Low-Temperature Electrolytes for Lithium-Ion Batteries: Current Challenges, Development, and Perspectives
Corresponding Author: Jiaye Ye
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 65
Abstract
Lithium-ion batteries (LIBs), while dominant in energy storage due to high energy density and cycling stability, suffer from severe capacity decay, rate capability degradation, and lithium dendrite formation under low-temperature (LT) operation. Therefore, a more comprehensive and systematic understanding of LIB behavior at LT is urgently required. This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs. The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges: insufficient ionic conductivity under cryogenic conditions, kinetically hindered charge transfer processes, Li⁺ transport limitations across the solid-electrolyte interphase (SEI), and uncontrolled lithium dendrite growth. The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics, solvent matrix optimization through dielectric constant and viscosity regulation, interfacial engineering additives for constructing low-impedance SEI layers, and gel-polymer composite electrolyte systems. Notably, particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure–property relationships. These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.
Highlights:
1 Key electrolyte-related factors limiting the low-temperature performance of lithium-ion batteries (LIBs) are analyzed.
2 Emerging strategies to enhance the low-temperature performance of LIBs are summarized from the perspectives of electrolyte engineering and artificial intelligence (AI) -assisted design.
3 Perspectives and challenges on AI-driven design, advanced characterization, and novel electrolyte systems for low-temperature LIBs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.-M. Qin, Z. Li, W.-X. Su, J.-M. Hu, H. Zou et al., Porous organic cage-based quasi-solid-state electrolyte with cavity-induced anion-trapping effect for long-life lithium metal batteries. Nano-Micro Lett. 17(1), 38 (2024). https://doi.org/10.1007/s40820-024-01499-x
- J. You, Q. Wang, R. Wei, L. Deng, Y. Hu et al., Boosting high-voltage practical lithium metal batteries with tailored additives. Nano-Micro Lett. 16(1), 257 (2024). https://doi.org/10.1007/s40820-024-01479-1
- Y. Cao, J. Li, H. Qu, H. Ji, L. Li et al., Reconstruction of lithium replenishment channel with an amorphous structure for efficient regeneration of spent LiCoO2 cathodes. Energy Mater. Devices 3(1), 9370059 (2025). https://doi.org/10.26599/emd.2025.9370059
- J. Mohammadi Moradian, A. Ali, X. Yan, G. Pei, S. Zhang et al., Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges. Nano-Micro Lett. 17(1), 279 (2025). https://doi.org/10.1007/s40820-025-01786-1
- Z. Han, P. Maitarad, N. Yodsin, B. Zhao, H. Ma et al., Catalysis-induced highly-stable interface on porous silicon for high-rate lithium-ion batteries. Nano-Micro Lett. 17(1), 200 (2025). https://doi.org/10.1007/s40820-025-01701-8
- H. Xiao, X. Li, Y. Fu, Advances in anion chemistry in the electrolyte design for better lithium batteries. Nano-Micro Lett. 17(1), 149 (2025). https://doi.org/10.1007/s40820-024-01629-5
- F. Yu, Y. Mu, M. Han, J. Liu, K. Zheng et al., Electrochemically stable and ultrathin polymer-based solid electrolytes for dendrite-free all-solid-state lithium-metal batteries. Mater. Futur. 4(1), 015101 (2025). https://doi.org/10.1088/2752-5724/ada0cc
- H. Hu, J. Li, F. Lin, J. Huang, H. Zheng et al., Induction effect of fluorine-grafted polymer-based electrolytes for high-performance lithium metal batteries. Nano-Micro Lett. 17(1), 256 (2025). https://doi.org/10.1007/s40820-025-01738-9
- F. Yao, J. Meng, X. Wang, J. Wang, L. Chang et al., Theoretical investigation of the doping effect on interface storage in the graphene/silicene heterostructure as the anode for lithium-ion batteries. Energy Mater. Devices 1(2), 9370020 (2023). https://doi.org/10.26599/emd.2023.9370020
- S. Dong, L. Shi, S. Geng, Y. Ning, C. Kang et al., Breaking solvation dominance effect enabled by ion-dipole interaction toward long-spanlife silicon oxide anodes in lithium-ion batteries. Nano-Micro Lett. 17(1), 95 (2024). https://doi.org/10.1007/s40820-024-01592-1
