CRISPR-Cas12a-Empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of SARS-CoV-2 Delta Variant
Corresponding Author: Han Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 159
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now, which is time-consuming and requires expensive instrumentation, and the confirmation of variants relies on further sequencing techniques. Herein, we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid, highly sensitivity and specificity for the detection of SARS-CoV-2 variant. To enhance the sensing capability, gold electrodes are uniformly decorated with electro-deposited gold nanoparticles. Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model, our biosensor exhibits excellent analytical detection limit (50 fM) and high linearity (R2 = 0.987) over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays. The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system. Furthermore, based on the wireless micro-electrochemical platform, the proposed biosensor reveals promising application ability in point-of-care testing.
Highlights:
1 A robust technique-methodology of electrochemical CRISPR sensing is first proposed for the rapid, highly sensitive and specific detection of SARS-CoV-2 variant without any nucleic-acid-amplification assays.
2 Using the DNA template identical to SARS-CoV-2 Delta spike gene sequence as model, our biosensor exhibited excellent analytical detection limit (50 fM) and high linearity (R2 = 0.987) without any amplification assay.
3 Specific crRNA was designed to match the mutation site on nucleic acid sequence of the SARS-CoV-2 Delta variant, presenting programmability, universality, and scalability for diagnosis of other emerging SARS-CoV-2 variants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zeng, G. Liu, H. Ma, D. Zhao, Y. Yang et al., Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Bioph. Res. Commun. 527(3), 618–623 (2020). https://doi.org/10.1016/j.bbrc.2020.04.136
- B.D. Kevadiya, J. Machhi, J. Herskovitz, M.D. Oleynikov, W.R. Blomberg et al., Diagnostics for SARS-CoV-2 infections. Nat. Mater. 20, 593–605 (2021). https://doi.org/10.1038/s41563-020-00906-z
- Y. Peng, C. Lin, L. Long, T. Masaki, M. Tang et al., Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett. 13, 52 (2021). https://doi.org/10.1007/s40820-020-00565-4
- H. Xiong, X. Ye, Y. Li, J. Qi, X. Fang et al., Efficient microfluidic-based air sampling/monitoring platform for detection of aerosol SARS-CoV-2 on-site. Anal. Chem. 93, 4270–4276 (2021). https://doi.org/10.1021/acs.analchem.0c05154
- M. Alafeef, K. Dighe, P. Moitra, D. Pan, Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 14(12), 17028–17045 (2020). https://doi.org/10.1021/acsnano.0c06392
- Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5, 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
- Z. Zhang, Z. Tang, N. Farokhzad, T. Chen, W. Tao, Sensitive, rapid, low-cost, and multiplexed COVID-19 monitoring by the wireless telemedicine platform. Matter 3, 1818–1820 (2020). https://doi.org/10.1016/j.matt.2020.11.001
- J.E. Bryant, A.S. Azman, M.J. Ferrari, B.F. Arnold, M.F. Boni et al., Serology for SARS-CoV-2: apprehensions, opportunities, and the path forward. Sci. Immunol. 5, eabc6347 (2020). https://doi.org/10.1126/sciimmunol.abc6347
- E. Ernst, P. Wolfe, C. Stahura, K.A. Edwards, Technical considerations to development of serological tests for SARS-CoV-2. Talanta 224, 121883 (2021). https://doi.org/10.1016/j.talanta.2020.121883
