Interface Engineering of CoS/CoO@N-Doped Graphene Nanocomposite for High-Performance Rechargeable Zn–Air Batteries
Corresponding Author: Shanqing Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 3
Abstract
Low cost and green fabrication of high-performance electrocatalysts with earth-abundant resources for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial for the large-scale application of rechargeable Zn–air batteries (ZABs). In this work, our density functional theory calculations on the electrocatalyst suggest that the rational construction of interfacial structure can induce local charge redistribution, improve the electronic conductivity and enhance the catalyst stability. In order to realize such a structure, we spatially immobilize heterogeneous CoS/CoO nanocrystals onto N-doped graphene to synthesize a bifunctional electrocatalyst (CoS/CoO@NGNs). The optimization of the composition, interfacial structure and conductivity of the electrocatalyst is conducted to achieve bifunctional catalytic activity and deliver outstanding efficiency and stability for both ORR and OER. The aqueous ZAB with the as-prepared CoS/CoO@NGNs cathode displays a high maximum power density of 137.8 mW cm−2, a specific capacity of 723.9 mAh g−1 and excellent cycling stability (continuous operating for 100 h) with a high round-trip efficiency. In addition, the assembled quasi-solid-state ZAB also exhibits outstanding mechanical flexibility besides high battery performances, showing great potential for applications in flexible and wearable electronic devices.
Highlights:
1 Interface engineering of heterogeneous CoS/CoO nanocrystals and N-doped graphene composite facilitates high-performance oxygen reduction reaction and oxygen evolution reaction.
2 Density functional theory calculations and experimental results confirm the enhanced electrocatalytic performances via the proposed interface engineering.
3 The bifunctional oxygen electrocatalyst exhibits excellent performances in rechargeable Zn–air batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017). https://doi.org/10.1038/nmat4834
- H. Miao, B. Chen, S. Li, X. Wu, Q. Wang et al., All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. J. Power Sources 450(29), 227653 (2020). https://doi.org/10.1016/j.jpowsour.2019.227653
- J. Xie, Q. Zhang, Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 15(15), 1805061 (2019). https://doi.org/10.1002/smll.201805061
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- X. Wu, C.J. Tang, Y. Cheng, X.B. Min, S.P. Jiang, S.Y. Wang, Bifunctional catalysts for reversible oxygen evolution reaction and oxygen reduction reaction. Chem. Eur. J. 26(18), 3906–3929 (2020). https://doi.org/10.1002/chem.201905346
- C.X. Guo, Y. Zheng, J.R. Ran, F.X. Xie, M. Jaroniec, S.Z. Qiao, Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew. Chem. Int. Ed. 56(29), 8539–8543 (2017). https://doi.org/10.1002/anie.201701531
- C.S. Wang, W.B. Chen, D. Yuan, S.H. Qian, D.D. Cai, J.T. Jiang, S.Q. Zhang, Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy 69, 104453 (2020). https://doi.org/10.1016/j.nanoen.2020.104453
- Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo, G. Ma, Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano-Micro Lett. 11, 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
- S. Zhao, L. Yan, H.M. Luo, W. Mustain, H. Xu, Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy 47, 172–198 (2018). https://doi.org/10.1016/j.nanoen.2018.02.015
- P.Z. Chen, Y. Tong, C.Z. Wu, Y. Xie, Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Acc. Chem. Res. 51(11), 2857–2866 (2018). https://doi.org/10.1021/acs.accounts.8b00266
- K.B. Ibrahim, M.C. Tsai, S.A. Chala, M.K. Berihun, A.W. Kahsay et al., A review of transition metal-based bifunctional oxygen electrocatalysts. J. Chin. Chem. Soc. 66(8), 829–865 (2019). https://doi.org/10.1002/jccs.201900001
- H.F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn–Air batteries. Adv. Funct. Mater. 28(46), 1803329 (2018). https://doi.org/10.1002/adfm.201803329