- X. Lin, J. Lin, X. Lu, X. Tan, H. Li et al., Vacancy-engineered LiMn2O4 embedded in dual-heteroatom-doped carbon via metal-organic framework-mediated synthesis towards longevous lithium ion battery. Mater. Futures 4(2), 025101 (2025). https://doi.org/10.1088/2752-5724/ad9e08
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- Z. Li, Y.-X. Yao, S. Sun, C.-B. Jin, N. Yao et al., 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. 62(37), e202303888 (2023). https://doi.org/10.1002/anie.202303888
- M. Qin, Z. Zeng, S. Cheng, J. Xie, Challenges and strategies of formulating low-temperature electrolytes in lithium-ion batteries. Interdiscip. Mater. 2(2), 308–336 (2023). https://doi.org/10.1002/idm2.12077
- M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
- G. Wang, G. Wang, L. Fei, L. Zhao, H. Zhang, Structural engineering of anode materials for low-temperature lithium-ion batteries: mechanisms, strategies, and prospects. Nano-Micro Lett. 16(1), 150 (2024). https://doi.org/10.1007/s40820-024-01363-y
- X. Wu, M. Wang, H. Pan, X. Sun, S. Tang et al., Developing high-energy, stable all-solid-state lithium batteries using aluminum-based anodes and high-nickel cathodes. Nano-Micro Lett. 17(1), 239 (2025). https://doi.org/10.1007/s40820-025-01751-y
- Z. Zhu, X. Li, X. Qi, J. Ji, Y. Ji et al., Demystifying the salt-induced Li loss: a universal procedure for the electrolyte design of lithium-metal batteries. Nano-Micro Lett. 15(1), 234 (2023). https://doi.org/10.1007/s40820-023-01205-3
- J. Hou, M. Yang, D. Wang, J. Zhang, Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 10(18), 1904152 (2020). https://doi.org/10.1002/aenm.201904152
- Y.-G. Cho, M. Li, J. Holoubek, W. Li, Y. Yin et al., Enabling the low-temperature cycling of NMC||Graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 6(5), 2016–2023 (2021). https://doi.org/10.1021/acsenergylett.1c00484
- J. Xu, X. Wang, N. Yuan, J. Ding, S. Qin et al., Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Mater. 23, 383–389 (2019). https://doi.org/10.1016/j.ensm.2019.04.033
- X. Huang, J. Meng, W. Jiang, W. Liu, K. Liu et al., Alternating current heating techniques for lithium-ion batteries in electric vehicles: recent advances and perspectives. J. Energy Chem. 96, 679–697 (2024). https://doi.org/10.1016/j.jechem.2024.05.027
- S. Liu, W. Tian, J. Shen, Z. Wang, H. Pan et al., Bioinspired gel polymer electrolyte for wide temperature lithium metal battery. Nat. Commun. 16(1), 2474 (2025). https://doi.org/10.1038/s41467-025-57856-w
- Y. Li, B. Wen, N. Li, Y. Zhao, Y. Chen et al., Electrolyte engineering to construct robust interphase with high ionic conductivity for wide temperature range lithium metal batteries. Angew. Chem. Int. Ed. 64(2), e202414636 (2025). https://doi.org/10.1002/anie.202414636
- G. Zhang, J. Chang, L. Wang, J. Li, C. Wang et al., A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14(1), 1081 (2023). https://doi.org/10.1038/s41467-023-36793-6
- X. Min, L. Wang, Y. Wu, Z. Zhang, H. Xu et al., Overcoming low-temperature challenges in LIBs: the role of anion-rich solvation sheath in strong solvents. J. Energy Chem. 106, 63–70 (2025). https://doi.org/10.1016/j.jechem.2025.02.027
- A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10(38), 2001972 (2020). https://doi.org/10.1002/aenm.202001972
- C. Zhang, S. Huo, B. Su, C. Bi, C. Zhang et al., Challenges of film-forming additives in low-temperature lithium-ion batteries: a review. J. Power. Sources 606, 234559 (2024). https://doi.org/10.1016/j.jpowsour.2024.234559
- Y. Xiong, D. Zhang, X. Ruan, S. Jiang, X. Zou et al., Artificial intelligence in rechargeable battery: advancements and prospects. Energy Storage Mater. 73, 103860 (2024). https://doi.org/10.1016/j.ensm.2024.103860
- K.M. Abraham, J.L. Goldman, The use of the reactive ether, tetrahydrofuran (THF), in rechargeable lithium cells. J. Power. Sources 9(3), 239–245 (1983). https://doi.org/10.1016/0378-7753(83)87024-4
- M.C. Smart, B.V. Ratnakumar, S. Surampudi, Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates. J. Electrochem. Soc. 146(2), 486–492 (1999). https://doi.org/10.1149/1.1391633
- L.F. Xiao, Y.L. Cao, X.P. Ai, H.X. Yang, Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries. Electrochim. Acta 49(27), 4857–4863 (2004). https://doi.org/10.1016/j.electacta.2004.05.038
- S. Herreyre, O. