H. Meng, Y. Xu et al., Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage. J. Energy Chem. 47, 203–209 (2020). https://doi.org/10.1016/J.jechem.2019.11.029
Y. Zhang, H. Geng, W. Wei, J. Ma, L. Chen et al., Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Mater. 20, 118–138 (2019). https://doi.org/10.1016/J.ensm.2018.11.033
F. Liu, T. Wang, X. Liu, L. Fan, Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 11(2), 2000787 (2021). https://doi.org/10.1002/aenm.202000787
W. Guo, Y. Fu, A perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials. Energy Environ. Mater. 1(1), 20–27 (2018). https://doi.org/10.1002/eem2.12003
D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano 13(10), 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
Y. Xiao, Y. Li, Z. Guo, C. Tang, B. Sa et al., Functionalized Mo2B2 MBenes: promising anchoring and electrocatalysis materials for lithium-sulfur battery. Appl. Surf. Sci. 566, 150634 (2021). https://doi.org/10.1016/J.apsusc.2021.150634
Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 9(12), 2106004 (2022). https://doi.org/10.1002/advs.202106004