- L.J. Carter, L.V. Garner, J.W. Smoot, Y. Li, Q. Zhou et al., Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 6(5), 591–605 (2020). https://doi.org/10.1021/acscentsci.0c00501
- W. Zhang, N. Liu, J. Zhang, Functional nucleic acids as modular components against SARS-CoV-2: from diagnosis to therapeutics. Biosens. Bioelectron. 201, 113944 (2022). https://doi.org/10.1016/j.bios.2021.113944
- Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran et al., An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2020). https://doi.org/10.1007/s40820-020-00533-y
- L. Kashefi-Kheyrabadi, H.V. Nguyen, A. Go, C. Baek, N. Jang et al., Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens. Bioelectron. 195, 113649 (2022). https://doi.org/10.1016/j.bios.2021.113649
- R.M. Torrente-Rodríguez, H. Lukas, J. Tu, J. Min, Y. Yang et al., SARS-CoV-2 rapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 3, 1981–1998 (2020). https://doi.org/10.1016/j.matt.2020.09.027
- X. Yuan, C. Yang, Q. He, J. Chen, D. Yu et al., Current and perspective diagnostic techniques for COVID-19. ACS Infect. Dis. 6(8), 1998–2016 (2020). https://doi.org/10.1021/acsinfecdis.0c00365
- Y. Yang, Y. Peng, C. Lin, L. Long, J. Hu et al., Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Lett. 13, 109 (2021). https://doi.org/10.1007/s40820-021-00620-8
- E. Kivrak, T. Pauzaite, N. Copeland, J. Hardy, P. Kara et al., Detection of CRISPR-Cas9-mediated mutations using a carbon nanotube-modified electrochemical genosensor. Biosensors 11(1), 17 (2021). https://doi.org/10.3390/bios11010017
- F. Li, Q. Ye, M. Chen, B. Zhou, J. Zhang et al., An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosens. Bioelectron. 179, 113073 (2021). https://doi.org/10.1016/j.bios.2021.113073
- Y. Dai, R.A. Somoza, L. Wang, J.F. Welter, Y. Li et al., Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem. Int. Ed. 131(48), 17560–17566 (2019). https://doi.org/10.1002/ange.201910772
- J. Liu, Q. Wan, R. Zeng, D. Tang, An ultrasensitive homogeneous electrochemical biosensor based on CRISPR-Cas12a. Anal. Methods 13, 3227–3232 (2021). https://doi.org/10.1039/D1AY00725D
- M.J. Kellner, J.G. Koob, J.S. Gootenberg, O.O. Abudayyeh, F. Zhang, SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019). https://doi.org/10.1038/s41596-019-0210-2
- S.Y. Li, Q.X. Cheng, J.M. Wang, X.Y. Li, Z.L. Zhang et al., CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 4, 20 (2018). https://doi.org/10.1038/s41421-018-0028-z
- J.S. Chen, E. Ma, L.B. Harrington, M.D. Costa, X. Tian et al., CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018). https://doi.org/10.1126/science.aar6245
- L. Li, S. Li, N. Wu, J. Wu, G. Wang et al., HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 8(10), 2228–2237 (2019). https://doi.org/10.1021/acssynbio.9b00209
- K. Shi, S. Xie, R. Tian, S. Wang, Q. Lu et al., A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. Sci. Adv. 7, abc7802 (2021). https://doi.org/10.1126/sciadv.abc7802
- K. Guk, J.O. Keem, S.G. Hwang, H. Kim, T. Kang et al., A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens. Bioelectron. 95, 67–71 (2017). https://doi.org/10.1016/j.bios.2017.04.016
- R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne et al., Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3, 427–437 (2019). https://doi.org/10.1038/s41551-019-0371-x
- Z. Huang, D. Tian, Y. Liu, Z. Lin, C.J. Lyon et al., Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosens. Bioelectron. 164, 112316, (2020). https://doi.org/10.1016/j.bios.2020.112316
- J.P. Broughton, X. Deng, G. Yu, C.L. Fasching, V. Servellita et al., CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020). https://doi.org/10.1038/s41587-020-0513-4
- Y. Jiang, M. Hu, A.A. Liu, Y. Lin, L. Liu et al., Detection of SARS-CoV-2 by CRISPR/Cas12a-enhanced colorimetry. ACS Sens. 6(3), 1086–1093 (2021). https://doi.org/10.1021/acssensors.0c02365
- P. Fozouni, S. Son, M.D.L. Derby, G.J. Knott, C.N. Gray et al., Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184, 323-333.E9 (2021). https://doi.org/10.1016/j.cell.2020.12.001
- X. Ding, K. Yin, Z. Li, R.V. Lalla, E. Ballesteros et al., Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 11, 4711 (2020). https://doi.org/10.1038/s41467-020-18575-6
- X. Wang, E. Xiong, T. Tian, M. Cheng, W. Lin et al., Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano 14(2), 2497–2508 (2020). https://doi.org/10.1021/acsnano.0c00022
- T. Tian, B. Shu, Y. Jiang, M. Ye, L. Liu et al., An Ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15(1), 1167–1178 (2021). https://doi.org/10.1021/acsnano.0c08165
- S. Peng, Z. Tan, S. Chen, C. Lei, Z. Nie, Integrating CRISPR-Cas12a with a DNA circuit as a generic sensing platform for amplified detection of microRNA. Chem. Sci. 11, 7362–7368 (2020). https://doi.org/10.1039/d0sc03084h
- H. Kim, S. Lee, H.W. Seo, B. Kang, J. Moon et al., Clustered regularly interspaced short palindromic repeats-mediated surface-enhanced Raman scattering assay for multidrug-resistant bacteria. ACS Nano 14(12), 17241–17253 (2020). https://doi.org/10.1021/acsnano.0c07264
- F. Zheng, Z. Chen, J. Li, R. Wu, B. Zhang et al., A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv. Sci. 9, 2105231 (2022). https://doi.org/10.1002/advs.202105231
- A.P.F. Turner, Biosensors: sense and sensibility. Chem. Soc. Rev. 42(2), 3184–3196 (2013). https://doi.org/10.1039/c3cs35528d
- P.J. Vikesland, K.R. Wigginton, Nanomaterial enabled biosensors for pathogen monitoring - a review. Environ. Sci. Technol. 44, 3656–3669 (2010). https://doi.org/10.1021/es903704z
- Y. Dai, C.C. Liu, Recent advances on electrochemical biosensing strategies toward universal point-of-care systems. Angew. Chem. Int. Ed. 131(36), 12483–12496 (2019). https://doi.org/10.1002/ange.201901879
- E.T.S.G. Silva, D.E.P. Souto, J.T.C. Barragan, J.F. Giarola, A.C.M. Moraes et al., Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4(4), 778–794 (2017). https://doi.org/10.1002/celc.201600758
- N. Farokhzad, W. Tao, Materials chemistry-enabled platforms in detecting sexually transmitted infections: progress towards point-of-care tests. Trends Chem. 3, 589–602 (2021). https://doi.org/10.1016/j.trechm.2021.03.009
- B. Liu, J. Liu, Methods for preparing DNA-functionalized gold nanops, a key reagent of bioanalytical chemistry. Anal. Methods 9(18), 2633–2643 (2017). https://doi.org/10.1039/C7AY00368D
- S.J. Hurst, A.K.R. Lytton-Jean, C.A. Mirkin, Maximizing DNA loading on a range of gold nanop sizes. Anal. Chem. 78(24), 8313–8318 (2006). https://doi.org/10.1021/ac0613582
- K. Murugan, K. Babu, R. Sundaresan, R. Rajan, D.G. Sashital, The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol. Cell. 68, 15–25 (2017). https://doi.org/10.1016/j.molcel.2017.09.007
