Probing Electrode–Electrolyte Synergy and Bottleneck Breakthrough of Zinc-Ion Capacitors from Two Key Configurations
Corresponding Author: Meisheng Han
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 256
Abstract
In response to the demanding requirements of next-generation energy storage systems for high-energy density, high-power density, and ultra-long-cycle life, the academic community has continued to focus on coupled devices that combine battery-level energy and capacitor-level power characteristics. Zinc-ion capacitors (ZICs) have become the most promising strategic candidate system for energy storage technology due to their high-energy/power characteristics, excellent intrinsic safety, and significant cost advantages. In this review, the latest research progress of ZICs is reviewed from the perspective of system. Firstly, ZICs are divided into zinc metal anode//capacitive cathode ZICs (ZC-ZICs) and capacitive anode//battery-type cathode ZICs (CB-ZICs) according to the device configuration, and the energy storage mechanisms are analyzed in depth. At the same time, focusing on the two configurations of ZC-ZICs and CB-ZICs and their electrolyte systems, problem-oriented the key puzzles and corresponding solutions are sorted out one by one. Finally, based on the above discussion, this review proposes forward-looking suggestions for material modifications of ZICs, including pulse voltage activation, application of high-entropy materials, and the development of stable and multi-functional electrolytes, aiming to provide scientific guidance for the practical application of high-performance ZICs and promote the in-depth development of high-performance ZICs research.
Highlights:
1 This review provides a comprehensive discussion of the energy storage mechanisms, electrode materials, and electrolyte-related challenges in two key configurations: zinc metal anode//capacitive cathode zinc-ion capacitors (ZC-ZICs) and capacitive anode//battery-type cathode ZICs (CB-ZICs).
2 This review provides comprehensive and effective solutions to the core bottleneck issues in the two key configurations.
3 This review proposes forward-looking development roadmap of the ZICs, including pulse voltage activation on carbon electrodes, application of high-entropy materials as electrodes, and the development of stable and multifunctional electrolytes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002
- K.H. Loh, J. Liew, L. Liu, Z.L. Goh, M. Pershaanaa et al., A comprehensive review on fundamentals and components of zinc-ion hybrid supercapacitors. J. Energy Storage 81, 110370 (2024). https://doi.org/10.1016/j.est.2023.110370
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
- L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5(10), eaax4279 (2019). https://doi.org/10.1126/sciadv.aax4279
- M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim et al., Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
- M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
- B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009). https://doi.org/10.1038/nature07853
- D. Tie, S. Huang, J. Wang, J. Ma, J. Zhang et al., Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 21, 22–40 (2019). https://doi.org/10.1016/j.ensm.2018.12.018
- W. Fu, E. Zhao, R. Ma, Z. Sun, Y. Yang et al., Anatase TiO2 confined in carbon nanopores for high-energy Li-ion hybrid supercapacitors operating at high rates and subzero temperatures. Adv. Energy Mater. 10(2), 1902993 (2020). https://doi.org/10.1002/aenm.201902993
- H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 85, 105942 (2021). https://doi.org/10.1016/j.nanoen.2021.105942
- D. Chao, H.J. Fan, Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 5(6), 1359–1361 (2019). https://doi.org/10.1016/j.chempr.2019.05.020
- L. Li, S. Jia, S. Yue, C. Wang, H. Qiu et al., Hydrogel-stabilized zinc ion batteries: progress and outlook. Green Chem. 26(11), 6404–6422 (2024). https://doi.org/10.1039/d4gc01465k
- P. He, Q. Chen, M. Yan, X. Xu, L. Zhou et al., Building better zinc-ion batteries: a materials perspective. Energychem 1(3), 100022 (2019). https://doi.org/10.1016/j.enchem.2019.100022
- H. Yan, S. Li, J. Zhong, B. Li, An electrochemical perspective of aqueous zinc metal anode. Nano-Micro Lett. 16(1), 15 (2023). https://doi.org/10.1007/s40820-023-01227-x
- X. Liu, Y. Guo, F. Ning, Y. Liu, S. Shi et al., Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nano-Micro Lett. 16(1), 111 (2024). https://doi.org/10.1007/s40820-024-01337-0
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- P. Liu, W. Liu, Y. Huang, P. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Mater. 25, 858–865 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
- G.-H. An, J. Hong, S. Pak, Y. Cho, S. Lee et al., 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv. Energy Mater. 10(3), 1902981 (2020). https://doi.org/10.1002/aenm.201902981
- Z. Yang, J. Deng, H. Sun, J. Ren, S. Pan et al., Self-powered energy fiber: energy conversion in the sheath and storage in the core. Adv. Mater. 26(41), 7038–7042 (2014). https://doi.org/10.1002/adma.201401972
- K. Naoi, S. Ishimoto, J.-I. Miyamoto, W. Naoi, Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5(11), 9363 (2012). https://doi.org/10.1039/c2ee21675b
- D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015). https://doi.org/10.1039/c4cs00266k
- J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Carbon materials for Li–S batteries: functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016). https://doi.org/10.1016/j.ensm.2015.09.007
- H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
- W. Fan, J. Ding, J. Ding, Y. Zheng, W. Song et al., Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano-Micro Lett. 13(1), 59 (2021). https://doi.org/10.1007/s40820-021-00588-5
- J. Jin, X. Geng, Q. Chen, T.-L. Ren, A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors. Nano-Micro Lett. 14(1), 64 (2022). https://doi.org/10.1007/s40820-022-00793-w
- J. Zhu, J. Tai, T. Liu, Y. Wang, Y. Li et al., Emerging zinc-ion capacitor science: compatible principle, design paradigm, and frontier applications. Adv. Energy Mater. 15(4), 2403739 (2025). https://doi.org/10.1002/aenm.202403739
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34(1), 2106897 (2022). https://doi.org/10.1002/adma.202106897
- H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
- Q. Chen, J. Jin, Z. Kou, C. Liao, Z. Liu et al., Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 16(14), 2000091 (2020). https://doi.org/10.1002/smll.202000091
- Y. Qin, C. Hu, Q. Huang, Y. Lv, Z. Song et al., Hydrogen-bonded interfacial super-assembly of spherical carbon superstructures for high-performance zinc hybrid capacitors. Nano-Micro Lett. 18(1), 38 (2025). https://doi.org/10.1007/s40820-025-01883-1
- J.-H. Luo, H.-M. Xiao, J. Peng, F.-J. Wang, X.-Y. Luo et al., Research progress on carbon-based zinc-ion capacitors. New Carbon Mater. 39(5), 918–945 (2024). https://doi.org/10.1016/S1872-5805(24)60881-4
- H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31(44), 1904948 (2019). https://doi.org/10.1002/adma.201904948
- J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: properties and applications. J. Energy Storage 17, 224–227 (2018). https://doi.org/10.1016/j.est.2018.03.012
- C. Leng, Y.V. Fedoseeva, Z. Zhao, B. Yan, A.V. Okotrub et al., Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities. J. Power. Sources 536, 231484 (2022). https://doi.org/10.1016/j.jpowsour.2022.231484
- D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16(29), 2001736 (2020). https://doi.org/10.1002/smll.202001736
- G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin et al., A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 11(12), 3367–3374 (2018). https://doi.org/10.1039/c8ee02567c
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- Z. Liu, T. Cui, G. Pulletikurthi, A. Lahiri, T. Carstens et al., Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew. Chem. Int. Ed. 55(8), 2889–2893 (2016). https://doi.org/10.1002/anie.201509364
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/D0EE02079F
- D. Chen, M. Lu, D. Cai, H. Yang, W. Han, Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J. Energy Chem. 54, 712–726 (2021). https://doi.org/10.1016/j.jechem.2020.06.016
- Y. Shi, Y. Chen, L. Shi, K. Wang, B. Wang et al., An overview and future perspectives of rechargeable zinc batteries. Small 16(23), 2000730 (2020). https://doi.org/10.1002/smll.202000730
- P. He, J. Huang, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6(5), 1990–1995 (2021). https://doi.org/10.1021/acsenergylett.1c00638
- J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Adv. Energy Mater. 11(21), 2100201 (2021). https://doi.org/10.1002/aenm.202100201
- W. Hu, J. Ju, N. Deng, M. Liu, W. Liu et al., Recent progress in tackling Zn anode challenges for Zn ion batteries. J. Mater. Chem. A 9(46), 25750–25772 (2021). https://doi.org/10.1039/D1TA08184E
- A. Naveed, T. Rasheed, B. Raza, J. Chen, J. Yang et al., Addressing thermodynamic instability of Zn anode: classical and recent advancements. Energy Storage Mater. 44, 206–230 (2022). https://doi.org/10.1016/j.ensm.2021.10.005
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 11(5), 2002529 (2021). https://doi.org/10.1002/aenm.202002529
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- Y. Liu, K. Wang, X. Yang, J. Liu, X.-X. Liu et al., Enhancing two-electron reaction contribution in MnO2 cathode material by structural engineering for stable cycling in aqueous Zn batteries. ACS Nano 17(15), 14792–14799 (2023). https://doi.org/10.1021/acsnano.3c02965
- Y. Liu, L. Lin, T. Zhang, Z. Xue, J. Liu et al., A cyano cobalt “electron transfer bridge” boosting the two-electron reaction of a MnO2 cathode with long lifespan in aqueous zinc batteries. Energy Environ. Sci. 17(7), 2521–2529 (2024). https://doi.org/10.1039/D3EE03711H
- L. Xu, N. Xu, C. Yan, W. He, X. Wu et al., Storage mechanisms and improved strategies for manganese-based aqueous zinc-ion batteries. J. Electroanal. Chem. 888, 115196 (2021). https://doi.org/10.1016/j.jelechem.2021.115196
- X. Ma, H. Fu, J. Shen, D. Zhang, J. Zhou et al., Green ether electrolytes for sustainable high-voltage potassium ion batteries. Angew. Chem. Int. Ed. 62(49), e202312973 (2023). https://doi.org/10.1002/anie.202312973
- A. Chen, Y. Zhang, Q. Li, G. Liang, S. Yang et al., An immiscible phase-separation electrolyte and interface ion transfer electrochemistry enable zinc/lithium hybrid batteries with a 3.5 V-class operating voltage. Energy Environ. Sci. 16(9), 4054–4064 (2023). https://doi.org/10.1039/D3EE01362F
- Z. Huang, A. Chen, F. Mo, G. Liang, X. Li et al., Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv. Energy Mater. 10(24), 2001024 (2020). https://doi.org/10.1002/aenm.202001024
- J. Liu, Q. Dang, J. Yuwono, S. Zhang, Z. Tai et al., Regulating the coordination environment of H2O in hydrogel electrolyte for a high-environment-adaptable and high-stability flexible Zn devices. Nano-Micro Lett. 17(1), 292 (2025). https://doi.org/10.1007/s40820-025-01810-4
- B. Xue, J. Xu, Y. Feng, M. Ma, R. Xiao et al., Morphology engineering of biomass-derived porous carbon from 3D to 2D towards boosting capacitive charge storage capability. J. Colloid Interface Sci. 642, 736–746 (2023). https://doi.org/10.1016/j.jcis.2023.03.200
- X. Zheng, L. Miao, Z. Song, W. Du, D. Zhu et al., In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. J. Mater. Chem. A 10(2), 611–621 (2022). https://doi.org/10.1039/D1TA07350H
- Z. Fan, J. Jin, C. Li, J. Cai, C. Wei et al., 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 15(2), 3098–3107 (2021). https://doi.org/10.1021/acsnano.0c09646
- B. Xue, J. Xu, R. Xiao, Ice template-assisting activation strategy to prepare biomass-derived porous carbon cages for high-performance Zn-ion hybrid supercapacitors. Chem. Eng. J. 454, 140192 (2023). https://doi.org/10.1016/j.cej.2022.140192
- C. Wang, Z. Li, W. Zhang, B. Chen, Y. Ge et al., In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors. J. Colloid Interface Sci. 685, 674–684 (2025). https://doi.org/10.1016/j.jcis.2025.01.165
- Y. Qin, Z. Song, L. Miao, C. Hu, Y. Chen et al., Hydrogen-bond-mediated micelle aggregating self-assembly towards carbon nanofiber networks for high-energy and long-life zinc ion capacitors. Chem. Eng. J. 470, 144256 (2023). https://doi.org/10.1016/j.cej.2023.144256
- Y. Qin, S. Jha, C. Hu, Z. Song, L. Miao et al., Hydrogen-bonded micelle assembly directed conjugated microporous polymers for nanospherical carbon frameworks towards dual-ion capacitors. J. Colloid Interface Sci. 675, 1091–1099 (2024). https://doi.org/10.1016/j.jcis.2024.07.052
- L. Hu, L. Bo, N. Wang, M. Sun, X. Ren et al., Tuning the porous graphene interlayer structure for compact energy storage towards high volumetric performance of Zn-ion capacitor. Chem. Eng. J. 479, 147570 (2024). https://doi.org/10.1016/j.cej.2023.147570
- P. Liu, F. Kong, H. Tang, Y. Wu, X. Xu et al., Hierarchically porous carbon nanosheets derived from Bougainvillea petals with “pores-on-surface” structure for ultrahigh performance Zinc-ions hybrid capacitors. Chem. Eng. J. 491, 151944 (2024). https://doi.org/10.1016/j.cej.2024.151944
- H.-X. Li, W.-J. Shi, L.-Y. Liu, X. Zhang, P.-F. Zhang et al., Coupling effect of vacancy defects and multi-adsorption sites in porous carbon cathode for high-performance aqueous zinc-ion hybrid capacitors. Chem. Eng. J. 487, 150630 (2024). https://doi.org/10.1016/j.cej.2024.150630
- Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao et al., Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28(10), 1981–1987 (2016). https://doi.org/10.1002/adma.201505131
- D. Jia, Z. Shen, W. Zhou, Y. Li, J. He et al., Ultrahigh N-doped carbon with hierarchical porous structure derived from metal-organic framework for high-performance zinc ion hybrid capacitors. Chem. Eng. J. 485, 149820 (2024). https://doi.org/10.1016/j.cej.2024.149820
- N.R. Catarineu, D. Lin, C. Zhu, D.I. Oyarzun, Y. Li, High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chem. Eng. J. 465, 142544 (2023). https://doi.org/10.1016/j.cej.2023.142544
- T. Cao, W. Li, J. Zhu, G. Zhang, H. Liu et al., Transforming lignin into functionalized B/N Co-doped porous carbon for high-performance zinc-ion hybrid capacitors. Energy Convers. Manag. 326, 119498 (2025). https://doi.org/10.1016/j.enconman.2025.119498
- J. Lu, X. Zhong, X. Lin, J. Gui, M. Zheng et al., Nanoconfined carbonization enabling high-density porous carbon for jointly superior gravimetric and volumetric zinc-ion storage. Energy Environ. Sci. 17(18), 6833–6843 (2024). https://doi.org/10.1039/D4EE02163K
- N. Samartzis, K. Bhorkar, L. Sygellou, E. Bellou, N. Boukos et al., Dry laser-assisted fabrication of F-doped graphene electrodes: boosting performance of Zn-ion hybrid capacitors. Chem. Eng. J. 507, 160505 (2025). https://doi.org/10.1016/j.cej.2025.160505
- C. Valentini, V. Montes-García, A. Ciesielski, P. Samorì, Boosting zinc hybrid supercapacitor performance via thiol functionalization of graphene-based cathodes. Adv. Sci. 11(22), 2309041 (2024). https://doi.org/10.1002/advs.202309041
- C. Zhu, H. Liang, P. Li, C. Qiu, J. Wu et al., One stone, two birds”: salt template enabling porosity engineering and single metal atom coordinating toward high-performance zinc-ion capacitors. J. Energy Chem. 100, 637–645 (2025). https://doi.org/10.1016/j.jechem.2024.09.016
- P. Chai, Y. Li, Q. Guan, J. Li, L. Li et al., Ultrafast In-Situ synthesis of flexible MoO3 anode in five seconds for High-Performance aqueous zinc ion hybrid capacitor. Chem. Eng. J. 490, 151594 (2024). https://doi.org/10.1016/j.cej.2024.151594
- H. Zhang, J. Wu, Z. Zou, Y. Bai, C. Wu et al., Create rich oxygen defects of unique tubular hierarchical molybdenum dioxide to modulate electron transfer rate for superior high-energy metal-ion hybrid capacitor. Energy. Environ. Mater. 6(3), e12377 (2023). https://doi.org/10.1002/eem2.12377
- Y. Li, M. Zhang, H. Lu, X. Cai, Z. Jiao et al., Boosting high-performance aqueous zinc-ion hybrid capacitors via organic redox species on laser-induced graphene network. Adv. Funct. Mater. 34(34), 2400663 (2024). https://doi.org/10.1002/adfm.202400663
- M. Chen, L. Gong, I. Zhitomirsky, K. Shi, Unraveling the dynamic transformation of azobenzene-driven redox electrolytes for Zn-ion hybrid capacitors. Energy Environ. Sci. 18(9), 4460–4469 (2025). https://doi.org/10.1039/D4EE05696E
- X. Gan, C. Zhang, X. Ye, L. Qie, K. Shi, Unveiling the potential of redox electrolyte additives in enhancing interfacial stability for Zn-ion hybrid capacitors. Energy Storage Mater. 65, 103175 (2024). https://doi.org/10.1016/j.ensm.2024.103175
- G. Yang, Q. Zhang, C. He, Z. Gong, Z. Liu et al., Bionic hollow porous carbon nanofibers for energy-dense and rapid zinc ion storage. Angew. Chem. Int. Ed. 64(10), e202421230 (2025). https://doi.org/10.1002/anie.202421230
- H. Hu, Y. Mu, Z. Zou, M. Han, Y. Zhao et al., Spatial confinement effect and defect-dominated redox reactions enhance energy and power in Zn-ion capacitors with 150 000 cycles. Adv. Energy Mater. 15(44), e04176 (2025). https://doi.org/10.1002/aenm.202504176
- Q. Huang, L. Huang, Y. Jin, Y. Sun, Z. Song et al., Solvent-guided nanoarchitecturing of heterodiatomic carbon superstructures for high-performance zinc-ion hybrid capacitors. Chem. Eng. J. 482, 148912 (2024). https://doi.org/10.1016/j.cej.2024.148912
- Z. Peng, A.G. Bannov, S. Li, Y. Huang, L. Tang et al., Coupling uniform pore size and multi-chemisorption sites: hierarchically ordered porous carbon for ultra-fast and large zinc ion storage. Adv. Funct. Mater. 33(40), 2303205 (2023). https://doi.org/10.1002/adfm.202303205
- L. Liang, X. Pan, H. Luo, Y. Guo, H. Luo et al., Synergistic multi-heteroatomic mediated and hierarchical engineering boosted temperature adaptability of free-standing carbon nanofibers cathode for zinc-ion hybrid supercapacitors. J. Power. Sources 629, 236095 (2025). https://doi.org/10.1016/j.jpowsour.2024.236095
- H. Zhang, H. Wang, Z. Pan, Z. Wu, Y. Deng et al., Zn-metal–organic framework derived ordered mesoporous carbon-based nanostructure for high-performance and universal multivalent metal ion storage. Adv. Mater. 34(41), 2206277 (2022). https://doi.org/10.1002/adma.202206277
- P. Xie, Y. Zhang, Z. Man, J. Zhou, Y. Zhang et al., Wearable, recoverable, and implantable energy storage devices with heterostructure porous COF-5/Ti3C2Tx cathode for high-performance aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 35(19), 2421517 (2025). https://doi.org/10.1002/adfm.202421517
- K. Zhang, Q. Zong, K. Ding, Y. Wang, L. Gao et al., Cation-driven self-assembly of core–shell covalent organic frameworks@Ti3CN MXene nanospheres for high-performance aqueous zinc-ion hybrid supercapacitors. Chem. Eng. J. 490, 151369 (2024). https://doi.org/10.1016/j.cej.2024.151369
- C. Leng, Z. Zhao, X. Wang, Y.V. Fedoseeva, L.G. Bulusheva et al., Electrostatic interaction-directed construction of hierarchical nanostructured carbon composite with dual electrical conductive networks for zinc-ion hybrid capacitors with ultrastability. Energy Environ. Mater. 7(1), e12484 (2024). https://doi.org/10.1002/eem2.12484
- H. Li, Q. Liao, Y. Liu, Y. Li, X. Niu et al., Hierarchically porous carbon rods derived from metal-organic frameworks for aqueous zinc-ion hybrid capacitors. Small 20(15), 2307184 (2024). https://doi.org/10.1002/smll.202307184
- C. Fang, J. Han, Q. Yang, Z. Gao, D. Tan et al., Boosting Zn-ion storage behavior of pre-intercalated MXene with black phosphorus toward self-powered systems. Adv. Sci. 11(40), 2408549 (2024). https://doi.org/10.1002/advs.202408549
- C. Zheng, Z. Guo, B. Jian, Z. Chen, J. Zhong et al., Boosted Zn-ion storage in high crystalline VS4 anode by enhanced diffusion-controlled kinetics. Chem. Eng. J. 475, 146408 (2023). https://doi.org/10.1016/j.cej.2023.146408
- C. Lin, Y. Zhang, W.Y. Lieu, Y. Xu, D.-S. Li et al., Boosting zinc-ion storage capability in longitudinally aligned MXene arrays with microchannel architecture. Adv. Funct. Mater. 35(3), 2413613 (2025). https://doi.org/10.1002/adfm.202413613
- X. Zhang, M.S. Javed, S.S.A. Shah, F. Ahmed, I. Hussain et al., N-functionalization and defect engineering in ZnCo2O4 nanosheets boosted the performance of Zn-ion hybrid supercapacitor. Electrochim. Acta 461, 142654 (2023). https://doi.org/10.1016/j.electacta.2023.142654
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- D. Li, W. Zheng, S.M. Gali, K. Sobczak, M. Horák et al., MXenes with ordered triatomic-layer borate polyanion terminations. Nat. Mater. 23(8), 1085–1092 (2024). https://doi.org/10.1038/s41563-024-01911-2
- W. Liu, Z. Chen, Z. Ma, J. Li, Y. Liu et al., High-load Ti3C2 MXene cathode through surface modification for degradable aqueous zinc-ion micro-supercapacitors with excellent energy density and anti-self-discharge. Chem. Eng. J. 494, 153149 (2024). https://doi.org/10.1016/j.cej.2024.153149
- M. Wang, Y. Cheng, H. Zhang, F. Cheng, Y. Wang et al., Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 33(12), 2211199 (2023). https://doi.org/10.1002/adfm.202211199
- W. Zhang, X. Gao, X. Yang, T. Zhang, Y. Li et al., Further elevating the energy density of aqueous zinc-ion hybrid capacitors toward batteries through voltage-window-expansion engineering. Chem. Eng. J. 460, 141824 (2023). https://doi.org/10.1016/j.cej.2023.141824
- Y. Niu, P. Luo, X. Chen, J. Song, X. He et al., MXene/VS4 self-supporting thin film electrode for zinc-ion flexible supercapacitors. Chem. Eng. J. 493, 152372 (2024). https://doi.org/10.1016/j.cej.2024.152372
- Q. Wang, M. Chen, Q. Tian, X. Han, J. Chen, ZnF2-enabled preparation of Ti3C2Tx towards high-performance zinc-ion hybrid capacitors. Chem. Eng. J. 467, 143481 (2023). https://doi.org/10.1016/j.cej.2023.143481
- D. Han, W. Wang, S. Yu, W. Qi, R. Ling et al., Stable β-form zinc phthalocyanine cathodes for flexible Zn-ion hybrid supercapacitors with ultra-long cycling life. Chem. Eng. J. 468, 143875 (2023). https://doi.org/10.1016/j.cej.2023.143875
- X. Han, X. Kong, D. Wang, X. Li, L. Dong, Hydrous ruthenium oxide quantum dots anchored on carbon nanocages for Zn-ion hybrid capacitors. Chem. Eng. J. 477, 147078 (2023). https://doi.org/10.1016/j.cej.2023.147078
- Y. Wu, Y. Deng, J. Zhang, S. Lv, Z. Xiao et al., Construction of multi-channel basic cobalt/nickel phosphate core-shell microsphere for superior hybrid Zn-based supercapacitor performances. Chem. Eng. J. 455, 140953 (2023). https://doi.org/10.1016/j.cej.2022.140953
- W. Shi, Z. Song, W. Sun, Y. Liu, Y. Jiang et al., Extending cycling life beyond 300 000 cycles in aqueous zinc ion capacitors through additive interface engineering. Small 20(14), e2308282 (2024). https://doi.org/10.1002/smll.202308282
- Y. Liu, L. Wu, P. Zhang, Y. Liu, J. Wu et al., Modulating the zinc ion flux and electric field intensity by multifunctional metal-organic complex interface layer for highly stable Zn anode. J. Energy Chem. 99, 375–383 (2024). https://doi.org/10.1016/j.jechem.2024.08.004
- Y. Xu, J. Chen, T. Li, H. Ma, Z. Lv et al., Molecular customization of anode-electrolyte interfaces for enhanced stability and reversibility in aqueous zinc-carbon capacitors. Angew. Chem. Int. Ed. 64(12), e202424255 (2025). https://doi.org/10.1002/anie.202424255
- H. Tong, C. Wu, Y. Deng, L. Li, C. Guan et al., Dendrite-free Zn anode modified with Prussian blue analog for ultra long-life Zn-ion capacitors. Adv. Funct. Mater. 34(46), 2405318 (2024). https://doi.org/10.1002/adfm.202405318
- X. Li, D. Qiu, Q. Zhou, Z. Yang, X. Zhou et al., Construction of an anti-anionic-depletion layer to mitigate the tip deposition effect for dendrite-free zinc anode. Chem. Eng. J. 495, 153855 (2024). https://doi.org/10.1016/j.cej.2024.153855
- D. Xiong, C. Liu, Z. Song, X. Hu, W. Deng et al., Crystal orientation enabling rapid Zn2+ migration for advanced zinc-ion hybrid capacitors. Energy Storage Mater. 71, 103687 (2024). https://doi.org/10.1016/j.ensm.2024.103687
- X. Fang, C. Hu, X. Sun, H. Wang, J. Li, Robust hybrid solid electrolyte interface induced by Zn-poor electric double layer for a highly reversible zinc anode. Adv. Energy Mater. 14(3), 2302499 (2024). https://doi.org/10.1002/aenm.202302499
- H. Huang, J. Yun, H. Feng, T. Tian, J. Xu et al., Towards high-performance zinc anode for zinc ion hybrid capacitor: concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive. Energy Storage Mater. 55, 857–866 (2023). https://doi.org/10.1016/j.ensm.2022.12.046
- Y. Bu, Q. Kang, Z. Zhu, H. Zhang, Y. Li et al., Easy-to-lay poly-N heterocyclic additives enable long-term stabilization of zinc-ion capacitor anodes under deep plating/stripping. Adv. Sci. 11(32), 2404323 (2024). https://doi.org/10.1002/advs.202404323
- C. Ji, Y. Luo, G. Guo, X. Li, C. Sun et al., Regulating the inner Helmholtz plane with an electrophilic cation additive enabled stacked stratiform growth for highly reversible Zn anodes. Energy Storage Mater. 71, 103615 (2024). https://doi.org/10.1016/j.ensm.2024.103615
- H. Peng, X. Wang, F. Yang, Z. Liu, H. Lei et al., Regulating solvation structure and inducing Zn (2002) plane by a multifunctional electrolyte additive toward dendrite suppression and long-life zinc ion hybrid capacitors. Chem. Eng. J. 474, 145864 (2023). https://doi.org/10.1016/j.cej.2023.145864
- Y. Zhang, Z. Zou, Q. Liu, Y. Qiao, C. Jiang, Dual-functions of the carbon-confined oxygen on the capacitance and cycle stability enhancements of Zn-ion capacitors. J. Mater. Sci. Technol. 221, 278–288 (2025). https://doi.org/10.1016/j.jmst.2024.10.003
- Z. Zhang, S. Xia, A. Dong, X. Li, F. Wang et al., Mechanical grinding formation of highly reversible (002)-textured zinc metal anodes. Adv. Energy Mater. 15(8), 2403598 (2025). https://doi.org/10.1002/aenm.202403598
- X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113–15124 (2023). https://doi.org/10.1021/acsnano.3c04343
- Y. Zou, Y. Mu, L. Xu, C. Qiao, Z. Chen et al., Popularizing holistic high-index crystal plane via nonepitaxial electrodeposition toward hydrogen-embrittlement-relieved Zn anode. Adv. Mater. 37(6), 2413080 (2025). https://doi.org/10.1002/adma.202413080
- K. Chen, J. Huang, J. Yuan, S. Qin, P. Huang et al., Molecularly engineered cellulose hydrogel electrolyte for highly stable zinc ion hybrid capacitors. Energy Storage Mater. 63, 102963 (2023). https://doi.org/10.1016/j.ensm.2023.102963
- W. Tian, P. Ren, X. Hou, B. Fan, Y. Wang et al., N-doped holey graphene/porous carbon/cellulose nanofibers electrode and hydrogel electrolyte for low-temperature zinc-ion hybrid supercapacitors. Small 21(10), 2411657 (2025). https://doi.org/10.1002/smll.202411657
- Y. Wang, L. Yang, P. Xu, L. Liu, S. Li et al., An electrochemically initiated self-limiting hydrogel electrolyte for dendrite-free zinc anode. Small 20(12), e2307446 (2024). https://doi.org/10.1002/smll.202307446
- Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16(3), 1291–1311 (2023). https://doi.org/10.1039/D2EE03793A
- Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35(18), 2300019 (2023). https://doi.org/10.1002/adma.202300019
- L.-H. Xu, P.-F. Wang, Y. Xu, J. Liu, X.-P. Peng et al., A combined genetic modification and chemical engineering strategy for designing high-performance cellulose nanofibrils separators. Chem. Eng. J. 503, 158402 (2025). https://doi.org/10.1016/j.cej.2024.158402
- J. Shi, K. Mao, Q. Zhang, Z. Liu, F. Long et al., An air-rechargeable Zn battery enabled by organic-inorganic hybrid cathode. Nano-Micro Lett. 15(1), 53 (2023). https://doi.org/10.1007/s40820-023-01023-7
- L. Yu, J. Li, N. Ahmad, X. He, G. Wan et al., Recent progress on carbon materials for emerging zinc-ion hybrid capacitors. J. Mater. Chem. A 12(16), 9400–9420 (2024). https://doi.org/10.1039/d4ta00252k
- C. Zhu, P. Li, G. Xu, H. Cheng, G. Gao, Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord. Chem. Rev. 485, 215142 (2023). https://doi.org/10.1016/j.ccr.2023.215142
- L. Yao, N. Koripally, C. Shin, A. Mu, Z. Chen et al., Engineering electro-crystallization orientation and surface activation in wide-temperature zinc ion supercapacitors. Nat. Commun. 16(1), 3597 (2025). https://doi.org/10.1038/s41467-025-58857-5
- L. Wei, Y. Chen, Z. Huang, S. Zheng, X. Guo, Redox-enhanced zinc-ion hybrid capacitors with high energy density enabled by high-voltage active aqueous electrolytes based on low salt concentration. Energy Storage Mater. 58, 30–39 (2023). https://doi.org/10.1016/j.ensm.2023.03.015
- C. Shin, L. Yao, S.-Y. Jeong, T.N. Ng, Zinc-copper dual-ion electrolytes to suppress dendritic growth and increase anode utilization in zinc ion capacitors. Sci. Adv. 10(1), eadf9951 (2024). https://doi.org/10.1126/sciadv.adf9951
- B. Sun, N. Wang, X. Xie, L. Zhong, L. He et al., Symmetrical porous graphitized carbon fabric electrodes for ultra-cryogenic and dendrite-free Zn-ion hybrid supercapacitors. J. Mater. Sci. Technol. 209, 251–261 (2025). https://doi.org/10.1016/j.jmst.2024.04.077
- Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Letters 15(1), 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
- Y. Gao, J. Yin, X. Xu, Y. Cheng, Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J. Mater. Chem. A 10(18), 9773–9787 (2022). https://doi.org/10.1039/D2TA01014C
- Y. Xu, X. Yang, X. Li, Y. Gao, L. Wang et al., Flexible zinc-ion hybrid supercapacitor based on Co2+-doped polyaniline/V2O5 electrode. J. Power. Sources 623, 235399 (2024). https://doi.org/10.1016/j.jpowsour.2024.235399
- X. Liang, J. Li, X. Yang, L. Wang, X. Li et al., H2O/Ni2+ intercalated lamellar vanadium oxide as cathode materials for aqueous zn-ion hybrid supercapacitors. J. Energy Storage 56, 105947 (2022). https://doi.org/10.1016/j.est.2022.105947
- Y. Wang, J. Cao, J. Guo, J. Zhang, G. Liu et al., Flexible reduced graphene oxide/V2O5 composite battery-type cathode and MXene capacitor-type anode for aqueous zinc ion hybrid supercapacitors with high energy density. J. Alloys Compd. 915, 165418 (2022). https://doi.org/10.1016/j.jallcom.2022.165418
- R. Shanthappa, O. Reddy Ankinapalli, A. Kumar Kakarla, D. Narsimulu, H. Bandi et al., Selenium incorporated sodium vanadate nanobelts as high-performance electrode material for long-lasting aqueous zinc-ion batteries and supercapacitors. Chem. Eng. J. 476, 146777 (2023). https://doi.org/10.1016/j.cej.2023.146777
- Z.-C. Zhang, Y.-B. Mu, L.-J. Xiao, X.-Y. Wei, M.-S. Han et al., Advancements in manganese-based cathodes for aqueous zinc-ion batteries: challenges and optimization strategies. cMat 2(1), e70000 (2025). https://doi.org/10.1002/cmt2.70000
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- Y. Jin, L. Zou, L. Liu, M.H. Engelhard, R.L. Patel et al., Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv. Mater. 31(29), e1900567 (2019). https://doi.org/10.1002/adma.201900567
- M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen et al., Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 64, 103942 (2019). https://doi.org/10.1016/j.nanoen.2019.103942
- C. Fang, B. Xu, J. Han, X. Liu, Y. Gao et al., Pre-intercalation of Zn ions to enlarge and stabilize hierarchical structure of ZnxMn1-xSe cathode for flexible Zn-ion capacitor. Adv. Funct. Mater. 34(26), 2310909 (2024). https://doi.org/10.1002/adfm.202310909
- S. Abbas, T.H. Bokhari, A. Zafar, S. Javed, S. Karim et al., Zn doping induces rich oxygen vacancies in δ-MnO2 flower-like nanostructures for impressive energy density coin cell supercapacitor. J. Energy Storage 87, 111455 (2024). https://doi.org/10.1016/j.est.2024.111455
- I. Ashraf, Q. Abbas, Y. Huang, N.U. Hassan, M.D. Albaqami et al., V-Mn-O aerogel composite-based high-energy Zn-ion hybrid supercapacitor. J. Energy Storage 60, 106601 (2023). https://doi.org/10.1016/j.est.2022.106601
- B.N.V. Krishna, O.R. Ankinapalli, A.R. Reddy, J.S. Yu, Facile one-step hydrothermal route to MSe/Mo3Se4 (M: Zn, Mn, and Ni)-based electrode materials for ultralong-life hybrid supercapacitors. J. Mater. Sci. Technol. 156, 230–240 (2023). https://doi.org/10.1016/j.jmst.2023.01.046
- K. Mao, J. Shi, Q. Zhang, Y. Hou, L. Wen et al., High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy 103, 107791 (2022). https://doi.org/10.1016/j.nanoen.2022.107791
- Z.-Q. Wang, H.-M. Chen, X.-D. Liu, L.-Y. Song, B.-S. Zhang et al., Amorphous K-buserite microspheres for high-performance aqueous Zn-ion batteries and hybrid supercapacitors. Adv. Sci. 10(13), 2207329 (2023). https://doi.org/10.1002/advs.202207329
- D. Zhuang, Z. Zhang, J. Weng, J. Wang, H. Zhang et al., Amorphous hydrated tungsten oxides with enhanced pseudocapacitive contribution for aqueous zinc-ion electrochromic energy storage. Adv. Energy Mater. 14(40), 2402603 (2024). https://doi.org/10.1002/aenm.202402603
- R. Ping, Y. Nie, C. Ji, Z. Hao, S. Yang et al., Enhanced proton pseudocapacitive of Ti3C2Tx in neutral electrolyte activated by acid regulation dynamic pillars. Chem. Eng. J. 455, 140650 (2023). https://doi.org/10.1016/j.cej.2022.140650
- X. Lu, L. Tao, K. Qu, A. Amardeep, J. Liu, “Duet-insurance” eutectic electrolytes for zinc-ion capacitor pouch cells. Adv. Funct. Mater. 33(11), 2211736 (2023). https://doi.org/10.1002/adfm.202211736
- Y.-G. Lee, G. Yoo, Y.-R. Jo, H.-R. An, B.-R. Koo et al., Interfacial electrochemical media-engineered tunable vanadium zinc hydrate oxygen defect for enhancing the redox reaction of zinc-ion hybrid supercapacitors. Adv. Energy Mater. 13(24), 2300630 (2023). https://doi.org/10.1002/aenm.202300630
- M. Chen, R. Chen, I. Zhitomirsky, G. He, K. Shi, Redox-active molecules for aqueous electrolytes of energy storage devices: a review on fundamental aspects, current progress, and prospects. Mater. Sci. Eng. R. Rep. 161, 100865 (2024). https://doi.org/10.1016/j.mser.2024.100865
- M. Chen, J. Chen, W. Zhou, J. Xu, C.-P. Wong, High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J. Mater. Chem. A 7(46), 26524–26532 (2019). https://doi.org/10.1039/C9TA10944G
- Z.-D. Wang, K. Bo, C.-L. Zhong, Y.-H. Xin, G.-L. Lu et al., Multifunctional polyoxometalates-based ionohydrogels toward flexible electronics. Adv. Mater. 36(25), e2400099 (2024). https://doi.org/10.1002/adma.202400099
- Y. Chen, Z. Song, Y. Lv, L. Gan, M. Liu, NH4+ modulated cathodic interfacial spatial charge redistribution for high-performance dual-ion capacitors. Nano-Micro Lett. 17(1), 117 (2025). https://doi.org/10.1007/s40820-025-01660-0
- J. Li, Y. Lou, S. Zhou, Y. Chen, X. Zhao et al., Intrinsically decoupled coordination chemistries enable quasi-eutectic electrolytes with fast kinetics toward enhanced zinc-ion capacitors. Angew. Chem. Int. Ed. 63(34), e202406906 (2024). https://doi.org/10.1002/anie.202406906
- P. Chen, X. Sun, B. Plietker, M. Ruck, Key to high performance ion hybrid capacitor: weakly solvated zinc cations. Adv. Sci. 11(3), 2305532 (2024). https://doi.org/10.1002/advs.202305532
- J. Liu, F. Wang, W. Jiang, Q. Zhao, W. Li et al., Polyzwitterionic hydrogel electrolytes via ultrafast autocatalytic gelation process for flexible Zn-Ion hybrid supercapacitors. Chem. Eng. J. 483, 149360 (2024). https://doi.org/10.1016/j.cej.2024.149360
- J. Zeng, H. Chen, L. Dong, X. Guo, Anti-polyelectrolyte effect of zwitterionic hydrogel electrolytes enabling high-voltage zinc-ion hybrid capacitors. Adv. Funct. Mater. 34(21), 2314651 (2024). https://doi.org/10.1002/adfm.202314651
- M. Wen, C. Yang, Q. Liu, J. Qiu, L. Zang, Wide-potential-window bimetallic hydrated eutectic electrolytes with high-temperature resistance for zinc-ion hybrid capacitors. Small 19(44), 2303348 (2023). https://doi.org/10.1002/smll.202303348
- J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16(1), 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
- L. Wan, H. Zhang, M. Qu, M. Feng, Z. Shang et al., Polyanion-induced single zinc-ion gel polymer electrolytes for wide-temperature and interfacial stable zinc-ion hybrid capacitors. Energy Storage Mater. 63, 102982 (2023). https://doi.org/10.1016/j.ensm.2023.102982
- T. Gao, N. Li, Y. Yang, J. Li, P. Ji et al., Mechanical reliable, NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life. J. Energy Chem. 92, 63–73 (2024). https://doi.org/10.1016/j.jechem.2023.12.038
- Z. Peng, L. Tang, S. Li, L. Tan, Y. Chen, Strong replaces weak: hydrogen bond-anchored electrolyte enabling ultra-stable and wide-temperature aqueous zinc-ion capacitors. Angew. Chem. Int. Ed. 64(6), e202418242 (2025). https://doi.org/10.1002/anie.202418242
- S. Cui, W. Miao, X. Wang, K. Sun, H. Peng et al., Multifunctional zincophilic hydrogel electrolyte with abundant hydrogen bonds for zinc-ion capacitors and supercapacitors. ACS Nano 18(19), 12355–12366 (2024). https://doi.org/10.1021/acsnano.4c01304
- Z. Liu, W. Zhang, H. Yin, F. Guo, H. Mi et al., Gradient solid electrolyte interphase exerted by robust hydrogel electrolyte-Zn interface and alkaloid additive enables reversible and durable Zn anodes. Chem. Eng. J. 497, 154787 (2024). https://doi.org/10.1016/j.cej.2024.154787
- R. Li, X. Shen, Z. Ji, Y. Xue, P. Song et al., Ultralight coaxial fiber-shaped zinc-ion hybrid supercapacitor with high specific capacitance and energy density for wearable electronics. Chem. Eng. J. 457, 141266 (2023). https://doi.org/10.1016/j.cej.2022.141266
- Y. Yang, S. Biswas, R. Xu, X. Xiao, X. Xu et al., Capacity recovery by transient voltage pulse in silicon-anode batteries. Science 386(6719), 322–327 (2024). https://doi.org/10.1126/science.adn1749
- Y. Fan, X. Liu, N. Naresh, Y. Zhu, I. Pinnock et al., High-performance planar Zn-ion micro-capacitors. J. Mater. Chem. A 12(19), 11710–11718 (2024). https://doi.org/10.1039/d4ta00300d
- Y. Xin, M. Zhu, H. Zhang, X. Wang, High-entropy materials: a new paradigm in the design of advanced batteries. Nano-Micro Lett. 18(1), 1 (2025). https://doi.org/10.1007/s40820-025-01842-w
- W. Liu, H. Liu, Y. Sun, Z. Gao, L. Li et al., Low-temperature, low-pressure Zn-ion hybrid supercapacitor in extreme near-space application. Mater. Horiz. 12(11), 3979–3990 (2025). https://doi.org/10.1039/d5mh00233h
References
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002
K.H. Loh, J. Liew, L. Liu, Z.L. Goh, M. Pershaanaa et al., A comprehensive review on fundamentals and components of zinc-ion hybrid supercapacitors. J. Energy Storage 81, 110370 (2024). https://doi.org/10.1016/j.est.2023.110370
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5(10), eaax4279 (2019). https://doi.org/10.1126/sciadv.aax4279
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim et al., Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009). https://doi.org/10.1038/nature07853
D. Tie, S. Huang, J. Wang, J. Ma, J. Zhang et al., Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 21, 22–40 (2019). https://doi.org/10.1016/j.ensm.2018.12.018
W. Fu, E. Zhao, R. Ma, Z. Sun, Y. Yang et al., Anatase TiO2 confined in carbon nanopores for high-energy Li-ion hybrid supercapacitors operating at high rates and subzero temperatures. Adv. Energy Mater. 10(2), 1902993 (2020). https://doi.org/10.1002/aenm.201902993
H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 85, 105942 (2021). https://doi.org/10.1016/j.nanoen.2021.105942
D. Chao, H.J. Fan, Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 5(6), 1359–1361 (2019). https://doi.org/10.1016/j.chempr.2019.05.020
L. Li, S. Jia, S. Yue, C. Wang, H. Qiu et al., Hydrogel-stabilized zinc ion batteries: progress and outlook. Green Chem. 26(11), 6404–6422 (2024). https://doi.org/10.1039/d4gc01465k
P. He, Q. Chen, M. Yan, X. Xu, L. Zhou et al., Building better zinc-ion batteries: a materials perspective. Energychem 1(3), 100022 (2019). https://doi.org/10.1016/j.enchem.2019.100022
H. Yan, S. Li, J. Zhong, B. Li, An electrochemical perspective of aqueous zinc metal anode. Nano-Micro Lett. 16(1), 15 (2023). https://doi.org/10.1007/s40820-023-01227-x
X. Liu, Y. Guo, F. Ning, Y. Liu, S. Shi et al., Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nano-Micro Lett. 16(1), 111 (2024). https://doi.org/10.1007/s40820-024-01337-0
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
P. Liu, W. Liu, Y. Huang, P. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Mater. 25, 858–865 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
G.-H. An, J. Hong, S. Pak, Y. Cho, S. Lee et al., 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv. Energy Mater. 10(3), 1902981 (2020). https://doi.org/10.1002/aenm.201902981
Z. Yang, J. Deng, H. Sun, J. Ren, S. Pan et al., Self-powered energy fiber: energy conversion in the sheath and storage in the core. Adv. Mater. 26(41), 7038–7042 (2014). https://doi.org/10.1002/adma.201401972
K. Naoi, S. Ishimoto, J.-I. Miyamoto, W. Naoi, Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5(11), 9363 (2012). https://doi.org/10.1039/c2ee21675b
D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015). https://doi.org/10.1039/c4cs00266k
J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Carbon materials for Li–S batteries: functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016). https://doi.org/10.1016/j.ensm.2015.09.007
H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
W. Fan, J. Ding, J. Ding, Y. Zheng, W. Song et al., Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano-Micro Lett. 13(1), 59 (2021). https://doi.org/10.1007/s40820-021-00588-5
J. Jin, X. Geng, Q. Chen, T.-L. Ren, A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors. Nano-Micro Lett. 14(1), 64 (2022). https://doi.org/10.1007/s40820-022-00793-w
J. Zhu, J. Tai, T. Liu, Y. Wang, Y. Li et al., Emerging zinc-ion capacitor science: compatible principle, design paradigm, and frontier applications. Adv. Energy Mater. 15(4), 2403739 (2025). https://doi.org/10.1002/aenm.202403739
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34(1), 2106897 (2022). https://doi.org/10.1002/adma.202106897
H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
Q. Chen, J. Jin, Z. Kou, C. Liao, Z. Liu et al., Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 16(14), 2000091 (2020). https://doi.org/10.1002/smll.202000091
Y. Qin, C. Hu, Q. Huang, Y. Lv, Z. Song et al., Hydrogen-bonded interfacial super-assembly of spherical carbon superstructures for high-performance zinc hybrid capacitors. Nano-Micro Lett. 18(1), 38 (2025). https://doi.org/10.1007/s40820-025-01883-1
J.-H. Luo, H.-M. Xiao, J. Peng, F.-J. Wang, X.-Y. Luo et al., Research progress on carbon-based zinc-ion capacitors. New Carbon Mater. 39(5), 918–945 (2024). https://doi.org/10.1016/S1872-5805(24)60881-4
H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31(44), 1904948 (2019). https://doi.org/10.1002/adma.201904948
J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: properties and applications. J. Energy Storage 17, 224–227 (2018). https://doi.org/10.1016/j.est.2018.03.012
C. Leng, Y.V. Fedoseeva, Z. Zhao, B. Yan, A.V. Okotrub et al., Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities. J. Power. Sources 536, 231484 (2022). https://doi.org/10.1016/j.jpowsour.2022.231484
D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16(29), 2001736 (2020). https://doi.org/10.1002/smll.202001736
G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin et al., A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 11(12), 3367–3374 (2018). https://doi.org/10.1039/c8ee02567c
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
Z. Liu, T. Cui, G. Pulletikurthi, A. Lahiri, T. Carstens et al., Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew. Chem. Int. Ed. 55(8), 2889–2893 (2016). https://doi.org/10.1002/anie.201509364
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/D0EE02079F
D. Chen, M. Lu, D. Cai, H. Yang, W. Han, Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J. Energy Chem. 54, 712–726 (2021). https://doi.org/10.1016/j.jechem.2020.06.016
Y. Shi, Y. Chen, L. Shi, K. Wang, B. Wang et al., An overview and future perspectives of rechargeable zinc batteries. Small 16(23), 2000730 (2020). https://doi.org/10.1002/smll.202000730
P. He, J. Huang, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6(5), 1990–1995 (2021). https://doi.org/10.1021/acsenergylett.1c00638
J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Adv. Energy Mater. 11(21), 2100201 (2021). https://doi.org/10.1002/aenm.202100201
W. Hu, J. Ju, N. Deng, M. Liu, W. Liu et al., Recent progress in tackling Zn anode challenges for Zn ion batteries. J. Mater. Chem. A 9(46), 25750–25772 (2021). https://doi.org/10.1039/D1TA08184E
A. Naveed, T. Rasheed, B. Raza, J. Chen, J. Yang et al., Addressing thermodynamic instability of Zn anode: classical and recent advancements. Energy Storage Mater. 44, 206–230 (2022). https://doi.org/10.1016/j.ensm.2021.10.005
Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 11(5), 2002529 (2021). https://doi.org/10.1002/aenm.202002529
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
Y. Liu, K. Wang, X. Yang, J. Liu, X.-X. Liu et al., Enhancing two-electron reaction contribution in MnO2 cathode material by structural engineering for stable cycling in aqueous Zn batteries. ACS Nano 17(15), 14792–14799 (2023). https://doi.org/10.1021/acsnano.3c02965
Y. Liu, L. Lin, T. Zhang, Z. Xue, J. Liu et al., A cyano cobalt “electron transfer bridge” boosting the two-electron reaction of a MnO2 cathode with long lifespan in aqueous zinc batteries. Energy Environ. Sci. 17(7), 2521–2529 (2024). https://doi.org/10.1039/D3EE03711H
L. Xu, N. Xu, C. Yan, W. He, X. Wu et al., Storage mechanisms and improved strategies for manganese-based aqueous zinc-ion batteries. J. Electroanal. Chem. 888, 115196 (2021). https://doi.org/10.1016/j.jelechem.2021.115196
X. Ma, H. Fu, J. Shen, D. Zhang, J. Zhou et al., Green ether electrolytes for sustainable high-voltage potassium ion batteries. Angew. Chem. Int. Ed. 62(49), e202312973 (2023). https://doi.org/10.1002/anie.202312973