- T.P. Zhou, N. Zhang, C.Z. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn–air batteries. Energy Environ. Sci. 13(4), 1132–1153 (2020). https://doi.org/10.1039/c9ee03634b
- Y. Yang, M.C. Luo, W.Y. Zhang, Y.J. Sun, X. Chen, S.J. Guo, Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem 4(9), 2054–2083 (2018). https://doi.org/10.1016/j.chempr.2018.05.019
- L.Y. Gan, Q.Y. Zhang, C.S. Guo, U. Schwingenschlögl, Y. Zhao, Two-dimensional MnO2/graphene interface: half-metallicity and quantum anomalous hall state. J. Phys. Chem. C 120(4), 2119–2125 (2016). https://doi.org/10.1021/acs.jpcc.5b08272
- P.T. Liu, J.Q. Ran, B.R. Xia, S.B. Xi, D.Q. Gao, J. Wang, Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
- J. Yin, Y.X. Li, F. Lv, M. Lu, K. Sun et al., Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater. 29(47), 1704681 (2017). https://doi.org/10.1002/adma.201704681
- L. An, B.L. Huang, Y. Zhang, R. Wang, N. Zhang et al., Interfacial defect engineering for improved portable zinc-air batteries with a broad working temperature. Angew. Chem. Int. Ed. 58(28), 9459–9463 (2019). https://doi.org/10.1002/anie.201903879
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R.H. Dong et al., Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 55(23), 6702–6707 (2016). https://doi.org/10.1002/anie.201602237
- J.X. Diao, Y. Qiu, S.Q. Liu, W.T. Wang, K. Chen et al., Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 32(7), 1905679 (2019). https://doi.org/10.1002/adma.201905679
- S.S. Li, X.G. Hao, A. Abudula, G.Q. Guan, Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J. Mater. Chem. A 7(32), 18674–18707 (2019). https://doi.org/10.1039/c9ta04949e
- T.W. van Deelen, C.H. Mejía, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2(11), 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x
- E. Gracia-Espino, X. Jia, T. Wågberg, Improved oxygen reduction performance of Pt–Ni nanoparticles by adhesion on nitrogen-doped graphene. J. Phys. Chem. C 118(5), 2804–2811 (2014). https://doi.org/10.1021/jp4101619
- R.X. Qin, P.X. Liu, G. Fu, N.F. Zheng, Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2(1), 1700286 (2018). https://doi.org/10.1002/smtd.201700286
- I.C. Gerber, P. Serp, A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 120(2), 1250–1349 (2020). https://doi.org/10.1021/acs.chemrev.9b00209
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- Z. Cai, Y.M. Bi, E.Y. Hu, W. Liu, N. Dwarica et al., Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 8(3), 1701694 (2018). https://doi.org/10.1002/aenm.201701694
- R.A. Evarestov, V.P. Smirnov, Modification of the monkhorst-pack special points meshes in the brillouin zone for density functional theory and Hartree-Fock calculations. Phys. Rev. B 70(23), 233101 (2004). https://doi.org/10.1103/PhysRevB.70.233101
- S.A. Tawfik, T. Gould, C. Stampfl, M.J. Ford, Evaluation of van der waals density functionals for layered materials. Phys. Rev. Mater. 2(3), 034005 (2018). https://doi.org/10.1103/PhysRevMaterials.2.034005
- L. Lv, D. Zha, Y.J. Ruan, Z.S. Li, X. Ao et al., A universal method to engineer metal oxide-metal-carbon interface for highly efficient oxygen reduction. ACS Nano 12(3), 3042–3051 (2018). https://doi.org/10.1021/acsnano.8b01056
- H. Han, K.M. Kim, H. Choi, G. Ali, K.Y. Chung et al., Parallelized reaction pathway and stronger internal band bending by partial oxidation of metal sulfide–graphene composites: important factors of synergistic oxygen evolution reaction enhancement. ACS Catal. 8(5), 4091–4102 (2018). https://doi.org/10.1021/acscatal.8b00017
- J. Azadmanjiri, V.K. Srivastava, P. Kumar, J. Wang, A. Yu, Graphene-supported 2d transition metal oxide heterostructures. J. Mater. Chem. A 6(28), 13509–13537 (2018). https://doi.org/10.1039/c8ta03404d
- T. Tang, W.J. Jiang, X.Z. Liu, J. Deng, S. Niu et al., Metastable rock salt oxide-mediated synthesis of high-density dual-protected M@NC for long-life rechargeable zinc-air batteries with record power density. J. Am. Chem. Soc. 142(15), 7116–7127 (2020). https://doi.org/10.1021/jacs.0c01349