- X. Fu, Y. Shi, F. Peng, M. Zhou, Y. Yin et al., Exploring the trans-cleavage activity of CRISPR/Cas12a on gold nanops for stable and sensitive biosensing. Anal. Chem. 93(11), 4967–4974 (2021). https://doi.org/10.1021/acs.analchem.1c00027
- F. Li, X. Han, S. Liu, Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode. Biosens. Bioelectron. 26(5), 2619–2625 (2011). https://doi.org/10.1016/j.bios.2010.11.020
- C. Wang, C. Wu, L. Xing, W. Duan, X. Zhang et al., Facet-dependent long-term stability of gold aerogels toward ethylene glycol oxidation reaction. ACS Appl. Mater. Interfaces 12(35), 39033–39042 (2020). https://doi.org/10.1021/acsami.0c08914
- A. Suea-Ngam, P.D. Howes, A.J. deMello, An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chem. Sci. 12, 12733–12743 (2021). https://doi.org/10.1039/D1SC02197D
- Z. Wen, W. Zhao, X. Li, X. Niu, X. Wang et al., Electrodeposited ZnO@ three-dimensional graphene composite modified electrode for electrochemistry and electrocatalysis of myoglobin. Int. J. Electrochem. Sci. 12, 2306–2314 (2017). https://doi.org/10.20964/2017.03.09
- D. Zhang, Y. Yan, H. Que, T. Yang, X. Cheng et al., CRISPR/Cas12a-mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing. ACS Sens. 5(2), 557–562 (2020). https://doi.org/10.1021/acssensors.9b02461
- Y. Lee, J. Choi, H.K. Han, S. Park, S.Y. Park et al., Fabrication of ultrasensitive electrochemical biosensor for dengue fever viral RNA based on CRISPR/Cpf1 reaction. Sens. Actuators B Chem. 326, 128677 (2021). https://doi.org/10.1016/j.snb.2020.128677
- J.E. Dongen, J.T.W. Berendsen, R.D.M. Steenbergen, R.M.F. Wolthuis, J.C.T. Eijkel et al., Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosens. Bioelectron. 166, 112445 (2020). https://doi.org/10.1016/j.bios.2020.112445
- Y. Liang, H. Lin, L. Zou, X. Deng, S. Tang, Rapid detection and tracking of Omicron variant of SARS-CoV-2 using CRISPR-Cas12a-based assay. Biosens. Bioelectron. 205, 114098 (2022). https://doi.org/10.1016/j.bios.2022.114098
- Y. Liang, L. Zou, H. Lin, B. Li, J. Zhao et al., Detection of major SARS-CoV-2 variants of concern in clinical samples via CRISPR-Cas12a-mediated mutation-specific assay. ACS Synth. Biol. 11, 1811–1823 (2022). https://doi.org/10.1021/acssynbio.1c00643
- C. Han, W. Li, Q. Li, W. Xing, H. Luo et al., CRISPR/Cas12a-derived electrochemical aptasensor for ultrasensitive detection of COVID-19 nucleocapsid protein. Biosens. Bioelectron. 200, 113922 (2022). https://doi.org/10.1016/j.bios.2021.113922
- Z. Zhou, J. Wang, G. Li, Y. Chen, T. Xu et al., Wireless USB-like electrochemical platform for individual electrochemical sensing in microdroplets. Anal. Chim. Acta 1197, 339526 (2022). https://doi.org/10.1016/j.aca.2022.339526
References
W. Zeng, G. Liu, H. Ma, D. Zhao, Y. Yang et al., Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Bioph. Res. Commun. 527(3), 618–623 (2020). https://doi.org/10.1016/j.bbrc.2020.04.136
B.D. Kevadiya, J. Machhi, J. Herskovitz, M.D. Oleynikov, W.R. Blomberg et al., Diagnostics for SARS-CoV-2 infections. Nat. Mater. 20, 593–605 (2021). https://doi.org/10.1038/s41563-020-00906-z
Y. Peng, C. Lin, L. Long, T. Masaki, M. Tang et al., Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett. 13, 52 (2021). https://doi.org/10.1007/s40820-020-00565-4
H. Xiong, X. Ye, Y. Li, J. Qi, X. Fang et al., Efficient microfluidic-based air sampling/monitoring platform for detection of aerosol SARS-CoV-2 on-site. Anal. Chem. 93, 4270–4276 (2021). https://doi.org/10.1021/acs.analchem.0c05154