A. Chen, Y. Zhang, Q. Li, G. Liang, S. Yang et al., An immiscible phase-separation electrolyte and interface ion transfer electrochemistry enable zinc/lithium hybrid batteries with a 3.5 V-class operating voltage. Energy Environ. Sci. 16(9), 4054–4064 (2023). https://doi.org/10.1039/D3EE01362F
Z. Huang, A. Chen, F. Mo, G. Liang, X. Li et al., Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv. Energy Mater. 10(24), 2001024 (2020). https://doi.org/10.1002/aenm.202001024
J. Liu, Q. Dang, J. Yuwono, S. Zhang, Z. Tai et al., Regulating the coordination environment of H2O in hydrogel electrolyte for a high-environment-adaptable and high-stability flexible Zn devices. Nano-Micro Lett. 17(1), 292 (2025). https://doi.org/10.1007/s40820-025-01810-4
B. Xue, J. Xu, Y. Feng, M. Ma, R. Xiao et al., Morphology engineering of biomass-derived porous carbon from 3D to 2D towards boosting capacitive charge storage capability. J. Colloid Interface Sci. 642, 736–746 (2023). https://doi.org/10.1016/j.jcis.2023.03.200
X. Zheng, L. Miao, Z. Song, W. Du, D. Zhu et al., In situ nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. J. Mater. Chem. A 10(2), 611–621 (2022). https://doi.org/10.1039/D1TA07350H
Z. Fan, J. Jin, C. Li, J. Cai, C. Wei et al., 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 15(2), 3098–3107 (2021). https://doi.org/10.1021/acsnano.0c09646
B. Xue, J. Xu, R. Xiao, Ice template-assisting activation strategy to prepare biomass-derived porous carbon cages for high-performance Zn-ion hybrid supercapacitors. Chem. Eng. J. 454, 140192 (2023). https://doi.org/10.1016/j.cej.2022.140192
C. Wang, Z. Li, W. Zhang, B. Chen, Y. Ge et al., In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors. J. Colloid Interface Sci. 685, 674–684 (2025). https://doi.org/10.1016/j.jcis.2025.01.165
Y. Qin, Z. Song, L. Miao, C. Hu, Y. Chen et al., Hydrogen-bond-mediated micelle aggregating self-assembly towards carbon nanofiber networks for high-energy and long-life zinc ion capacitors. Chem. Eng. J. 470, 144256 (2023). https://doi.org/10.1016/j.cej.2023.144256
Y. Qin, S. Jha, C. Hu, Z. Song, L. Miao et al., Hydrogen-bonded micelle assembly directed conjugated microporous polymers for nanospherical carbon frameworks towards dual-ion capacitors. J. Colloid Interface Sci. 675, 1091–1099 (2024). https://doi.org/10.1016/j.jcis.2024.07.052
L. Hu, L. Bo, N. Wang, M. Sun, X. Ren et al., Tuning the porous graphene interlayer structure for compact energy storage towards high volumetric performance of Zn-ion capacitor. Chem. Eng. J. 479, 147570 (2024). https://doi.org/10.1016/j.cej.2023.147570
P. Liu, F. Kong, H. Tang, Y. Wu, X. Xu et al., Hierarchically porous carbon nanosheets derived from Bougainvillea petals with “pores-on-surface” structure for ultrahigh performance Zinc-ions hybrid capacitors. Chem. Eng. J. 491, 151944 (2024). https://doi.org/10.1016/j.cej.2024.151944
H.-X. Li, W.-J. Shi, L.-Y. Liu, X. Zhang, P.-F. Zhang et al., Coupling effect of vacancy defects and multi-adsorption sites in porous carbon cathode for high-performance aqueous zinc-ion hybrid capacitors. Chem. Eng. J. 487, 150630 (2024). https://doi.org/10.1016/j.cej.2024.150630
Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao et al., Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28(10), 1981–1987 (2016). https://doi.org/10.1002/adma.201505131
D. Jia, Z. Shen, W. Zhou, Y. Li, J. He et al., Ultrahigh N-doped carbon with hierarchical porous structure derived from metal-organic framework for high-performance zinc ion hybrid capacitors. Chem. Eng. J. 485, 149820 (2024). https://doi.org/10.1016/j.cej.2024.149820
N.R. Catarineu, D. Lin, C. Zhu, D.I. Oyarzun, Y. Li, High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chem. Eng. J. 465, 142544 (2023). https://doi.org/10.1016/j.cej.2023.142544
T. Cao, W. Li, J. Zhu, G. Zhang, H. Liu et al., Transforming lignin into functionalized B/N Co-doped porous carbon for high-performance zinc-ion hybrid capacitors. Energy Convers. Manag. 326, 119498 (2025). https://doi.org/10.1016/j.enconman.2025.119498
J. Lu, X. Zhong, X. Lin, J. Gui, M. Zheng et al., Nanoconfined carbonization enabling high-density porous carbon for jointly superior gravimetric and volumetric zinc-ion storage. Energy Environ. Sci. 17(18), 6833–6843 (2024). https://doi.org/10.1039/D4EE02163K
N. Samartzis, K. Bhorkar, L. Sygellou, E. Bellou, N. Boukos et al., Dry laser-assisted fabrication of F-doped graphene electrodes: boosting performance of Zn-ion hybrid capacitors. Chem. Eng. J. 507, 160505 (2025). https://doi.org/10.1016/j.cej.2025.160505
C. Valentini, V. Montes-García, A. Ciesielski, P. Samorì, Boosting zinc hybrid supercapacitor performance via thiol functionalization of graphene-based cathodes. Adv. Sci. 11(22), 2309041 (2024). https://doi.org/10.1002/advs.202309041
C. Zhu, H. Liang, P. Li, C. Qiu, J. Wu et al., One stone, two birds”: salt template enabling porosity engineering and single metal atom coordinating toward high-performance zinc-ion capacitors. J. Energy Chem. 100, 637–645 (2025). https://doi.org/10.1016/j.jechem.2024.09.016
P. Chai, Y. Li, Q. Guan, J. Li, L. Li et al., Ultrafast In-Situ synthesis of flexible MoO3 anode in five seconds for High-Performance aqueous zinc ion hybrid capacitor. Chem. Eng. J. 490, 151594 (2024). https://doi.org/10.1016/j.cej.2024.151594
H. Zhang, J. Wu, Z. Zou, Y. Bai, C. Wu et al., Create rich oxygen defects of unique tubular hierarchical molybdenum dioxide to modulate electron transfer rate for superior high-energy metal-ion hybrid capacitor. Energy. Environ. Mater. 6(3), e12377 (2023). https://doi.org/10.1002/eem2.12377
Y. Li, M. Zhang, H. Lu, X. Cai, Z. Jiao et al., Boosting high-performance aqueous zinc-ion hybrid capacitors via organic redox species on laser-induced graphene network. Adv. Funct. Mater. 34(34), 2400663 (2024). https://doi.org/10.1002/adfm.202400663
M. Chen, L. Gong, I. Zhitomirsky, K. Shi, Unraveling the dynamic transformation of azobenzene-driven redox electrolytes for Zn-ion hybrid capacitors. Energy Environ. Sci. 18(9), 4460–4469 (2025). https://doi.org/10.1039/D4EE05696E
X. Gan, C. Zhang, X. Ye, L. Qie, K. Shi, Unveiling the potential of redox electrolyte additives in enhancing interfacial stability for Zn-ion hybrid capacitors. Energy Storage Mater. 65, 103175 (2024). https://doi.org/10.1016/j.ensm.2024.103175
G. Yang, Q. Zhang, C. He, Z. Gong, Z. Liu et al., Bionic hollow porous carbon nanofibers for energy-dense and rapid zinc ion storage. Angew. Chem. Int. Ed. 64(10), e202421230 (2025). https://doi.org/10.1002/anie.202421230
H. Hu, Y. Mu, Z. Zou, M. Han, Y. Zhao et al., Spatial confinement effect and defect-dominated redox reactions enhance energy and power in Zn-ion capacitors with 150 000 cycles. Adv. Energy Mater. 15(44), e04176 (2025). https://doi.org/10.1002/aenm.202504176
Q. Huang, L. Huang, Y. Jin, Y. Sun, Z. Song et al., Solvent-guided nanoarchitecturing of heterodiatomic carbon superstructures for high-performance zinc-ion hybrid capacitors. Chem. Eng. J. 482, 148912 (2024). https://doi.org/10.1016/j.cej.2024.148912
Z. Peng, A.G. Bannov, S. Li, Y. Huang, L. Tang et al., Coupling uniform pore size and multi-chemisorption sites: hierarchically ordered porous carbon for ultra-fast and large zinc ion storage. Adv. Funct. Mater. 33(40), 2303205 (2023). https://doi.org/10.1002/adfm.202303205
L. Liang, X. Pan, H. Luo, Y. Guo, H. Luo et al., Synergistic multi-heteroatomic mediated and hierarchical engineering boosted temperature adaptability of free-standing carbon nanofibers cathode for zinc-ion hybrid supercapacitors. J. Power. Sources 629, 236095 (2025). https://doi.org/10.1016/j.jpowsour.2024.236095
H. Zhang, H. Wang, Z. Pan, Z. Wu, Y. Deng et al., Zn-metal–organic framework derived ordered mesoporous carbon-based nanostructure for high-performance and universal multivalent metal ion storage. Adv. Mater. 34(41), 2206277 (2022). https://doi.org/10.1002/adma.202206277
P. Xie, Y. Zhang, Z. Man, J. Zhou, Y. Zhang et al., Wearable, recoverable, and implantable energy storage devices with heterostructure porous COF-5/Ti3C2Tx cathode for high-performance aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 35(19), 2421517 (2025). https://doi.org/10.1002/adfm.202421517
K. Zhang, Q. Zong, K. Ding, Y. Wang, L. Gao et al., Cation-driven self-assembly of core–shell covalent organic frameworks@Ti3CN MXene nanospheres for high-performance aqueous zinc-ion hybrid supercapacitors. Chem. Eng. J. 490, 151369 (2024). https://doi.org/10.1016/j.cej.2024.151369
C. Leng, Z. Zhao, X. Wang, Y.V. Fedoseeva, L.G. Bulusheva et al., Electrostatic interaction-directed construction of hierarchical nanostructured carbon composite with dual electrical conductive networks for zinc-ion hybrid capacitors with ultrastability. Energy Environ. Mater. 7(1), e12484 (2024). https://doi.org/10.1002/eem2.12484
H. Li, Q. Liao, Y. Liu, Y. Li, X. Niu et al., Hierarchically porous carbon rods derived from metal-organic frameworks for aqueous zinc-ion hybrid capacitors. Small 20(15), 2307184 (2024). https://doi.org/10.1002/smll.202307184