- H. Gao, T.F. Zhou, Y. Zheng, Q. Zhang, Y.Q. Liu et al., CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27(43), 1702634 (2017). https://doi.org/10.1002/adfm.201702634
- H.T. Zhao, L.Y. Guo, C.W. Xing, H.Y. Liu, X.Y. Li, A homojunction–heterojunction–homojunction scaffold boosts photocatalytic H2 evolution over Cd0.5Zn0.5S/CoO hybrids. J. Mater. Chem. A 8(4), 1955–1965 (2020). https://doi.org/10.1039/c9ta11915a
- L. Chen, R. Du, J. Zhu, Y.Y. Mao, C. Xue et al., Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. Small 11(12), 1423–1429 (2015). https://doi.org/10.1002/smll.201402472
- Z.M. Luo, C.L. Tan, X. Zhang, J.Z. Chen, X.H. Cao et al., Preparation of cobalt sulfide nanoparticle-decorated nitrogen and sulfur co-doped reduced graphene oxide aerogel used as a highly efficient electrocatalyst for oxygen reduction reaction. Small 12(43), 5920–5926 (2016). https://doi.org/10.1002/smll.201602615
- R.Q. Li, P.F. Hu, M. Miao, Y.L. Li, X.F. Jiang et al., Coo-modified Co4N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media. J. Mater. Chem. A 6(48), 24767–24772 (2018). https://doi.org/10.1039/c8ta08519f
- J.H. Lin, P.C. Wang, H.H. Wang, C. Li, X.Q. Si et al., Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 6(14), 1900246 (2019). https://doi.org/10.1002/advs.201900246
- Y. Hou, M. Qiu, G. Nam, M.G. Kim, T. Zhang et al., Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 17(7), 4202–4209 (2017). https://doi.org/10.1021/acs.nanolett.7b01030
- L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936 (2012). https://doi.org/10.1039/c2ee21802j
- C.G. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017). https://doi.org/10.1002/adma.201604942
- L. Han, Y.Y. Sun, S. Li, C. Cheng, C.E. Halbig et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9(2), 1283–1288 (2019). https://doi.org/10.1021/acscatal.8b03734
- Y.Q. Zhang, X.L. Zhang, X.X. Ma, W.H. Guo, C.C. Wang, T. Asefa, X.Q. He, A facile synthesis of nitrogen-doped highly porous carbon nanoplatelets: efficient catalysts for oxygen electroreduction. Sci. Rep. 7, 43366 (2017). https://doi.org/10.1038/srep43366
- Y.D. Miao, X.P. Zhang, J. Zhan, Y.W. Sui, J.Q. Qi et al., Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. Adv. Mater. Interfaces 7(3), 1901618 (2019). https://doi.org/10.1002/admi.201901618
- X.P. Han, X.Y. Wu, C. Zhong, Y.D. Deng, N.Q. Zhao, W.B. Hu, NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 31, 541–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.008
- W.W. Liu, B.H. Ren, W.Y. Zhang, M.W. Zhang, G.R. Li et al., Defect-enriched nitrogen doped-graphene quantum dots engineered NiCo2S4 nanoarray as high-efficiency bifunctional catalyst for flexible Zn-air battery. Small 15(44), 1903610 (2019). https://doi.org/10.1002/smll.201903610
- J.Y. Zhang, X.W. Bai, T.T. Wang, W. Xiao, P.X. Xi et al., Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 11, 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
- S.F. Fu, C.Z. Zhu, J.H. Song, S.H. Feng, D. Du et al., Two-dimensional N, S-codoped carbon/Co9S8 catalysts derived from Co(OH)2 nanosheets for oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(42), 36755–36761 (2017). https://doi.org/10.1021/acsami.7b10227
- Z.Q. Cao, M.Z. Wu, H.B. Hu, G.J. Liang, C.Y. Zhi, Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn–air battery. NPG Asia Mater. 10(7), 670–684 (2018). https://doi.org/10.1038/s41427-018-0063-0
- K. Qu, Y. Zheng, S. Dai, S.Z. Qiao, Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19, 373–381 (2016). https://doi.org/10.1016/j.nanoen.2015.11.027
- D. Li, C. Li, L. Zhang, H. Li, L. Zhu et al., Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 142(18), 8104–8108 (2020). https://doi.org/10.1021/jacs.0c02225
- G. Liu, J. Li, J. Fu, G. Jiang, G. Lui et al., An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 31(6), 1806761 (2019). https://doi.org/10.1002/adma.201806761
