Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization
Corresponding Author: Yongming Zhu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 55
Abstract
High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF3-HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the d-band center and d orbital occupancy of active centers, which optimizes the d–p hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO2 and thus reinforcing the reaction kinetics. As a result, the Li–O2 battery with KCoMnNiMgZnF3-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.
Highlights:
1 The tailored KCoMnNiMgZnF3-HEC cathode delivers extremely high discharge capacity (22,104 mAh g−1), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported.
2 Entropy effect of multiple sites in KCoMnNiMgZnF3-HEC engenders appropriate regulation of 3d orbital structure, leading to a moderate hybridization with the p orbital of key intermediate.
3 The homogeneous nucleation of Li2O2 is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O2/Li2O2 conversion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Wang, X. Mu, P. He, H. Zhou, Materials for advanced Li–O2 batteries: explorations, challenges and prospects. Mater. Today 26, 87–99 (2019). https://doi.org/10.1016/j.mattod.2019.01.016
- X. Wu, B. Niu, H. Zhang, Z. Li, H. Luo et al., Enhancing the reaction kinetics and reversibility of Li–O2 batteries by multifunctional polymer additive. Adv. Energy Mater. 13, 2203089 (2023). https://doi.org/10.1002/aenm.202203089
- L. Ren, R. Zheng, D. Du, Y. Yan, M. He et al., Optimized orbital occupancy of transition metal in spinel Ni–Co oxides with heteroatom doping for aprotic Li–O2 battery. Chem. Eng. J. 430, 132977 (2022). https://doi.org/10.1016/j.cej.2021.132977
- Q. Lv, Z. Zhu, Y. Ni, J. Geng, F. Li, Spin-State manipulation of two-dimensional metal–organic framework with enhanced metal–oxygen covalency for lithium–oxygen batteries. Angew. Chem. Int. Ed. 61, e202114293 (2022). https://doi.org/10.1002/anie.202114293
- Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li–O2 batteries. Angew. Chem. Int. Ed. 61, e202201416 (2022). https://doi.org/10.1002/ange.202201416
- X. Li, G. Han, S. Lou, Z. Qiang, J. Zhu et al., Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy 93, 106810 (2022). https://doi.org/10.1016/j.nanoen.2021.106810
- L. Song, W. Zhang, Y. Wang, X. Ge, L. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 11, 2191 (2020). https://doi.org/10.1038/s41467-020-15712-z
- Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li et al., Lewis-acidic PtIr multipods enable high-performance Li–O2 batteries. Angew. Chem. Int. Ed. 60, 26592–26598 (2021). https://doi.org/10.1002/anie.202114067
- S. Ke, W. Li, Y. Gu, J. Su, Y. Liu et al., Covalent organic frameworks with Ni-bis (dithiolene) and Co-porphyrin units as bifunctional catalysts for Li–O2. Sci. Adv. 9, eadf2398 (2023). https://doi.org/10.1126/sciadv.adf2398
- B. Chen, X. Zhong, G. Zhou, N. Zhao, H. Cheng, Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. Adv. Mater. 34, 2105812 (2022). https://doi.org/10.1002/adma.202105812
- Y. Sun, S. Dai, High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2021). https://doi.org/10.1126/sciadv.abg1600
- Y. Xin, S. Li, Y. Qian, W. Zhu, H. Yuan et al., High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306 (2020). https://doi.org/10.1021/acscatal.0c03617
- P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li–O2 batteries. Small 19, 2206742 (2023). https://doi.org/10.1002/smll.202206742
- X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32, 2002853 (2020). https://doi.org/10.1002/adma.202002853
- G.S. Hegde, R. Sundara, Entropy stabilized oxide nanocrystals as reaction promoters in lithium–O2 batteries. Batter. Supercaps 5, e202200068 (2022). https://doi.org/10.1002/batt.202200068
- B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995). https://doi.org/10.1038/376238a0
