Ultraconformable Integrated Wireless Charging Micro-Supercapacitor Skin
Corresponding Author: Tao Deng
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 123
Abstract
Conformable and wireless charging energy storage devices play important roles in enabling the fast development of wearable, non-contact soft electronics. However, current wireless charging power sources are still restricted by limited flexural angles and fragile connection of components, resulting in the failure expression of performance and constraining their further applications in health monitoring wearables and moveable artificial limbs. Herein, we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor, which building blocks (including electrolyte, electrode and substrate) are all evaporated by liquid precursor. Owing to the infiltration and permeation of the liquid, each part of the integrated device attached firmly with each other, forming a compact and all-in-one configuration. In addition, benefitting from the controllable volume of electrode solution precursor, the electrode thickness is easily regulated varying from 11.7 to 112.5 μm. This prepared thin IWC-MSC skin can fit well with curving human body, and could be wireless charged to store electricity into high capacitive micro-supercapacitors (11.39 F cm−3) of the integrated device. We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.
Highlights:
1 An ultraconformable skin-like integrated wireless charging micro-supercapacitor (IWC-MSC) could be wireless charged to store electricity into high capacitive micro-supercapacitors (11.39 F cm−3), and fits well with human surface.
2 Building blocks of IWC-MSC skin are all evaporated by liquid precursor, and each part of the device attached firmly benefitting from the liquid permeation, forming a compact and all-in-one configuration.
3 The electrode thickness easily regulated varying from 11.7 to 112.5 μm by controlling the volume of electrode solution precursor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Say, I. Sahalianov, R. Brooke, L. Migliaccio, E.D. Głowacki et al., Ultrathin paper microsupercapacitors for electronic skin applications. Adv. Mater. Technol. 7, 2101420 (2022). https://doi.org/10.1002/admt.202101420
- Z. Wang, S. Yao, S. Wang, Z. Liu, X. Wan et al., Self-powered energy harvesting and implantable storage system based on hydrogel-enabled all-solid-state supercapacitor and triboelectric nanogenerator. Chem. Eng. J. 463, 142427 (2023). https://doi.org/10.1016/j.cej.2023.142427
- D.M. Sayed, N.K. Allam, All-solid-state, self-powered supercapacitors: state-of-the-art and future perspectives. J. Energy Storage 56, 105882 (2022). https://doi.org/10.1016/j.est.2022.105882
- Y. Wang, Y. Zhao, L. Qu, Laser fabrication of functional micro-supercapacitors. J. Energy Chem. 59, 642–665 (2021). https://doi.org/10.1016/j.jechem.2020.12.002
- W. Cheng, J. Fu, H. Hu, D. Ho, Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci. 8, e2100775 (2021). https://doi.org/10.1002/advs.202100775
- Z. Cao, H. Hu, D. Ho, Micro-redoxcapacitor: a hybrid architecture out of the notorious energy-power density dilemma. Adv. Funct. Mater. 32, 2270111 (2022). https://doi.org/10.1002/adfm.202270111
- Z. Cao, G. Liang, D. Ho, C. Zhi, H. Hu, Interlayer injection of low-valence Zn atoms to activate MXene-based micro-redox capacitors with battery-type voltage plateaus. Adv. Funct. Mater. 33, 2303060 (2023). https://doi.org/10.1002/adfm.202303060