- P. Wang, C. Li, S. Dong, X. Ge, P. Zhang et al., Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li-O2 batteries. Adv. Energy Mater. 9(24), 1900788 (2019). https://doi.org/10.1002/aenm.201900788
- H.J. Xu, J. Cao, C.F. Shan, B.K. Wang, P.X. Xi, W.S. Liu, Y. Tang, MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem. Int. Ed. 57(28), 8654–8658 (2018). https://doi.org/10.1002/anie.201804673
- H. Lei, Z. Wang, F. Yang, X. Huang, J. Liu et al., NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 68, 104293 (2019). https://doi.org/10.1016/j.nanoen.2019.104293
- W.W. Liu, J. Zhang, Z.Y. Bai, G.P. Jiang, M. Li et al., Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn-air battery. Adv. Funct. Mater. 28(11), 1706675 (2018). https://doi.org/10.1002/adfm.201706675
- Y.H. Dou, C.T. He, L. Zhang, H.J. Yin, M. Al-Mamun, J.M. Ma, H.J. Zhao, Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nat. Commun. 11(1), 1664 (2020). https://doi.org/10.1038/s41467-020-15498-0
- J.B. Zhu, M.L. Xiao, G.R. Li, S. Li, J. Zhang et al., A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 10(4), 1903003 (2019). https://doi.org/10.1002/aenm.201903003
References
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017). https://doi.org/10.1038/nmat4834
H. Miao, B. Chen, S. Li, X. Wu, Q. Wang et al., All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. J. Power Sources 450(29), 227653 (2020). https://doi.org/10.1016/j.jpowsour.2019.227653
J. Xie, Q. Zhang, Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 15(15), 1805061 (2019). https://doi.org/10.1002/smll.201805061
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
X. Wu, C.J. Tang, Y. Cheng, X.B. Min, S.P. Jiang, S.Y. Wang, Bifunctional catalysts for reversible oxygen evolution reaction and oxygen reduction reaction. Chem. Eur. J. 26(18), 3906–3929 (2020). https://doi.org/10.1002/chem.201905346
C.X. Guo, Y. Zheng, J.R. Ran, F.X. Xie, M. Jaroniec, S.Z. Qiao, Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew. Chem. Int. Ed. 56(29), 8539–8543 (2017). https://doi.org/10.1002/anie.201701531
C.S. Wang, W.B. Chen, D. Yuan, S.H. Qian, D.D. Cai, J.T. Jiang, S.Q. Zhang, Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy 69, 104453 (2020). https://doi.org/10.1016/j.nanoen.2020.104453
Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo, G. Ma, Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano-Micro Lett. 11, 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
S. Zhao, L. Yan, H.M. Luo, W. Mustain, H. Xu, Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy 47, 172–198 (2018). https://doi.org/10.1016/j.nanoen.2018.02.015
P.Z. Chen, Y. Tong, C.Z. Wu, Y. Xie, Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Acc. Chem. Res. 51(11), 2857–2866 (2018). https://doi.org/10.1021/acs.accounts.8b00266
K.B. Ibrahim, M.C. Tsai, S.A. Chala, M.K. Berihun, A.W. Kahsay et al., A review of transition metal-based bifunctional oxygen electrocatalysts. J. Chin. Chem. Soc. 66(8), 829–865 (2019). https://doi.org/10.1002/jccs.201900001
H.F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn–Air batteries. Adv. Funct. Mater. 28(46), 1803329 (2018). https://doi.org/10.1002/adfm.201803329
T.P. Zhou, N. Zhang, C.Z. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn–air batteries. Energy Environ. Sci. 13(4), 1132–1153 (2020). https://doi.org/10.1039/c9ee03634b
Y. Yang, M.C. Luo, W.Y. Zhang, Y.J. Sun, X. Chen, S.J. Guo, Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem 4(9), 2054–2083 (2018). https://doi.org/10.1016/j.chempr.2018.05.019
L.Y. Gan, Q.Y. Zhang, C.S. Guo, U. Schwingenschlögl, Y. Zhao, Two-dimensional MnO2/graphene interface: half-metallicity and quantum anomalous hall state. J. Phys. Chem. C 120(4), 2119–2125 (2016). https://doi.org/10.1021/acs.jpcc.5b08272
P.T. Liu, J.Q. Ran, B.R. Xia, S.B. Xi, D.Q. Gao, J. Wang, Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
J. Yin, Y.X. Li, F. Lv, M. Lu, K. Sun et al., Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater. 29(47), 1704681 (2017). https://doi.org/10.1002/adma.201704681
