Flexible Ag Microparticle/MXene-Based Film for Energy Harvesting
Corresponding Author: Xianhu Liu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 201
Abstract
Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility. In particular, the energy-harvesting films (EHFs) have become a research hotspot because of the indispensability of power source in various devices. However, the design and fabrication of such films that can capture or transform different types of energy from environments for multiple usages remains a challenge. Herein, the multifunctional flexible EHFs with effective electro-/photo-thermal abilities are proposed by successive spraying Ag microparticles and MXene suspension between on waterborne polyurethane films, supplemented by a hot-pressing. The optimal coherent film exhibits a high electrical conductivity (1.17×104 S m−1), excellent Joule heating performance (121.3 °C) at 2 V, and outstanding photo-thermal performance (66.2 °C within 70 s under 100 mW cm−1). In addition, the EHFs-based single-electrode triboelectric nanogenerators (TENG) give short-circuit transferred charge of 38.9 nC, open circuit voltage of 114.7 V, and short circuit current of 0.82 μA. More interestingly, the output voltage of TENG can be further increased via constructing the double triboelectrification layers. The comprehensive ability for harvesting various energies of the EHFs promises their potential to satisfy the corresponding requirements.
Highlights:
1 Flexible Ag microparticle/MXene-based energy-harvesting films were fabricated via simple spraying and hot-pressing.
2 Optimal film shows high conductivity and effective electro/photo-thermal abilities.
3 It can be easy assembled single-electrode TENG and the output voltage is enhanced by assembled two triboelectrification layers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Salauddin, R.M. Toyabur, P. Maharjan, M.S. Rasel, H. Cho et al., Design and experimental analysis of a low-frequency resonant hybridized nanogenerator with a wide bandwidth and high output power density. Nano Energy 66, 104122 (2019). https://doi.org/10.1016/j.nanoen.2019.104122
- M. Salauddin, S.M.S. Rana, M. Sharifuzzaman, M.T. Rahman, C. Park et al., A novel MXene/ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11, 2002832 (2021). https://doi.org/10.1002/aenm.202002832
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- C. Li, Y. Pan, J. Hu, S. Qiu, C. Zhang et al., (2020) Vertically aligned 2D/3D Pb–Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5, 1386–1395. https://doi.org/10.1021/acsenergylett.0c00634
- C. Wang, J. Hu, C. Li, S. Qiu, X. Liu et al., Spiro-linked molecular hole-transport materials for highly efficient inverted perovskite solar cells. Solar RRL 4, 1900389 (2020). https://doi.org/10.1002/solr.201900389
- C. Chen, J. Hu, Z. Xu, Z. Wang, Y. Wang et al., Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00238-9
- J. Zhuang, J. Sun, D. Wu, Y. Liu, R.R. Patil et al., Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger. Adv. Compos. Hybrid Mater. 4, 27–35 (2021). https://doi.org/10.1007/s42114-021-00204-5
- H. Liu, L. Kang, J. Li, F. Liu, X. He et al., Highly efficient deep-blue organic light-emitting diodes based on pyreno 4,5-d imidazole-anthracene structural isomers. J. Mater. Chem. C 7, 10273–10280 (2019). https://doi.org/10.1039/c9tc02990g
- Z.-Y. Zhang, Y. He, Z. Wang, J. Xu, M. Xie et al., Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J. Am. Chem. Soc. 142, 12256–12264 (2020). https://doi.org/10.1021/jacs.0c03748
- E. Li, Y. Pan, C. Wang, C. Liu, C. Shen et al., Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications. Chem. Eng. J. 420, 129864 (2021). https://doi.org/10.1016/j.cej.2021.129864
- E. Li, Y. Pan, C. Wang, C. Liu, C. Shen et al., Asymmetry superhydrophobic textiles for electromagnetic interference shielding, photothermal conversion, and solar water evaporation. ACS Appl. Mater. Interfaces 13, 28996–29007 (2021). https://doi.org/10.1021/acsami.1c07976
- L. Xu, L. Cui, Z. Li, H. Lu, X. Qi et al., Thermodynamic coupling behavior and energy harvesting of vapor grown carbon fiber/graphene oxide/epoxy shape memory composites. Compos. Sci. Technol. 203, 108583 (2021). https://doi.org/10.1016/j.compscitech.2020.108583