- Y. Wu, H. Hu, C. Yuan, J. Song, M. Wu, Electrons/ions dual transport channels design: concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. Nano Energy 74, 104812 (2020). https://doi.org/10.1016/j.nanoen.2020.104812
- Z. Duan, C. Hu, W. Liu, J. Liu, Z. Chu et al., An all-MXene-based flexible, seamless system with integrated wireless charging coil, micro-supercapacitor, and photodetector. Adv. Mater. Technol. 8, 2300157 (2023). https://doi.org/10.1002/admt.202300157
- A. Khodabandehlo, A. Noori, M.S. Rahmanifar, M.F. El-Kady, R.B. Kaner et al., Laser-scribed graphene–polyaniline microsupercapacitor for internet-of-things applications. Adv. Funct. Mater. 32, 2204555 (2022). https://doi.org/10.1002/adfm.202204555
- C. Gao, J. Huang, Y. Xiao, G. Zhang, C. Dai et al., A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat. Commun. 12, 2647 (2021). https://doi.org/10.1038/s41467-021-22912-8
- S. Zhao, Y. Zhao, C. Li, W. Wang, H.-Y. Liu et al., Aramid nanodielectrics for ultraconformal transparent electronic skins. Adv. Mater. (2023). https://doi.org/10.1002/adma.202305479
- J. Liang, H. Sheng, H. Ma, P. Wang, Q. Wang et al., Transparent electronic skin from the integration of strain sensors and supercapacitors. Adv. Mater. Technol. 8, 2201234 (2023). https://doi.org/10.1002/admt.202201234
- Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang et al., Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020). https://doi.org/10.1126/scirobotics.aaz7946
- F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7, 2000261 (2020). https://doi.org/10.1002/advs.202000261
- C. Gao, J. Gao, C. Shao, Y. Xiao, Y. Zhao et al., Versatile origami micro-supercapacitors array as a wind energy harvester. J. Mater. Chem. A 6, 19750–19756 (2018). https://doi.org/10.1039/C8TA05148H
- Z.-S. Wu, K. Parvez, X. Feng, K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013). https://doi.org/10.1038/ncomms3487
- J. Atoyo, M.R. Burton, J. McGettrick, M.J. Carnie, Enhanced electrical conductivity and seebeck coefficient in PEDOT: PSS via a two-step ionic liquid and NaBH4 treatment for organic thermoelectrics. Polymers 12, 559 (2020). https://doi.org/10.3390/polym12030559
- M.Y. Teo, N. Kim, S. Kee, B.S. Kim, G. Kim et al., Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 9, 819–826 (2017). https://doi.org/10.1021/acsami.6b11988
- S. Kee, H. Kim, S.H.K. Paleti, A. El Labban, M. Neophytou et al., Highly stretchable and air-stable PEDOT: PSS/ionic liquid composites for efficient organic thermoelectrics. Chem. Mater. 31, 3519–3526 (2019). https://doi.org/10.1021/acs.chemmater.9b00819
- S.H. Chang, C.-H. Chiang, F.-S. Kao, C.-L. Tien, C.-G. Wu, Unraveling the enhanced electrical conductivity of PEDOT: PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J. 6, 8400307 (2014). https://doi.org/10.1109/JPHOT.2014.2331254
- B. Yao, H. Wang, Q. Zhou, M. Wu, M. Zhang et al., Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 29, 1700974 (2017). https://doi.org/10.1002/adma.201700974
- R. del Olmo, T.C. Mendes, M. Forsyth, N. ado, Mixed ionic and electronic conducting binders containing PEDOT: PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes. J. Mater. Chem. A 10, 19777–19786 (2022). https://doi.org/10.1039/D1TA09628A
- Z. Li, G. Ma, R. Ge, F. Qin, X. Dong et al., Free-standing conducting polymer films for high-performance energy devices. Angew. Chem. Int. Ed. 55, 979–982 (2016). https://doi.org/10.1002/anie.201509033
- A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48, 1272–1341 (2019). https://doi.org/10.1039/C8CS00581H