M. Alafeef, K. Dighe, P. Moitra, D. Pan, Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 14(12), 17028–17045 (2020). https://doi.org/10.1021/acsnano.0c06392
Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5, 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
Z. Zhang, Z. Tang, N. Farokhzad, T. Chen, W. Tao, Sensitive, rapid, low-cost, and multiplexed COVID-19 monitoring by the wireless telemedicine platform. Matter 3, 1818–1820 (2020). https://doi.org/10.1016/j.matt.2020.11.001
J.E. Bryant, A.S. Azman, M.J. Ferrari, B.F. Arnold, M.F. Boni et al., Serology for SARS-CoV-2: apprehensions, opportunities, and the path forward. Sci. Immunol. 5, eabc6347 (2020). https://doi.org/10.1126/sciimmunol.abc6347
E. Ernst, P. Wolfe, C. Stahura, K.A. Edwards, Technical considerations to development of serological tests for SARS-CoV-2. Talanta 224, 121883 (2021). https://doi.org/10.1016/j.talanta.2020.121883
L.J. Carter, L.V. Garner, J.W. Smoot, Y. Li, Q. Zhou et al., Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 6(5), 591–605 (2020). https://doi.org/10.1021/acscentsci.0c00501
W. Zhang, N. Liu, J. Zhang, Functional nucleic acids as modular components against SARS-CoV-2: from diagnosis to therapeutics. Biosens. Bioelectron. 201, 113944 (2022). https://doi.org/10.1016/j.bios.2021.113944
Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran et al., An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2020). https://doi.org/10.1007/s40820-020-00533-y
L. Kashefi-Kheyrabadi, H.V. Nguyen, A. Go, C. Baek, N. Jang et al., Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens. Bioelectron. 195, 113649 (2022). https://doi.org/10.1016/j.bios.2021.113649
R.M. Torrente-Rodríguez, H. Lukas, J. Tu, J. Min, Y. Yang et al., SARS-CoV-2 rapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 3, 1981–1998 (2020). https://doi.org/10.1016/j.matt.2020.09.027
X. Yuan, C. Yang, Q. He, J. Chen, D. Yu et al., Current and perspective diagnostic techniques for COVID-19. ACS Infect. Dis. 6(8), 1998–2016 (2020). https://doi.org/10.1021/acsinfecdis.0c00365
Y. Yang, Y. Peng, C. Lin, L. Long, J. Hu et al., Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Lett. 13, 109 (2021). https://doi.org/10.1007/s40820-021-00620-8
E. Kivrak, T. Pauzaite, N. Copeland, J. Hardy, P. Kara et al., Detection of CRISPR-Cas9-mediated mutations using a carbon nanotube-modified electrochemical genosensor. Biosensors 11(1), 17 (2021). https://doi.org/10.3390/bios11010017
F. Li, Q. Ye, M. Chen, B. Zhou, J. Zhang et al., An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosens. Bioelectron. 179, 113073 (2021). https://doi.org/10.1016/j.bios.2021.113073
Y. Dai, R.A. Somoza, L. Wang, J.F. Welter, Y. Li et al., Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem. Int. Ed. 131(48), 17560–17566 (2019). https://doi.org/10.1002/ange.201910772
J. Liu, Q. Wan, R. Zeng, D. Tang, An ultrasensitive homogeneous electrochemical biosensor based on CRISPR-Cas12a. Anal. Methods 13, 3227–3232 (2021). https://doi.org/10.1039/D1AY00725D
M.J. Kellner, J.G. Koob, J.S. Gootenberg, O.O. Abudayyeh, F. Zhang, SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019). https://doi.org/10.1038/s41596-019-0210-2
S.Y. Li, Q.X. Cheng, J.M. Wang, X.Y. Li, Z.L. Zhang et al., CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 4, 20 (2018). https://doi.org/10.1038/s41421-018-0028-z