- T.K. Das, P. Ghosh, N.C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv. Compos. Hybrid Mater. 2, 214–233 (2019). https://doi.org/10.1007/s42114-018-0072-z
- N. Wen, Z. Fan, S. Yang, Y. Zhao, T. Cong et al., Highly conductive, ultra-flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy 78, 105361 (2020). https://doi.org/10.1016/j.nanoen.2020.105361
- E.C. Macabutas, A.F. Tongco, Determination of thermal conductivity of bamboo plyboard as thermal insulator for passive roof cooling. Adv. Compos. Hybrid Mater. 4, 647–661 (2020). https://doi.org/10.1007/s42114-020-00185-x
- H. Kang, H. Kim, S. Kim, H.J. Shin, S. Cheon et al., Mechanically robust silver nanowires network for triboelectric nanogenerators. Adv. Funct. Mater. 26, 7717–7724 (2016). https://doi.org/10.1002/adfm.201603199
- Y. Jia, R. Sun, Y. Pan, X. Wang, Z. Zhai et al., Flexible and thin multifunctional waterborne polyurethane/Ag film for high-efficiency electromagnetic interference shielding, electro-thermal and strain sensing performances. Compos. Part B: Eng. 210, 108668 (2021). https://doi.org/10.1016/j.compositesb.2021.108668
- Y. Feng, X. Jiang, E. Ghafari, B. Kucukgok, C. Zhang et al., Metal oxides for thermoelectric power generation and beyond. Adv. Compos. Hybrid Mater. 1, 114 (2018). https://doi.org/10.1007/s42114-017-0011-4
- X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
- H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
- G. Cai, J.-H. Ciou, Y. Liu, Y. Jiang, P.S. Lee, Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 5, eaaw7956 (2019). http://doi.org/https://doi.org/10.1126/sciadv.aaw7956
- C.F. Du, X. Sun, H. Yu, W. Fang, Y. Jing et al., V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat 2, 950–959 (2020). https://doi.org/10.1002/inf2.12078
- Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4, 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
- W. He, X. Fu, D. Zhang, Q. Zhang, K. Zhuo et al., Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators. Nano Energy 84, 105880 (2021). https://doi.org/10.1016/j.nanoen.2021.105880
- A.A. Mathew, A. Chandrasekhar, S. Vivekanandan, A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 80, 150566 (2021). https://doi.org/10.1016/j.nanoen.2020.105566
- H. Li, X. Zhang, L. Zhao, D. Jiang, L. Xu et al., A hybrid biofuel and triboelectric nanogenerator for bioenergy harvesting. Nano-Micro Lett. 12, 50 (2020). https://doi.org/10.1007/s40820-020-0376-8
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- Y. Guo, Y. Cao, Z. Chen, R. Li, W. Gong et al., Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy 70, 104517 (2020). https://doi.org/10.1016/j.nanoen.2020.104517
- A. Sohn, J.H. Lee, H.-J. Yoon, H.H. Lee, S.W. Kim, Self-boosted power generation of triboelectric nanogenerator with glass transition by friction heat. Nano Energy 74, 104840 (2020). https://doi.org/10.1016/j.nanoen.2020.104840
- H. Sun, Y. Zhao, C. Wang, K. Zhou, C. Yan et al., Ultra-Stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 76, 105035 (2020). https://doi.org/10.1016/j.nanoen.2020.105035
- H. Jiang, H. Lei, Z. Wen, J. Shi, D. Bao et al., Charge-trapping-blocking layer for enhanced triboelectric nanogenerators. Nano Energy 75, 105011 (2020). https://doi.org/10.1016/j.nanoen.2020.105011
- K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen et al., Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Lett. 13, 123 (2021). https://doi.org/10.1007/s40820-021-00644-0
- M. Zhang, H. Du, K. Liu, S. Nie, T. Xu et al., Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00312-2
- M.K. Khristosov, S. Dishon, I. Noi, A. Katsman, B. Pokroy, Pore and ligament size control, thermal stability and mechanical properties of nanoporous single crystals of gold. Nanoscale 9, 14458–14466 (2017). https://doi.org/10.1039/c7nr04004k
- G.-H. Lim, N. Kwon, E. Han, S. Bok, S.-E. Lee et al., Flexible nanoporous silver membranes with unprecedented high effectiveness for electromagnetic interference shielding. J. Ind. Eng. Chem. 93, 245–252 (2021). https://doi.org/10.1016/j.jiec.2020.09.030
- T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13, 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
- B. Zhou, M. Su, D. Yang, G. Han, Y. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12, 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
- S. Kimura, T. Sugita, K. Nakamura, N. Kobayashi, An improvement in the coloration properties of Ag deposition-based plasmonic EC devices by precise control of shape and density of deposited Ag nanoparticles. Nanoscale 12, 23975–23983 (2020). https://doi.org/10.1039/d0nr05196a
- A. Loiseau, L. Zhang, D. Hu, M. Salmain, Y. Mazouzi et al., Core-Shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing. ACS Appl. Mater. Interfaces 11, 46462–46471 (2019). https://doi.org/10.1021/acsami.9b14980
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- H. Riazi, S.K. Nemani, M.C. Grady, B. Anasori, M. Soroush, Ti3C2 MXene-polymer nanocomposites and their applications. J. Mater. Chem. A 9, 8051–8098 (2021). https://doi.org/10.1039/d0ta08023c
- A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams et al., Aqueous dispersion of polyurethane nanocomposites based on calix 4 arenes modified graphene oxide nanosheets: Preparation, characterization, and anti-corrosion properties. Chem. Eng. J. 349, 466–480 (2018). https://doi.org/10.1016/j.cej.2018.05.111
- V. Slabov, S. Kopyl, M.P. Soares dos Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectrie energy harvesting. Nano-Micro Lett. 12, 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
- K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11, 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
- K. Zhou, Y. Zhao, X. Sun, Z. Yuan, G. Zheng et al., Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 70, 104546 (2020). https://doi.org/10.1016/j.nanoen.2020.104546
- C. Ye, S. Dong, J. Ren, S. Ling, Ultrastable and high-performance silk energy harvesting textiles. Nano-Micro Lett. 12, 12 (2020). https://doi.org/10.1007/s40820-019-0348-z
- H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31, 2101696 (2021). https://doi.org/10.1002/adfm.202101696
- Y. Zhang, Q. Zeng, Y. Wu, J. Wu, S. Yuan et al., An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind Eenergy. Nano-Micro Lett. 12, 175 (2020). https://doi.org/10.1007/s40820-020-00513-2
- F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji et al., Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 65, 104068 (2019). https://doi.org/10.1016/j.nanoen.2019.104068
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33, 2004178 (2021). https://doi.org/10.1002/adma.202004178
- J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano-Micro Lett. 13, 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
- Z. Hui, M. Xiao, D. Shen, J. Feng, P. Peng et al., A self-powered nanogenerator for the electrical protection of integrated circuits from trace amounts of liquid. Nano-Micro Lett. 12, 5 (2020). https://doi.org/10.1007/s40820-019-0338-1
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible Poly (vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
References
M. Salauddin, R.M. Toyabur, P. Maharjan, M.S. Rasel, H. Cho et al., Design and experimental analysis of a low-frequency resonant hybridized nanogenerator with a wide bandwidth and high output power density. Nano Energy 66, 104122 (2019). https://doi.org/10.1016/j.nanoen.2019.104122
M. Salauddin, S.M.S. Rana, M. Sharifuzzaman, M.T. Rahman, C. Park et al., A novel MXene/ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11, 2002832 (2021). https://doi.org/10.1002/aenm.202002832
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
C. Li, Y. Pan, J. Hu, S. Qiu, C. Zhang et al., (2020) Vertically aligned 2D/3D Pb–Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5, 1386–1395. https://doi.org/10.1021/acsenergylett.0c00634
C. Wang, J. Hu, C. Li, S. Qiu, X. Liu et al., Spiro-linked molecular hole-transport materials for highly efficient inverted perovskite solar cells. Solar RRL 4, 1900389 (2020). https://doi.org/10.1002/solr.201900389
C. Chen, J. Hu, Z. Xu, Z. Wang, Y. Wang et al., Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00238-9