- G.P. Pandey, A.C. Rastogi, C.R. Westgate, All-solid-state supercapacitors with poly(3, 4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. J. Power Sources 245, 857–865 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.017
- N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500–508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
- Y. Chen, J. Xu, Y. Yang, Y. Zhao, W. Yang et al., The preparation and electrochemical properties of PEDOT: PSS/MnO2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochim. Acta 193, 199–205 (2016). https://doi.org/10.1016/j.electacta.2016.02.021
- W. Gao, N. Singh, L. Song, Z. Liu, A.L. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496–500 (2011). https://doi.org/10.1038/nnano.2011.110
- M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
- H.U. Lee, S.W. Kim, Pen lithography for flexible microsupercapacitors with layer-by-layer assembled graphene flake/PEDOT nanocomposite electrodes. J. Mater. Chem. A 5, 13581–13590 (2017). https://doi.org/10.1039/C7TA02936E
- B. Nagar, D.P. Dubal, L. Pires, A. Merkoçi, P. Gómez-Romero, Design and fabrication of printed paper-based hybrid micro-supercapacitor by using graphene and redox-active electrolyte. Chemsuschem 11, 1849–1856 (2018). https://doi.org/10.1002/cssc.201800426
- Z. Su, Y. Jin, H. Wang, Z. Li, L. Huang et al., PEDOT: PSS and its composites for flexible supercapacitors. ACS Appl. Energy Mater. 5, 11915–11932 (2022). https://doi.org/10.1021/acsaem.2c01524
- Y. Yang, L. He, C. Tang, P. Hu, X. Hong et al., Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 9, 2510–2519 (2016). https://doi.org/10.1007/s12274-016-1137-3
- L. Liu, D. Ye, Y. Yu, L. Liu, Y. Wu, Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching. Carbon 111, 121–127 (2017). https://doi.org/10.1016/j.carbon.2016.09.037
- H. Pang, Y. Zhang, W.-Y. Lai, Z. Hu, W. Huang Lamellar, K2Co3(P2O7)2·2H2O nanocrystal whiskers: high-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. Nano Energy 15, 303–312 (2015). https://doi.org/10.1016/j.nanoen.2015.04.034
- X. Jin, G. Zhang, G. Sun, H. Yang, Y. Xiao et al., Flexible and high-performance microsupercapacitors with wide temperature tolerance. Nano Energy 64, 103938 (2019). https://doi.org/10.1016/j.nanoen.2019.103938
- X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25, 5091–5097 (2013). https://doi.org/10.1002/adma.201301465
- A. de Izarra, S. Park, J. Lee, Y. Lansac, Y.H. Jang, Ionic liquid designed for PEDOT: PSS conductivity enhancement. J. Am. Chem. Soc. 140, 5375–5384 (2018). https://doi.org/10.1021/jacs.7b10306
- H. Park, S.H. Lee, F.S. Kim, H.H. Choi, I.W. Cheong et al., Enhanced thermoelectric properties of PEDOT: PSS nanofilms by a chemical dedoping process. J. Mater. Chem. A 2, 6532–6539 (2014). https://doi.org/10.1039/C3TA14960A
References
M.G. Say, I. Sahalianov, R. Brooke, L. Migliaccio, E.D. Głowacki et al., Ultrathin paper microsupercapacitors for electronic skin applications. Adv. Mater. Technol. 7, 2101420 (2022). https://doi.org/10.1002/admt.202101420
Z. Wang, S. Yao, S. Wang, Z. Liu, X. Wan et al., Self-powered energy harvesting and implantable storage system based on hydrogel-enabled all-solid-state supercapacitor and triboelectric nanogenerator. Chem. Eng. J. 463, 142427 (2023). https://doi.org/10.1016/j.cej.2023.142427
D.M. Sayed, N.K. Allam, All-solid-state, self-powered supercapacitors: state-of-the-art and future perspectives. J. Energy Storage 56, 105882 (2022). https://doi.org/10.1016/j.est.2022.105882
Y. Wang, Y. Zhao, L. Qu, Laser fabrication of functional micro-supercapacitors. J. Energy Chem. 59, 642–665 (2021). https://doi.org/10.1016/j.jechem.2020.12.002
W. Cheng, J. Fu, H. Hu, D. Ho, Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci. 8, e2100775 (2021). https://doi.org/10.1002/advs.202100775
Z. Cao, H. Hu, D. Ho, Micro-redoxcapacitor: a hybrid architecture out of the notorious energy-power density dilemma. Adv. Funct. Mater. 32, 2270111 (2022). https://doi.org/10.1002/adfm.202270111
Z. Cao, G. Liang, D. Ho, C. Zhi, H. Hu, Interlayer injection of low-valence Zn atoms to activate MXene-based micro-redox capacitors with battery-type voltage plateaus. Adv. Funct. Mater. 33, 2303060 (2023). https://doi.org/10.1002/adfm.202303060
Y. Wu, H. Hu, C. Yuan, J. Song, M. Wu, Electrons/ions dual transport channels design: concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. Nano Energy 74, 104812 (2020). https://doi.org/10.1016/j.nanoen.2020.104812
Z. Duan, C. Hu, W. Liu, J. Liu, Z. Chu et al., An all-MXene-based flexible, seamless system with integrated wireless charging coil, micro-supercapacitor, and photodetector. Adv. Mater. Technol. 8, 2300157 (2023). https://doi.org/10.1002/admt.202300157
A. Khodabandehlo, A. Noori, M.S. Rahmanifar, M.F. El-Kady, R.B. Kaner et al., Laser-scribed graphene–polyaniline microsupercapacitor for internet-of-things applications. Adv. Funct. Mater. 32, 2204555 (2022). https://doi.org/10.1002/adfm.202204555
C. Gao, J. Huang, Y. Xiao, G. Zhang, C. Dai et al., A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat. Commun. 12, 2647 (2021). https://doi.org/10.1038/s41467-021-22912-8
S. Zhao, Y. Zhao, C. Li, W. Wang, H.-Y. Liu et al., Aramid nanodielectrics for ultraconformal transparent electronic skins. Adv. Mater. (2023). https://doi.org/10.1002/adma.202305479
J. Liang, H. Sheng, H. Ma, P. Wang, Q. Wang et al., Transparent electronic skin from the integration of strain sensors and supercapacitors. Adv. Mater. Technol. 8, 2201234 (2023). https://doi.org/10.1002/admt.202201234
Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang et al., Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020). https://doi.org/10.1126/scirobotics.aaz7946
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7, 2000261 (2020). https://doi.org/10.1002/advs.202000261
C. Gao, J. Gao, C. Shao, Y. Xiao, Y. Zhao et al., Versatile origami micro-supercapacitors array as a wind energy harvester. J. Mater. Chem. A 6, 19750–19756 (2018). https://doi.org/10.1039/C8TA05148H
Z.-S. Wu, K. Parvez, X. Feng, K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013). https://doi.org/10.1038/ncomms3487
J. Atoyo, M.R. Burton, J. McGettrick, M.J. Carnie, Enhanced electrical conductivity and seebeck coefficient in PEDOT: PSS via a two-step ionic liquid and NaBH4 treatment for organic thermoelectrics. Polymers 12, 559 (2020). https://doi.org/10.3390/polym12030559
M.Y. Teo, N. Kim, S. Kee, B.S. Kim, G. Kim et al., Highly stretchable and highly conductive PEDOT: PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 9, 819–826 (2017). https://doi.org/10.1021/acsami.6b11988
S. Kee, H. Kim, S.H.K. Paleti, A. El Labban, M. Neophytou et al., Highly stretchable and air-stable PEDOT: PSS/ionic liquid composites for efficient organic thermoelectrics. Chem. Mater. 31, 3519–3526 (2019). https://doi.org/10.1021/acs.chemmater.9b00819
S.H. Chang, C.-H. Chiang, F.-S. Kao, C.-L. Tien, C.-G. Wu, Unraveling the enhanced electrical conductivity of PEDOT: PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J. 6, 8400307 (2014). https://doi.org/10.1109/JPHOT.2014.2331254