C. Fang, J. Han, Q. Yang, Z. Gao, D. Tan et al., Boosting Zn-ion storage behavior of pre-intercalated MXene with black phosphorus toward self-powered systems. Adv. Sci. 11(40), 2408549 (2024). https://doi.org/10.1002/advs.202408549
C. Zheng, Z. Guo, B. Jian, Z. Chen, J. Zhong et al., Boosted Zn-ion storage in high crystalline VS4 anode by enhanced diffusion-controlled kinetics. Chem. Eng. J. 475, 146408 (2023). https://doi.org/10.1016/j.cej.2023.146408
C. Lin, Y. Zhang, W.Y. Lieu, Y. Xu, D.-S. Li et al., Boosting zinc-ion storage capability in longitudinally aligned MXene arrays with microchannel architecture. Adv. Funct. Mater. 35(3), 2413613 (2025). https://doi.org/10.1002/adfm.202413613
X. Zhang, M.S. Javed, S.S.A. Shah, F. Ahmed, I. Hussain et al., N-functionalization and defect engineering in ZnCo2O4 nanosheets boosted the performance of Zn-ion hybrid supercapacitor. Electrochim. Acta 461, 142654 (2023). https://doi.org/10.1016/j.electacta.2023.142654
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
D. Li, W. Zheng, S.M. Gali, K. Sobczak, M. Horák et al., MXenes with ordered triatomic-layer borate polyanion terminations. Nat. Mater. 23(8), 1085–1092 (2024). https://doi.org/10.1038/s41563-024-01911-2
W. Liu, Z. Chen, Z. Ma, J. Li, Y. Liu et al., High-load Ti3C2 MXene cathode through surface modification for degradable aqueous zinc-ion micro-supercapacitors with excellent energy density and anti-self-discharge. Chem. Eng. J. 494, 153149 (2024). https://doi.org/10.1016/j.cej.2024.153149
M. Wang, Y. Cheng, H. Zhang, F. Cheng, Y. Wang et al., Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 33(12), 2211199 (2023). https://doi.org/10.1002/adfm.202211199
W. Zhang, X. Gao, X. Yang, T. Zhang, Y. Li et al., Further elevating the energy density of aqueous zinc-ion hybrid capacitors toward batteries through voltage-window-expansion engineering. Chem. Eng. J. 460, 141824 (2023). https://doi.org/10.1016/j.cej.2023.141824
Y. Niu, P. Luo, X. Chen, J. Song, X. He et al., MXene/VS4 self-supporting thin film electrode for zinc-ion flexible supercapacitors. Chem. Eng. J. 493, 152372 (2024). https://doi.org/10.1016/j.cej.2024.152372
Q. Wang, M. Chen, Q. Tian, X. Han, J. Chen, ZnF2-enabled preparation of Ti3C2Tx towards high-performance zinc-ion hybrid capacitors. Chem. Eng. J. 467, 143481 (2023). https://doi.org/10.1016/j.cej.2023.143481
D. Han, W. Wang, S. Yu, W. Qi, R. Ling et al., Stable β-form zinc phthalocyanine cathodes for flexible Zn-ion hybrid supercapacitors with ultra-long cycling life. Chem. Eng. J. 468, 143875 (2023). https://doi.org/10.1016/j.cej.2023.143875
X. Han, X. Kong, D. Wang, X. Li, L. Dong, Hydrous ruthenium oxide quantum dots anchored on carbon nanocages for Zn-ion hybrid capacitors. Chem. Eng. J. 477, 147078 (2023). https://doi.org/10.1016/j.cej.2023.147078
Y. Wu, Y. Deng, J. Zhang, S. Lv, Z. Xiao et al., Construction of multi-channel basic cobalt/nickel phosphate core-shell microsphere for superior hybrid Zn-based supercapacitor performances. Chem. Eng. J. 455, 140953 (2023). https://doi.org/10.1016/j.cej.2022.140953
W. Shi, Z. Song, W. Sun, Y. Liu, Y. Jiang et al., Extending cycling life beyond 300 000 cycles in aqueous zinc ion capacitors through additive interface engineering. Small 20(14), e2308282 (2024). https://doi.org/10.1002/smll.202308282
Y. Liu, L. Wu, P. Zhang, Y. Liu, J. Wu et al., Modulating the zinc ion flux and electric field intensity by multifunctional metal-organic complex interface layer for highly stable Zn anode. J. Energy Chem. 99, 375–383 (2024). https://doi.org/10.1016/j.jechem.2024.08.004
Y. Xu, J. Chen, T. Li, H. Ma, Z. Lv et al., Molecular customization of anode-electrolyte interfaces for enhanced stability and reversibility in aqueous zinc-carbon capacitors. Angew. Chem. Int. Ed. 64(12), e202424255 (2025). https://doi.org/10.1002/anie.202424255
H. Tong, C. Wu, Y. Deng, L. Li, C. Guan et al., Dendrite-free Zn anode modified with Prussian blue analog for ultra long-life Zn-ion capacitors. Adv. Funct. Mater. 34(46), 2405318 (2024). https://doi.org/10.1002/adfm.202405318
X. Li, D. Qiu, Q. Zhou, Z. Yang, X. Zhou et al., Construction of an anti-anionic-depletion layer to mitigate the tip deposition effect for dendrite-free zinc anode. Chem. Eng. J. 495, 153855 (2024). https://doi.org/10.1016/j.cej.2024.153855
D. Xiong, C. Liu, Z. Song, X. Hu, W. Deng et al., Crystal orientation enabling rapid Zn2+ migration for advanced zinc-ion hybrid capacitors. Energy Storage Mater. 71, 103687 (2024). https://doi.org/10.1016/j.ensm.2024.103687
X. Fang, C. Hu, X. Sun, H. Wang, J. Li, Robust hybrid solid electrolyte interface induced by Zn-poor electric double layer for a highly reversible zinc anode. Adv. Energy Mater. 14(3), 2302499 (2024). https://doi.org/10.1002/aenm.202302499
H. Huang, J. Yun, H. Feng, T. Tian, J. Xu et al., Towards high-performance zinc anode for zinc ion hybrid capacitor: concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive. Energy Storage Mater. 55, 857–866 (2023). https://doi.org/10.1016/j.ensm.2022.12.046
Y. Bu, Q. Kang, Z. Zhu, H. Zhang, Y. Li et al., Easy-to-lay poly-N heterocyclic additives enable long-term stabilization of zinc-ion capacitor anodes under deep plating/stripping. Adv. Sci. 11(32), 2404323 (2024). https://doi.org/10.1002/advs.202404323
C. Ji, Y. Luo, G. Guo, X. Li, C. Sun et al., Regulating the inner Helmholtz plane with an electrophilic cation additive enabled stacked stratiform growth for highly reversible Zn anodes. Energy Storage Mater. 71, 103615 (2024). https://doi.org/10.1016/j.ensm.2024.103615
H. Peng, X. Wang, F. Yang, Z. Liu, H. Lei et al., Regulating solvation structure and inducing Zn (2002) plane by a multifunctional electrolyte additive toward dendrite suppression and long-life zinc ion hybrid capacitors. Chem. Eng. J. 474, 145864 (2023). https://doi.org/10.1016/j.cej.2023.145864
Y. Zhang, Z. Zou, Q. Liu, Y. Qiao, C. Jiang, Dual-functions of the carbon-confined oxygen on the capacitance and cycle stability enhancements of Zn-ion capacitors. J. Mater. Sci. Technol. 221, 278–288 (2025). https://doi.org/10.1016/j.jmst.2024.10.003
Z. Zhang, S. Xia, A. Dong, X. Li, F. Wang et al., Mechanical grinding formation of highly reversible (002)-textured zinc metal anodes. Adv. Energy Mater. 15(8), 2403598 (2025). https://doi.org/10.1002/aenm.202403598
X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113–15124 (2023). https://doi.org/10.1021/acsnano.3c04343
Y. Zou, Y. Mu, L. Xu, C. Qiao, Z. Chen et al., Popularizing holistic high-index crystal plane via nonepitaxial electrodeposition toward hydrogen-embrittlement-relieved Zn anode. Adv. Mater. 37(6), 2413080 (2025). https://doi.org/10.1002/adma.202413080
K. Chen, J. Huang, J. Yuan, S. Qin, P. Huang et al., Molecularly engineered cellulose hydrogel electrolyte for highly stable zinc ion hybrid capacitors. Energy Storage Mater. 63, 102963 (2023). https://doi.org/10.1016/j.ensm.2023.102963
W. Tian, P. Ren, X. Hou, B. Fan, Y. Wang et al., N-doped holey graphene/porous carbon/cellulose nanofibers electrode and hydrogel electrolyte for low-temperature zinc-ion hybrid supercapacitors. Small 21(10), 2411657 (2025). https://doi.org/10.1002/smll.202411657
Y. Wang, L. Yang, P. Xu, L. Liu, S. Li et al., An electrochemically initiated self-limiting hydrogel electrolyte for dendrite-free zinc anode. Small 20(12), e2307446 (2024). https://doi.org/10.1002/smll.202307446
Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16(3), 1291–1311 (2023). https://doi.org/10.1039/D2EE03793A
Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35(18), 2300019 (2023). https://doi.org/10.1002/adma.202300019
L.-H. Xu, P.-F. Wang, Y. Xu, J. Liu, X.-P. Peng et al., A combined genetic modification and chemical engineering strategy for designing high-performance cellulose nanofibrils separators. Chem. Eng. J. 503, 158402 (2025). https://doi.org/10.1016/j.cej.2024.158402
J. Shi, K. Mao, Q. Zhang, Z. Liu, F. Long et al., An air-rechargeable Zn battery enabled by organic-inorganic hybrid cathode. Nano-Micro Lett. 15(1), 53 (2023). https://doi.org/10.1007/s40820-023-01023-7
L. Yu, J. Li, N. Ahmad, X. He, G. Wan et al., Recent progress on carbon materials for emerging zinc-ion hybrid capacitors. J. Mater. Chem. A 12(16), 9400–9420 (2024). https://doi.org/10.1039/d4ta00252k
C. Zhu, P. Li, G. Xu, H. Cheng, G. Gao, Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord. Chem. Rev. 485, 215142 (2023). https://doi.org/10.1016/j.ccr.2023.215142
L. Yao, N. Koripally, C. Shin, A. Mu, Z. Chen et al., Engineering electro-crystallization orientation and surface activation in wide-temperature zinc ion supercapacitors. Nat. Commun. 16(1), 3597 (2025). https://doi.org/10.1038/s41467-025-58857-5
L. Wei, Y. Chen, Z. Huang, S. Zheng, X. Guo, Redox-enhanced zinc-ion hybrid capacitors with high energy density enabled by high-voltage active aqueous electrolytes based on low salt concentration. Energy Storage Mater. 58, 30–39 (2023). https://doi.org/10.1016/j.ensm.2023.03.015
C. Shin, L. Yao, S.-Y. Jeong, T.N. Ng, Zinc-copper dual-ion electrolytes to suppress dendritic growth and increase anode utilization in zinc ion capacitors. Sci. Adv. 10(1), eadf9951 (2024). https://doi.org/10.1126/sciadv.adf9951