- F. Li, M. Li, H. Wang, X. Wang, L. Zheng et al., Oxygen vacancy-mediated growth of amorphous discharge products toward an ultrawide band light-assisted Li–O2 batteries. Adv. Mater. 34, 2107826 (2022). https://doi.org/10.1002/adma.202107826
- X. Li, G. Han, Z. Qian, Q. Liu, Z. Qiang et al., π-conjugation induced anchoring of ferrocene on graphdiyne enable shuttle-free redox mediation in lithium–oxygen batteries. Adv. Sci. 9, 2103964 (2022). https://doi.org/10.1002/advs.202103964
- X. Li, Z. Qian, G. Han, B. Sun, P. Zuo et al., Perovskite LaCox Mn1–x O3−σ with tunable defect and surface structures as cathode catalysts for Li–O2 batteries. ACS Appl. Mater. Interfaces 12, 10452–10460 (2020). https://doi.org/10.1021/acsami.9b21904
- Z. Li, Q. Wang, X. Bai, M. Wang, Z. Yang et al., Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy Environ. Sci. 14, 5035–5043 (2021). https://doi.org/10.1039/D1EE01271A
- W. Zhao, J. Wang, R. Yin, B. Li, X. Huang et al., Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li–O2 batteries. J. Colloid Interface Sci. 564, 28–36 (2020). https://doi.org/10.1016/j.jcis.2019.12.102
- Y. Gong, W. Ding, Z. Li, R. Su, X. Zhang et al., Inverse spinel cobalt-iron oxide and N-Doped graphene composite as an efficient and durable bifuctional catalyst for Li–O2 batteries. ACS Catal. 8, 4082–4090 (2018). https://doi.org/10.1021/acscatal.7b04401
- G. Zhang, G. Li, J. Wang, H. Tong, J. Wang et al., 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li–oxygen batteries. Adv. Energy Mater. 12, 2103910 (2022). https://doi.org/10.1002/aenm.202103910
- Z. Sun, X. Cao, M. Tian, K. Zeng, Y. Jiang et al., Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium–oxygen batteries. Adv. Energy Mater. 11, 2100110 (2021). https://doi.org/10.1002/aenm.202100110
- X. Han, L. Zhao, Y. Liang, J. Wang, Y. Long et al., Interfacial electron redistribution on lattice-matching NiS2/NiSe2 homologous heterocages with dual-phase synergy to tune the formation routes of Li2O2. Adv. Energy Mater. 12, 2202747 (2022). https://doi.org/10.1002/aenm.202202747
- G. Zhang, C. Liu, L. Guo, R. Liu, L. Miao et al., Electronic “bridge” construction via Ag intercalation to diminish catalytic anisotropy for 2D tin diselenide cathode catalyst in lithium–oxygen batteries. Adv. Energy Mater. 12, 2200791 (2022). https://doi.org/10.1002/aenm.202200791
- P. Wang, C. Li, S. Dong, X. Ge, P. Zhang et al., Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li–O2 batteries. Adv. Energy Mater. 9, 1900788 (2019). https://doi.org/10.1002/aenm.201900788
- A. Dutta, K. Ito, A. Nomura, Y. Kubo, Quantitative delineation of the low energy decomposition pathway for lithium peroxide in lithium-oxygen battery. Adv. Sci. 7, 2001660 (2020). https://doi.org/10.1002/advs.202001660
- S. Lau, L.A. Archer, Nucleation and growth of lithium peroxide in the Li–O2 battery. Nano Lett. 15, 5995–6002 (2015). https://doi.org/10.1021/acs.nanolett.5b02149
- E. Dickinson, H. Ekström, E. Fontes, COMSOL Multiphysics®: finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 40, 71–74 (2014). https://doi.org/10.1016/j.elecom.2013.12.020
- Y. Qiao, S. Wu, J. Yi, Y. Sun, S. Guo et al., From O2- to HO2-: reducing by-products and overpotential in Li–O2 batteries by water addition. Angew. Chem. Int. Ed. 129, 5042–5046 (2017). https://doi.org/10.1002/ange.201611122
- Z. Zhao, L. Guo, Z. Peng, Lithium–oxygen chemistry at well-designed model interface probed by in situ spectroscopy coupled with theoretical calculations. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302000
- B. Chen, D. Wang, J. Tan, Y. Liu, M. Jiao, Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li–CO2 Batteries. J. Am. Chem. Soc. 144, 3106–3116 (2022). https://doi.org/10.1021/jacs.1c12096