J. Zhuang, J. Sun, D. Wu, Y. Liu, R.R. Patil et al., Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger. Adv. Compos. Hybrid Mater. 4, 27–35 (2021). https://doi.org/10.1007/s42114-021-00204-5
H. Liu, L. Kang, J. Li, F. Liu, X. He et al., Highly efficient deep-blue organic light-emitting diodes based on pyreno 4,5-d imidazole-anthracene structural isomers. J. Mater. Chem. C 7, 10273–10280 (2019). https://doi.org/10.1039/c9tc02990g
Z.-Y. Zhang, Y. He, Z. Wang, J. Xu, M. Xie et al., Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J. Am. Chem. Soc. 142, 12256–12264 (2020). https://doi.org/10.1021/jacs.0c03748
E. Li, Y. Pan, C. Wang, C. Liu, C. Shen et al., Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications. Chem. Eng. J. 420, 129864 (2021). https://doi.org/10.1016/j.cej.2021.129864
E. Li, Y. Pan, C. Wang, C. Liu, C. Shen et al., Asymmetry superhydrophobic textiles for electromagnetic interference shielding, photothermal conversion, and solar water evaporation. ACS Appl. Mater. Interfaces 13, 28996–29007 (2021). https://doi.org/10.1021/acsami.1c07976
L. Xu, L. Cui, Z. Li, H. Lu, X. Qi et al., Thermodynamic coupling behavior and energy harvesting of vapor grown carbon fiber/graphene oxide/epoxy shape memory composites. Compos. Sci. Technol. 203, 108583 (2021). https://doi.org/10.1016/j.compscitech.2020.108583
T.K. Das, P. Ghosh, N.C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv. Compos. Hybrid Mater. 2, 214–233 (2019). https://doi.org/10.1007/s42114-018-0072-z
N. Wen, Z. Fan, S. Yang, Y. Zhao, T. Cong et al., Highly conductive, ultra-flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy 78, 105361 (2020). https://doi.org/10.1016/j.nanoen.2020.105361
E.C. Macabutas, A.F. Tongco, Determination of thermal conductivity of bamboo plyboard as thermal insulator for passive roof cooling. Adv. Compos. Hybrid Mater. 4, 647–661 (2020). https://doi.org/10.1007/s42114-020-00185-x
H. Kang, H. Kim, S. Kim, H.J. Shin, S. Cheon et al., Mechanically robust silver nanowires network for triboelectric nanogenerators. Adv. Funct. Mater. 26, 7717–7724 (2016). https://doi.org/10.1002/adfm.201603199
Y. Jia, R. Sun, Y. Pan, X. Wang, Z. Zhai et al., Flexible and thin multifunctional waterborne polyurethane/Ag film for high-efficiency electromagnetic interference shielding, electro-thermal and strain sensing performances. Compos. Part B: Eng. 210, 108668 (2021). https://doi.org/10.1016/j.compositesb.2021.108668
Y. Feng, X. Jiang, E. Ghafari, B. Kucukgok, C. Zhang et al., Metal oxides for thermoelectric power generation and beyond. Adv. Compos. Hybrid Mater. 1, 114 (2018). https://doi.org/10.1007/s42114-017-0011-4
X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
G. Cai, J.-H. Ciou, Y. Liu, Y. Jiang, P.S. Lee, Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 5, eaaw7956 (2019). http://doi.org/https://doi.org/10.1126/sciadv.aaw7956
C.F. Du, X. Sun, H. Yu, W. Fang, Y. Jing et al., V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat 2, 950–959 (2020). https://doi.org/10.1002/inf2.12078
Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4, 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
W. He, X. Fu, D. Zhang, Q. Zhang, K. Zhuo et al., Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators. Nano Energy 84, 105880 (2021). https://doi.org/10.1016/j.nanoen.2021.105880
A.A. Mathew, A. Chandrasekhar, S. Vivekanandan, A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 80, 150566 (2021). https://doi.org/10.1016/j.nanoen.2020.105566
H. Li, X. Zhang, L. Zhao, D. Jiang, L. Xu et al., A hybrid biofuel and triboelectric nanogenerator for bioenergy harvesting. Nano-Micro Lett. 12, 50 (2020). https://doi.org/10.1007/s40820-020-0376-8
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013). https://doi.org/10.1021/nn404614z
Y. Guo, Y. Cao, Z. Chen, R. Li, W. Gong et al., Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy 70, 104517 (2020). https://doi.org/10.1016/j.nanoen.2020.104517
A. Sohn, J.H. Lee, H.-J. Yoon, H.H. Lee, S.W. Kim, Self-boosted power generation of triboelectric nanogenerator with glass transition by friction heat. Nano Energy 74, 104840 (2020). https://doi.org/10.1016/j.nanoen.2020.104840