B. Sun, N. Wang, X. Xie, L. Zhong, L. He et al., Symmetrical porous graphitized carbon fabric electrodes for ultra-cryogenic and dendrite-free Zn-ion hybrid supercapacitors. J. Mater. Sci. Technol. 209, 251–261 (2025). https://doi.org/10.1016/j.jmst.2024.04.077
Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Letters 15(1), 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
Y. Gao, J. Yin, X. Xu, Y. Cheng, Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J. Mater. Chem. A 10(18), 9773–9787 (2022). https://doi.org/10.1039/D2TA01014C
Y. Xu, X. Yang, X. Li, Y. Gao, L. Wang et al., Flexible zinc-ion hybrid supercapacitor based on Co2+-doped polyaniline/V2O5 electrode. J. Power. Sources 623, 235399 (2024). https://doi.org/10.1016/j.jpowsour.2024.235399
X. Liang, J. Li, X. Yang, L. Wang, X. Li et al., H2O/Ni2+ intercalated lamellar vanadium oxide as cathode materials for aqueous zn-ion hybrid supercapacitors. J. Energy Storage 56, 105947 (2022). https://doi.org/10.1016/j.est.2022.105947
Y. Wang, J. Cao, J. Guo, J. Zhang, G. Liu et al., Flexible reduced graphene oxide/V2O5 composite battery-type cathode and MXene capacitor-type anode for aqueous zinc ion hybrid supercapacitors with high energy density. J. Alloys Compd. 915, 165418 (2022). https://doi.org/10.1016/j.jallcom.2022.165418
R. Shanthappa, O. Reddy Ankinapalli, A. Kumar Kakarla, D. Narsimulu, H. Bandi et al., Selenium incorporated sodium vanadate nanobelts as high-performance electrode material for long-lasting aqueous zinc-ion batteries and supercapacitors. Chem. Eng. J. 476, 146777 (2023). https://doi.org/10.1016/j.cej.2023.146777
Z.-C. Zhang, Y.-B. Mu, L.-J. Xiao, X.-Y. Wei, M.-S. Han et al., Advancements in manganese-based cathodes for aqueous zinc-ion batteries: challenges and optimization strategies. cMat 2(1), e70000 (2025). https://doi.org/10.1002/cmt2.70000
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
Y. Jin, L. Zou, L. Liu, M.H. Engelhard, R.L. Patel et al., Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv. Mater. 31(29), e1900567 (2019). https://doi.org/10.1002/adma.201900567
M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen et al., Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 64, 103942 (2019). https://doi.org/10.1016/j.nanoen.2019.103942
C. Fang, B. Xu, J. Han, X. Liu, Y. Gao et al., Pre-intercalation of Zn ions to enlarge and stabilize hierarchical structure of ZnxMn1-xSe cathode for flexible Zn-ion capacitor. Adv. Funct. Mater. 34(26), 2310909 (2024). https://doi.org/10.1002/adfm.202310909
S. Abbas, T.H. Bokhari, A. Zafar, S. Javed, S. Karim et al., Zn doping induces rich oxygen vacancies in δ-MnO2 flower-like nanostructures for impressive energy density coin cell supercapacitor. J. Energy Storage 87, 111455 (2024). https://doi.org/10.1016/j.est.2024.111455
I. Ashraf, Q. Abbas, Y. Huang, N.U. Hassan, M.D. Albaqami et al., V-Mn-O aerogel composite-based high-energy Zn-ion hybrid supercapacitor. J. Energy Storage 60, 106601 (2023). https://doi.org/10.1016/j.est.2022.106601
B.N.V. Krishna, O.R. Ankinapalli, A.R. Reddy, J.S. Yu, Facile one-step hydrothermal route to MSe/Mo3Se4 (M: Zn, Mn, and Ni)-based electrode materials for ultralong-life hybrid supercapacitors. J. Mater. Sci. Technol. 156, 230–240 (2023). https://doi.org/10.1016/j.jmst.2023.01.046
K. Mao, J. Shi, Q. Zhang, Y. Hou, L. Wen et al., High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy 103, 107791 (2022). https://doi.org/10.1016/j.nanoen.2022.107791
Z.-Q. Wang, H.-M. Chen, X.-D. Liu, L.-Y. Song, B.-S. Zhang et al., Amorphous K-buserite microspheres for high-performance aqueous Zn-ion batteries and hybrid supercapacitors. Adv. Sci. 10(13), 2207329 (2023). https://doi.org/10.1002/advs.202207329
D. Zhuang, Z. Zhang, J. Weng, J. Wang, H. Zhang et al., Amorphous hydrated tungsten oxides with enhanced pseudocapacitive contribution for aqueous zinc-ion electrochromic energy storage. Adv. Energy Mater. 14(40), 2402603 (2024). https://doi.org/10.1002/aenm.202402603
R. Ping, Y. Nie, C. Ji, Z. Hao, S. Yang et al., Enhanced proton pseudocapacitive of Ti3C2Tx in neutral electrolyte activated by acid regulation dynamic pillars. Chem. Eng. J. 455, 140650 (2023). https://doi.org/10.1016/j.cej.2022.140650
X. Lu, L. Tao, K. Qu, A. Amardeep, J. Liu, “Duet-insurance” eutectic electrolytes for zinc-ion capacitor pouch cells. Adv. Funct. Mater. 33(11), 2211736 (2023). https://doi.org/10.1002/adfm.202211736
Y.-G. Lee, G. Yoo, Y.-R. Jo, H.-R. An, B.-R. Koo et al., Interfacial electrochemical media-engineered tunable vanadium zinc hydrate oxygen defect for enhancing the redox reaction of zinc-ion hybrid supercapacitors. Adv. Energy Mater. 13(24), 2300630 (2023). https://doi.org/10.1002/aenm.202300630
M. Chen, R. Chen, I. Zhitomirsky, G. He, K. Shi, Redox-active molecules for aqueous electrolytes of energy storage devices: a review on fundamental aspects, current progress, and prospects. Mater. Sci. Eng. R. Rep. 161, 100865 (2024). https://doi.org/10.1016/j.mser.2024.100865
M. Chen, J. Chen, W. Zhou, J. Xu, C.-P. Wong, High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J. Mater. Chem. A 7(46), 26524–26532 (2019). https://doi.org/10.1039/C9TA10944G
Z.-D. Wang, K. Bo, C.-L. Zhong, Y.-H. Xin, G.-L. Lu et al., Multifunctional polyoxometalates-based ionohydrogels toward flexible electronics. Adv. Mater. 36(25), e2400099 (2024). https://doi.org/10.1002/adma.202400099
Y. Chen, Z. Song, Y. Lv, L. Gan, M. Liu, NH4+ modulated cathodic interfacial spatial charge redistribution for high-performance dual-ion capacitors. Nano-Micro Lett. 17(1), 117 (2025). https://doi.org/10.1007/s40820-025-01660-0
J. Li, Y. Lou, S. Zhou, Y. Chen, X. Zhao et al., Intrinsically decoupled coordination chemistries enable quasi-eutectic electrolytes with fast kinetics toward enhanced zinc-ion capacitors. Angew. Chem. Int. Ed. 63(34), e202406906 (2024). https://doi.org/10.1002/anie.202406906
P. Chen, X. Sun, B. Plietker, M. Ruck, Key to high performance ion hybrid capacitor: weakly solvated zinc cations. Adv. Sci. 11(3), 2305532 (2024). https://doi.org/10.1002/advs.202305532
J. Liu, F. Wang, W. Jiang, Q. Zhao, W. Li et al., Polyzwitterionic hydrogel electrolytes via ultrafast autocatalytic gelation process for flexible Zn-Ion hybrid supercapacitors. Chem. Eng. J. 483, 149360 (2024). https://doi.org/10.1016/j.cej.2024.149360
J. Zeng, H. Chen, L. Dong, X. Guo, Anti-polyelectrolyte effect of zwitterionic hydrogel electrolytes enabling high-voltage zinc-ion hybrid capacitors. Adv. Funct. Mater. 34(21), 2314651 (2024). https://doi.org/10.1002/adfm.202314651
M. Wen, C. Yang, Q. Liu, J. Qiu, L. Zang, Wide-potential-window bimetallic hydrated eutectic electrolytes with high-temperature resistance for zinc-ion hybrid capacitors. Small 19(44), 2303348 (2023). https://doi.org/10.1002/smll.202303348
J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16(1), 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
L. Wan, H. Zhang, M. Qu, M. Feng, Z. Shang et al., Polyanion-induced single zinc-ion gel polymer electrolytes for wide-temperature and interfacial stable zinc-ion hybrid capacitors. Energy Storage Mater. 63, 102982 (2023). https://doi.org/10.1016/j.ensm.2023.102982
T. Gao, N. Li, Y. Yang, J. Li, P. Ji et al., Mechanical reliable, NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life. J. Energy Chem. 92, 63–73 (2024). https://doi.org/10.1016/j.jechem.2023.12.038
Z. Peng, L. Tang, S. Li, L. Tan, Y. Chen, Strong replaces weak: hydrogen bond-anchored electrolyte enabling ultra-stable and wide-temperature aqueous zinc-ion capacitors. Angew. Chem. Int. Ed. 64(6), e202418242 (2025). https://doi.org/10.1002/anie.202418242
S. Cui, W. Miao, X. Wang, K. Sun, H. Peng et al., Multifunctional zincophilic hydrogel electrolyte with abundant hydrogen bonds for zinc-ion capacitors and supercapacitors. ACS Nano 18(19), 12355–12366 (2024). https://doi.org/10.1021/acsnano.4c01304
Z. Liu, W. Zhang, H. Yin, F. Guo, H. Mi et al., Gradient solid electrolyte interphase exerted by robust hydrogel electrolyte-Zn interface and alkaloid additive enables reversible and durable Zn anodes. Chem. Eng. J. 497, 154787 (2024). https://doi.org/10.1016/j.cej.2024.154787
R. Li, X. Shen, Z. Ji, Y. Xue, P. Song et al., Ultralight coaxial fiber-shaped zinc-ion hybrid supercapacitor with high specific capacitance and energy density for wearable electronics. Chem. Eng. J. 457, 141266 (2023). https://doi.org/10.1016/j.cej.2022.141266
Y. Yang, S. Biswas, R. Xu, X. Xiao, X. Xu et al., Capacity recovery by transient voltage pulse in silicon-anode batteries. Science 386(6719), 322–327 (2024). https://doi.org/10.1126/science.adn1749
Y. Fan, X. Liu, N. Naresh, Y. Zhu, I. Pinnock et al., High-performance planar Zn-ion micro-capacitors. J. Mater. Chem. A 12(19), 11710–11718 (2024). https://doi.org/10.1039/d4ta00300d
Y. Xin, M. Zhu, H. Zhang, X. Wang, High-entropy materials: a new paradigm in the design of advanced batteries. Nano-Micro Lett. 18(1), 1 (2025). https://doi.org/10.1007/s40820-025-01842-w
W. Liu, H. Liu, Y. Sun, Z. Gao, L. Li et al., Low-temperature, low-pressure Zn-ion hybrid supercapacitor in extreme near-space application. Mater. Horiz. 12(11), 3979–3990 (2025). https://doi.org/10.1039/d5mh00233h