- Y. Song, F. Kong, X. Sun, Q. Liu, X. Li et al., Highly reversible solid-state lithium–oxygen batteries by size-matching between Fe–Fe cluster and Li2-xO2. Adv. Energy Mater. 13, 2203660 (2022). https://doi.org/10.1002/aenm.202203660
- Q. Lv, Z. Zhu, Y. Ni, B. Wen, Z. Jiang et al., Atomic ruthenium-riveted metal–organic framework with tunable d-band modulates oxygen redox for Lithium–oxygen batteries. J. Am. Chem. Soc. 144, 23239–23246 (2022). https://doi.org/10.1021/jacs.2c11676
- Z. Zhu, Q. Lv, Y. Ni, S. Gao et al., Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium–oxygen battery. Angew. Chem. Int. Ed. 61, e202116699 (2022). https://doi.org/10.1002/ange.202116699
References
D. Wang, X. Mu, P. He, H. Zhou, Materials for advanced Li–O2 batteries: explorations, challenges and prospects. Mater. Today 26, 87–99 (2019). https://doi.org/10.1016/j.mattod.2019.01.016
X. Wu, B. Niu, H. Zhang, Z. Li, H. Luo et al., Enhancing the reaction kinetics and reversibility of Li–O2 batteries by multifunctional polymer additive. Adv. Energy Mater. 13, 2203089 (2023). https://doi.org/10.1002/aenm.202203089
L. Ren, R. Zheng, D. Du, Y. Yan, M. He et al., Optimized orbital occupancy of transition metal in spinel Ni–Co oxides with heteroatom doping for aprotic Li–O2 battery. Chem. Eng. J. 430, 132977 (2022). https://doi.org/10.1016/j.cej.2021.132977
Q. Lv, Z. Zhu, Y. Ni, J. Geng, F. Li, Spin-State manipulation of two-dimensional metal–organic framework with enhanced metal–oxygen covalency for lithium–oxygen batteries. Angew. Chem. Int. Ed. 61, e202114293 (2022). https://doi.org/10.1002/anie.202114293
Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li–O2 batteries. Angew. Chem. Int. Ed. 61, e202201416 (2022). https://doi.org/10.1002/ange.202201416
X. Li, G. Han, S. Lou, Z. Qiang, J. Zhu et al., Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy 93, 106810 (2022). https://doi.org/10.1016/j.nanoen.2021.106810
L. Song, W. Zhang, Y. Wang, X. Ge, L. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 11, 2191 (2020). https://doi.org/10.1038/s41467-020-15712-z
Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li et al., Lewis-acidic PtIr multipods enable high-performance Li–O2 batteries. Angew. Chem. Int. Ed. 60, 26592–26598 (2021). https://doi.org/10.1002/anie.202114067
S. Ke, W. Li, Y. Gu, J. Su, Y. Liu et al., Covalent organic frameworks with Ni-bis (dithiolene) and Co-porphyrin units as bifunctional catalysts for Li–O2. Sci. Adv. 9, eadf2398 (2023). https://doi.org/10.1126/sciadv.adf2398
B. Chen, X. Zhong, G. Zhou, N. Zhao, H. Cheng, Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. Adv. Mater. 34, 2105812 (2022). https://doi.org/10.1002/adma.202105812
Y. Sun, S. Dai, High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2021). https://doi.org/10.1126/sciadv.abg1600
Y. Xin, S. Li, Y. Qian, W. Zhu, H. Yuan et al., High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306 (2020). https://doi.org/10.1021/acscatal.0c03617
P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li–O2 batteries. Small 19, 2206742 (2023). https://doi.org/10.1002/smll.202206742
X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32, 2002853 (2020). https://doi.org/10.1002/adma.202002853
G.S. Hegde, R. Sundara, Entropy stabilized oxide nanocrystals as reaction promoters in lithium–O2 batteries. Batter. Supercaps 5, e202200068 (2022). https://doi.org/10.1002/batt.202200068
B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995). https://doi.org/10.1038/376238a0
F. Li, M. Li, H. Wang, X. Wang, L. Zheng et al., Oxygen vacancy-mediated growth of amorphous discharge products toward an ultrawide band light-assisted Li–O2 batteries. Adv. Mater. 34, 2107826 (2022). https://doi.org/10.1002/adma.202107826
X. Li, G. Han, Z. Qian, Q. Liu, Z. Qiang et al., π-conjugation induced anchoring of ferrocene on graphdiyne enable shuttle-free redox mediation in lithium–oxygen batteries. Adv. Sci. 9, 2103964 (2022). https://doi.org/10.1002/advs.202103964