L. An, B.L. Huang, Y. Zhang, R. Wang, N. Zhang et al., Interfacial defect engineering for improved portable zinc-air batteries with a broad working temperature. Angew. Chem. Int. Ed. 58(28), 9459–9463 (2019). https://doi.org/10.1002/anie.201903879
J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R.H. Dong et al., Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 55(23), 6702–6707 (2016). https://doi.org/10.1002/anie.201602237
J.X. Diao, Y. Qiu, S.Q. Liu, W.T. Wang, K. Chen et al., Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 32(7), 1905679 (2019). https://doi.org/10.1002/adma.201905679
S.S. Li, X.G. Hao, A. Abudula, G.Q. Guan, Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J. Mater. Chem. A 7(32), 18674–18707 (2019). https://doi.org/10.1039/c9ta04949e
T.W. van Deelen, C.H. Mejía, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2(11), 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x
E. Gracia-Espino, X. Jia, T. Wågberg, Improved oxygen reduction performance of Pt–Ni nanoparticles by adhesion on nitrogen-doped graphene. J. Phys. Chem. C 118(5), 2804–2811 (2014). https://doi.org/10.1021/jp4101619
R.X. Qin, P.X. Liu, G. Fu, N.F. Zheng, Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2(1), 1700286 (2018). https://doi.org/10.1002/smtd.201700286
I.C. Gerber, P. Serp, A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 120(2), 1250–1349 (2020). https://doi.org/10.1021/acs.chemrev.9b00209
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
Z. Cai, Y.M. Bi, E.Y. Hu, W. Liu, N. Dwarica et al., Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 8(3), 1701694 (2018). https://doi.org/10.1002/aenm.201701694
R.A. Evarestov, V.P. Smirnov, Modification of the monkhorst-pack special points meshes in the brillouin zone for density functional theory and Hartree-Fock calculations. Phys. Rev. B 70(23), 233101 (2004). https://doi.org/10.1103/PhysRevB.70.233101
S.A. Tawfik, T. Gould, C. Stampfl, M.J. Ford, Evaluation of van der waals density functionals for layered materials. Phys. Rev. Mater. 2(3), 034005 (2018). https://doi.org/10.1103/PhysRevMaterials.2.034005
L. Lv, D. Zha, Y.J. Ruan, Z.S. Li, X. Ao et al., A universal method to engineer metal oxide-metal-carbon interface for highly efficient oxygen reduction. ACS Nano 12(3), 3042–3051 (2018). https://doi.org/10.1021/acsnano.8b01056
H. Han, K.M. Kim, H. Choi, G. Ali, K.Y. Chung et al., Parallelized reaction pathway and stronger internal band bending by partial oxidation of metal sulfide–graphene composites: important factors of synergistic oxygen evolution reaction enhancement. ACS Catal. 8(5), 4091–4102 (2018). https://doi.org/10.1021/acscatal.8b00017
J. Azadmanjiri, V.K. Srivastava, P. Kumar, J. Wang, A. Yu, Graphene-supported 2d transition metal oxide heterostructures. J. Mater. Chem. A 6(28), 13509–13537 (2018). https://doi.org/10.1039/c8ta03404d
T. Tang, W.J. Jiang, X.Z. Liu, J. Deng, S. Niu et al., Metastable rock salt oxide-mediated synthesis of high-density dual-protected M@NC for long-life rechargeable zinc-air batteries with record power density. J. Am. Chem. Soc. 142(15), 7116–7127 (2020). https://doi.org/10.1021/jacs.0c01349
H. Gao, T.F. Zhou, Y. Zheng, Q. Zhang, Y.Q. Liu et al., CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27(43), 1702634 (2017). https://doi.org/10.1002/adfm.201702634
H.T. Zhao, L.Y. Guo, C.W. Xing, H.Y. Liu, X.Y. Li, A homojunction–heterojunction–homojunction scaffold boosts photocatalytic H2 evolution over Cd0.5Zn0.5S/CoO hybrids. J. Mater. Chem. A 8(4), 1955–1965 (2020). https://doi.org/10.1039/c9ta11915a
L. Chen, R. Du, J. Zhu, Y.Y. Mao, C. Xue et al., Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. Small 11(12), 1423–1429 (2015). https://doi.org/10.1002/smll.201402472
Z.M. Luo, C.L. Tan, X. Zhang, J.Z. Chen, X.H. Cao et al., Preparation of cobalt sulfide nanoparticle-decorated nitrogen and sulfur co-doped reduced graphene oxide aerogel used as a highly efficient electrocatalyst for oxygen reduction reaction. Small 12(43), 5920–5926 (2016). https://doi.org/10.1002/smll.201602615