J.S. Chen, E. Ma, L.B. Harrington, M.D. Costa, X. Tian et al., CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018). https://doi.org/10.1126/science.aar6245
L. Li, S. Li, N. Wu, J. Wu, G. Wang et al., HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 8(10), 2228–2237 (2019). https://doi.org/10.1021/acssynbio.9b00209
K. Shi, S. Xie, R. Tian, S. Wang, Q. Lu et al., A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. Sci. Adv. 7, abc7802 (2021). https://doi.org/10.1126/sciadv.abc7802
K. Guk, J.O. Keem, S.G. Hwang, H. Kim, T. Kang et al., A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens. Bioelectron. 95, 67–71 (2017). https://doi.org/10.1016/j.bios.2017.04.016
R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne et al., Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3, 427–437 (2019). https://doi.org/10.1038/s41551-019-0371-x
Z. Huang, D. Tian, Y. Liu, Z. Lin, C.J. Lyon et al., Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosens. Bioelectron. 164, 112316, (2020). https://doi.org/10.1016/j.bios.2020.112316
J.P. Broughton, X. Deng, G. Yu, C.L. Fasching, V. Servellita et al., CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020). https://doi.org/10.1038/s41587-020-0513-4
Y. Jiang, M. Hu, A.A. Liu, Y. Lin, L. Liu et al., Detection of SARS-CoV-2 by CRISPR/Cas12a-enhanced colorimetry. ACS Sens. 6(3), 1086–1093 (2021). https://doi.org/10.1021/acssensors.0c02365
P. Fozouni, S. Son, M.D.L. Derby, G.J. Knott, C.N. Gray et al., Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184, 323-333.E9 (2021). https://doi.org/10.1016/j.cell.2020.12.001
X. Ding, K. Yin, Z. Li, R.V. Lalla, E. Ballesteros et al., Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 11, 4711 (2020). https://doi.org/10.1038/s41467-020-18575-6
X. Wang, E. Xiong, T. Tian, M. Cheng, W. Lin et al., Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano 14(2), 2497–2508 (2020). https://doi.org/10.1021/acsnano.0c00022
T. Tian, B. Shu, Y. Jiang, M. Ye, L. Liu et al., An Ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15(1), 1167–1178 (2021). https://doi.org/10.1021/acsnano.0c08165
S. Peng, Z. Tan, S. Chen, C. Lei, Z. Nie, Integrating CRISPR-Cas12a with a DNA circuit as a generic sensing platform for amplified detection of microRNA. Chem. Sci. 11, 7362–7368 (2020). https://doi.org/10.1039/d0sc03084h
H. Kim, S. Lee, H.W. Seo, B. Kang, J. Moon et al., Clustered regularly interspaced short palindromic repeats-mediated surface-enhanced Raman scattering assay for multidrug-resistant bacteria. ACS Nano 14(12), 17241–17253 (2020). https://doi.org/10.1021/acsnano.0c07264
F. Zheng, Z. Chen, J. Li, R. Wu, B. Zhang et al., A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv. Sci. 9, 2105231 (2022). https://doi.org/10.1002/advs.202105231
A.P.F. Turner, Biosensors: sense and sensibility. Chem. Soc. Rev. 42(2), 3184–3196 (2013). https://doi.org/10.1039/c3cs35528d
P.J. Vikesland, K.R. Wigginton, Nanomaterial enabled biosensors for pathogen monitoring - a review. Environ. Sci. Technol. 44, 3656–3669 (2010). https://doi.org/10.1021/es903704z
Y. Dai, C.C. Liu, Recent advances on electrochemical biosensing strategies toward universal point-of-care systems. Angew. Chem. Int. Ed. 131(36), 12483–12496 (2019). https://doi.org/10.1002/ange.201901879
E.T.S.G. Silva, D.E.P. Souto, J.T.C. Barragan, J.F. Giarola, A.C.M. Moraes et al., Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4(4), 778–794 (2017). https://doi.org/10.1002/celc.201600758