B. Yao, H. Wang, Q. Zhou, M. Wu, M. Zhang et al., Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 29, 1700974 (2017). https://doi.org/10.1002/adma.201700974
R. del Olmo, T.C. Mendes, M. Forsyth, N. ado, Mixed ionic and electronic conducting binders containing PEDOT: PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes. J. Mater. Chem. A 10, 19777–19786 (2022). https://doi.org/10.1039/D1TA09628A
Z. Li, G. Ma, R. Ge, F. Qin, X. Dong et al., Free-standing conducting polymer films for high-performance energy devices. Angew. Chem. Int. Ed. 55, 979–982 (2016). https://doi.org/10.1002/anie.201509033
A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48, 1272–1341 (2019). https://doi.org/10.1039/C8CS00581H
G.P. Pandey, A.C. Rastogi, C.R. Westgate, All-solid-state supercapacitors with poly(3, 4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. J. Power Sources 245, 857–865 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.017
N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500–508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
Y. Chen, J. Xu, Y. Yang, Y. Zhao, W. Yang et al., The preparation and electrochemical properties of PEDOT: PSS/MnO2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochim. Acta 193, 199–205 (2016). https://doi.org/10.1016/j.electacta.2016.02.021
W. Gao, N. Singh, L. Song, Z. Liu, A.L. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496–500 (2011). https://doi.org/10.1038/nnano.2011.110
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
H.U. Lee, S.W. Kim, Pen lithography for flexible microsupercapacitors with layer-by-layer assembled graphene flake/PEDOT nanocomposite electrodes. J. Mater. Chem. A 5, 13581–13590 (2017). https://doi.org/10.1039/C7TA02936E
B. Nagar, D.P. Dubal, L. Pires, A. Merkoçi, P. Gómez-Romero, Design and fabrication of printed paper-based hybrid micro-supercapacitor by using graphene and redox-active electrolyte. Chemsuschem 11, 1849–1856 (2018). https://doi.org/10.1002/cssc.201800426
Z. Su, Y. Jin, H. Wang, Z. Li, L. Huang et al., PEDOT: PSS and its composites for flexible supercapacitors. ACS Appl. Energy Mater. 5, 11915–11932 (2022). https://doi.org/10.1021/acsaem.2c01524
Y. Yang, L. He, C. Tang, P. Hu, X. Hong et al., Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 9, 2510–2519 (2016). https://doi.org/10.1007/s12274-016-1137-3
L. Liu, D. Ye, Y. Yu, L. Liu, Y. Wu, Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching. Carbon 111, 121–127 (2017). https://doi.org/10.1016/j.carbon.2016.09.037
H. Pang, Y. Zhang, W.-Y. Lai, Z. Hu, W. Huang Lamellar, K2Co3(P2O7)2·2H2O nanocrystal whiskers: high-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. Nano Energy 15, 303–312 (2015). https://doi.org/10.1016/j.nanoen.2015.04.034
X. Jin, G. Zhang, G. Sun, H. Yang, Y. Xiao et al., Flexible and high-performance microsupercapacitors with wide temperature tolerance. Nano Energy 64, 103938 (2019). https://doi.org/10.1016/j.nanoen.2019.103938
X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25, 5091–5097 (2013). https://doi.org/10.1002/adma.201301465
A. de Izarra, S. Park, J. Lee, Y. Lansac, Y.H. Jang, Ionic liquid designed for PEDOT: PSS conductivity enhancement. J. Am. Chem. Soc. 140, 5375–5384 (2018). https://doi.org/10.1021/jacs.7b10306
H. Park, S.H. Lee, F.S. Kim, H.H. Choi, I.W. Cheong et al., Enhanced thermoelectric properties of PEDOT: PSS nanofilms by a chemical dedoping process. J. Mater. Chem. A 2, 6532–6539 (2014). https://doi.org/10.1039/C3TA14960A