R.Q. Li, P.F. Hu, M. Miao, Y.L. Li, X.F. Jiang et al., Coo-modified Co4N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media. J. Mater. Chem. A 6(48), 24767–24772 (2018). https://doi.org/10.1039/c8ta08519f
J.H. Lin, P.C. Wang, H.H. Wang, C. Li, X.Q. Si et al., Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 6(14), 1900246 (2019). https://doi.org/10.1002/advs.201900246
Y. Hou, M. Qiu, G. Nam, M.G. Kim, T. Zhang et al., Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 17(7), 4202–4209 (2017). https://doi.org/10.1021/acs.nanolett.7b01030
L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936 (2012). https://doi.org/10.1039/c2ee21802j
C.G. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017). https://doi.org/10.1002/adma.201604942
L. Han, Y.Y. Sun, S. Li, C. Cheng, C.E. Halbig et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9(2), 1283–1288 (2019). https://doi.org/10.1021/acscatal.8b03734
Y.Q. Zhang, X.L. Zhang, X.X. Ma, W.H. Guo, C.C. Wang, T. Asefa, X.Q. He, A facile synthesis of nitrogen-doped highly porous carbon nanoplatelets: efficient catalysts for oxygen electroreduction. Sci. Rep. 7, 43366 (2017). https://doi.org/10.1038/srep43366
Y.D. Miao, X.P. Zhang, J. Zhan, Y.W. Sui, J.Q. Qi et al., Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. Adv. Mater. Interfaces 7(3), 1901618 (2019). https://doi.org/10.1002/admi.201901618
X.P. Han, X.Y. Wu, C. Zhong, Y.D. Deng, N.Q. Zhao, W.B. Hu, NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 31, 541–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.008
W.W. Liu, B.H. Ren, W.Y. Zhang, M.W. Zhang, G.R. Li et al., Defect-enriched nitrogen doped-graphene quantum dots engineered NiCo2S4 nanoarray as high-efficiency bifunctional catalyst for flexible Zn-air battery. Small 15(44), 1903610 (2019). https://doi.org/10.1002/smll.201903610
J.Y. Zhang, X.W. Bai, T.T. Wang, W. Xiao, P.X. Xi et al., Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 11, 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
S.F. Fu, C.Z. Zhu, J.H. Song, S.H. Feng, D. Du et al., Two-dimensional N, S-codoped carbon/Co9S8 catalysts derived from Co(OH)2 nanosheets for oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(42), 36755–36761 (2017). https://doi.org/10.1021/acsami.7b10227
Z.Q. Cao, M.Z. Wu, H.B. Hu, G.J. Liang, C.Y. Zhi, Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn–air battery. NPG Asia Mater. 10(7), 670–684 (2018). https://doi.org/10.1038/s41427-018-0063-0
K. Qu, Y. Zheng, S. Dai, S.Z. Qiao, Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19, 373–381 (2016). https://doi.org/10.1016/j.nanoen.2015.11.027
D. Li, C. Li, L. Zhang, H. Li, L. Zhu et al., Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 142(18), 8104–8108 (2020). https://doi.org/10.1021/jacs.0c02225
G. Liu, J. Li, J. Fu, G. Jiang, G. Lui et al., An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 31(6), 1806761 (2019). https://doi.org/10.1002/adma.201806761
P. Wang, C. Li, S. Dong, X. Ge, P. Zhang et al., Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li-O2 batteries. Adv. Energy Mater. 9(24), 1900788 (2019). https://doi.org/10.1002/aenm.201900788
H.J. Xu, J. Cao, C.F. Shan, B.K. Wang, P.X. Xi, W.S. Liu, Y. Tang, MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem. Int. Ed. 57(28), 8654–8658 (2018). https://doi.org/10.1002/anie.201804673
H. Lei, Z. Wang, F. Yang, X. Huang, J. Liu et al., NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 68, 104293 (2019). https://doi.org/10.1016/j.nanoen.2019.104293
W.W. Liu, J. Zhang, Z.Y. Bai, G.P. Jiang, M. Li et al., Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn-air battery. Adv. Funct. Mater. 28(11), 1706675 (2018). https://doi.org/10.1002/adfm.201706675
Y.H. Dou, C.T. He, L. Zhang, H.J. Yin, M. Al-Mamun, J.M. Ma, H.J. Zhao, Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nat. Commun. 11(1), 1664 (2020). https://doi.org/10.1038/s41467-020-15498-0
J.B. Zhu, M.L. Xiao, G.R. Li, S. Li, J. Zhang et al., A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 10(4), 1903003 (2019). https://doi.org/10.1002/aenm.201903003