N. Farokhzad, W. Tao, Materials chemistry-enabled platforms in detecting sexually transmitted infections: progress towards point-of-care tests. Trends Chem. 3, 589–602 (2021). https://doi.org/10.1016/j.trechm.2021.03.009
B. Liu, J. Liu, Methods for preparing DNA-functionalized gold nanops, a key reagent of bioanalytical chemistry. Anal. Methods 9(18), 2633–2643 (2017). https://doi.org/10.1039/C7AY00368D
S.J. Hurst, A.K.R. Lytton-Jean, C.A. Mirkin, Maximizing DNA loading on a range of gold nanop sizes. Anal. Chem. 78(24), 8313–8318 (2006). https://doi.org/10.1021/ac0613582
K. Murugan, K. Babu, R. Sundaresan, R. Rajan, D.G. Sashital, The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol. Cell. 68, 15–25 (2017). https://doi.org/10.1016/j.molcel.2017.09.007
X. Fu, Y. Shi, F. Peng, M. Zhou, Y. Yin et al., Exploring the trans-cleavage activity of CRISPR/Cas12a on gold nanops for stable and sensitive biosensing. Anal. Chem. 93(11), 4967–4974 (2021). https://doi.org/10.1021/acs.analchem.1c00027
F. Li, X. Han, S. Liu, Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode. Biosens. Bioelectron. 26(5), 2619–2625 (2011). https://doi.org/10.1016/j.bios.2010.11.020
C. Wang, C. Wu, L. Xing, W. Duan, X. Zhang et al., Facet-dependent long-term stability of gold aerogels toward ethylene glycol oxidation reaction. ACS Appl. Mater. Interfaces 12(35), 39033–39042 (2020). https://doi.org/10.1021/acsami.0c08914
A. Suea-Ngam, P.D. Howes, A.J. deMello, An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chem. Sci. 12, 12733–12743 (2021). https://doi.org/10.1039/D1SC02197D
Z. Wen, W. Zhao, X. Li, X. Niu, X. Wang et al., Electrodeposited ZnO@ three-dimensional graphene composite modified electrode for electrochemistry and electrocatalysis of myoglobin. Int. J. Electrochem. Sci. 12, 2306–2314 (2017). https://doi.org/10.20964/2017.03.09
D. Zhang, Y. Yan, H. Que, T. Yang, X. Cheng et al., CRISPR/Cas12a-mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing. ACS Sens. 5(2), 557–562 (2020). https://doi.org/10.1021/acssensors.9b02461
Y. Lee, J. Choi, H.K. Han, S. Park, S.Y. Park et al., Fabrication of ultrasensitive electrochemical biosensor for dengue fever viral RNA based on CRISPR/Cpf1 reaction. Sens. Actuators B Chem. 326, 128677 (2021). https://doi.org/10.1016/j.snb.2020.128677
J.E. Dongen, J.T.W. Berendsen, R.D.M. Steenbergen, R.M.F. Wolthuis, J.C.T. Eijkel et al., Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosens. Bioelectron. 166, 112445 (2020). https://doi.org/10.1016/j.bios.2020.112445
Y. Liang, H. Lin, L. Zou, X. Deng, S. Tang, Rapid detection and tracking of Omicron variant of SARS-CoV-2 using CRISPR-Cas12a-based assay. Biosens. Bioelectron. 205, 114098 (2022). https://doi.org/10.1016/j.bios.2022.114098
Y. Liang, L. Zou, H. Lin, B. Li, J. Zhao et al., Detection of major SARS-CoV-2 variants of concern in clinical samples via CRISPR-Cas12a-mediated mutation-specific assay. ACS Synth. Biol. 11, 1811–1823 (2022). https://doi.org/10.1021/acssynbio.1c00643
C. Han, W. Li, Q. Li, W. Xing, H. Luo et al., CRISPR/Cas12a-derived electrochemical aptasensor for ultrasensitive detection of COVID-19 nucleocapsid protein. Biosens. Bioelectron. 200, 113922 (2022). https://doi.org/10.1016/j.bios.2021.113922
Z. Zhou, J. Wang, G. Li, Y. Chen, T. Xu et al., Wireless USB-like electrochemical platform for individual electrochemical sensing in microdroplets. Anal. Chim. Acta 1197, 339526 (2022). https://doi.org/10.1016/j.aca.2022.339526