X. Li, Z. Qian, G. Han, B. Sun, P. Zuo et al., Perovskite LaCox Mn1–x O3−σ with tunable defect and surface structures as cathode catalysts for Li–O2 batteries. ACS Appl. Mater. Interfaces 12, 10452–10460 (2020). https://doi.org/10.1021/acsami.9b21904
Z. Li, Q. Wang, X. Bai, M. Wang, Z. Yang et al., Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy Environ. Sci. 14, 5035–5043 (2021). https://doi.org/10.1039/D1EE01271A
W. Zhao, J. Wang, R. Yin, B. Li, X. Huang et al., Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li–O2 batteries. J. Colloid Interface Sci. 564, 28–36 (2020). https://doi.org/10.1016/j.jcis.2019.12.102
Y. Gong, W. Ding, Z. Li, R. Su, X. Zhang et al., Inverse spinel cobalt-iron oxide and N-Doped graphene composite as an efficient and durable bifuctional catalyst for Li–O2 batteries. ACS Catal. 8, 4082–4090 (2018). https://doi.org/10.1021/acscatal.7b04401
G. Zhang, G. Li, J. Wang, H. Tong, J. Wang et al., 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li–oxygen batteries. Adv. Energy Mater. 12, 2103910 (2022). https://doi.org/10.1002/aenm.202103910
Z. Sun, X. Cao, M. Tian, K. Zeng, Y. Jiang et al., Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium–oxygen batteries. Adv. Energy Mater. 11, 2100110 (2021). https://doi.org/10.1002/aenm.202100110
X. Han, L. Zhao, Y. Liang, J. Wang, Y. Long et al., Interfacial electron redistribution on lattice-matching NiS2/NiSe2 homologous heterocages with dual-phase synergy to tune the formation routes of Li2O2. Adv. Energy Mater. 12, 2202747 (2022). https://doi.org/10.1002/aenm.202202747
G. Zhang, C. Liu, L. Guo, R. Liu, L. Miao et al., Electronic “bridge” construction via Ag intercalation to diminish catalytic anisotropy for 2D tin diselenide cathode catalyst in lithium–oxygen batteries. Adv. Energy Mater. 12, 2200791 (2022). https://doi.org/10.1002/aenm.202200791
P. Wang, C. Li, S. Dong, X. Ge, P. Zhang et al., Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li–O2 batteries. Adv. Energy Mater. 9, 1900788 (2019). https://doi.org/10.1002/aenm.201900788
A. Dutta, K. Ito, A. Nomura, Y. Kubo, Quantitative delineation of the low energy decomposition pathway for lithium peroxide in lithium-oxygen battery. Adv. Sci. 7, 2001660 (2020). https://doi.org/10.1002/advs.202001660
S. Lau, L.A. Archer, Nucleation and growth of lithium peroxide in the Li–O2 battery. Nano Lett. 15, 5995–6002 (2015). https://doi.org/10.1021/acs.nanolett.5b02149
E. Dickinson, H. Ekström, E. Fontes, COMSOL Multiphysics®: finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 40, 71–74 (2014). https://doi.org/10.1016/j.elecom.2013.12.020
Y. Qiao, S. Wu, J. Yi, Y. Sun, S. Guo et al., From O2- to HO2-: reducing by-products and overpotential in Li–O2 batteries by water addition. Angew. Chem. Int. Ed. 129, 5042–5046 (2017). https://doi.org/10.1002/ange.201611122
Z. Zhao, L. Guo, Z. Peng, Lithium–oxygen chemistry at well-designed model interface probed by in situ spectroscopy coupled with theoretical calculations. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302000
B. Chen, D. Wang, J. Tan, Y. Liu, M. Jiao, Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li–CO2 Batteries. J. Am. Chem. Soc. 144, 3106–3116 (2022). https://doi.org/10.1021/jacs.1c12096
Y. Song, F. Kong, X. Sun, Q. Liu, X. Li et al., Highly reversible solid-state lithium–oxygen batteries by size-matching between Fe–Fe cluster and Li2-xO2. Adv. Energy Mater. 13, 2203660 (2022). https://doi.org/10.1002/aenm.202203660
Q. Lv, Z. Zhu, Y. Ni, B. Wen, Z. Jiang et al., Atomic ruthenium-riveted metal–organic framework with tunable d-band modulates oxygen redox for Lithium–oxygen batteries. J. Am. Chem. Soc. 144, 23239–23246 (2022). https://doi.org/10.1021/jacs.2c11676
Z. Zhu, Q. Lv, Y. Ni, S. Gao et al., Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium–oxygen battery. Angew. Chem. Int. Ed. 61, e202116699 (2022). https://doi.org/10.1002/ange.202116699