H. Sun, Y. Zhao, C. Wang, K. Zhou, C. Yan et al., Ultra-Stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 76, 105035 (2020). https://doi.org/10.1016/j.nanoen.2020.105035
H. Jiang, H. Lei, Z. Wen, J. Shi, D. Bao et al., Charge-trapping-blocking layer for enhanced triboelectric nanogenerators. Nano Energy 75, 105011 (2020). https://doi.org/10.1016/j.nanoen.2020.105011
K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen et al., Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Lett. 13, 123 (2021). https://doi.org/10.1007/s40820-021-00644-0
M. Zhang, H. Du, K. Liu, S. Nie, T. Xu et al., Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00312-2
M.K. Khristosov, S. Dishon, I. Noi, A. Katsman, B. Pokroy, Pore and ligament size control, thermal stability and mechanical properties of nanoporous single crystals of gold. Nanoscale 9, 14458–14466 (2017). https://doi.org/10.1039/c7nr04004k
G.-H. Lim, N. Kwon, E. Han, S. Bok, S.-E. Lee et al., Flexible nanoporous silver membranes with unprecedented high effectiveness for electromagnetic interference shielding. J. Ind. Eng. Chem. 93, 245–252 (2021). https://doi.org/10.1016/j.jiec.2020.09.030
T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13, 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
B. Zhou, M. Su, D. Yang, G. Han, Y. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12, 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
S. Kimura, T. Sugita, K. Nakamura, N. Kobayashi, An improvement in the coloration properties of Ag deposition-based plasmonic EC devices by precise control of shape and density of deposited Ag nanoparticles. Nanoscale 12, 23975–23983 (2020). https://doi.org/10.1039/d0nr05196a
A. Loiseau, L. Zhang, D. Hu, M. Salmain, Y. Mazouzi et al., Core-Shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing. ACS Appl. Mater. Interfaces 11, 46462–46471 (2019). https://doi.org/10.1021/acsami.9b14980
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
H. Riazi, S.K. Nemani, M.C. Grady, B. Anasori, M. Soroush, Ti3C2 MXene-polymer nanocomposites and their applications. J. Mater. Chem. A 9, 8051–8098 (2021). https://doi.org/10.1039/d0ta08023c
A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams et al., Aqueous dispersion of polyurethane nanocomposites based on calix 4 arenes modified graphene oxide nanosheets: Preparation, characterization, and anti-corrosion properties. Chem. Eng. J. 349, 466–480 (2018). https://doi.org/10.1016/j.cej.2018.05.111
V. Slabov, S. Kopyl, M.P. Soares dos Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectrie energy harvesting. Nano-Micro Lett. 12, 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11, 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
K. Zhou, Y. Zhao, X. Sun, Z. Yuan, G. Zheng et al., Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 70, 104546 (2020). https://doi.org/10.1016/j.nanoen.2020.104546
C. Ye, S. Dong, J. Ren, S. Ling, Ultrastable and high-performance silk energy harvesting textiles. Nano-Micro Lett. 12, 12 (2020). https://doi.org/10.1007/s40820-019-0348-z
H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31, 2101696 (2021). https://doi.org/10.1002/adfm.202101696
Y. Zhang, Q. Zeng, Y. Wu, J. Wu, S. Yuan et al., An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind Eenergy. Nano-Micro Lett. 12, 175 (2020). https://doi.org/10.1007/s40820-020-00513-2
F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji et al., Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 65, 104068 (2019). https://doi.org/10.1016/j.nanoen.2019.104068
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33, 2004178 (2021). https://doi.org/10.1002/adma.202004178
J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano-Micro Lett. 13, 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
Z. Hui, M. Xiao, D. Shen, J. Feng, P. Peng et al., A self-powered nanogenerator for the electrical protection of integrated circuits from trace amounts of liquid. Nano-Micro Lett. 12, 5 (2020). https://doi.org/10.1007/s40820-019-0338-1
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible Poly (vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5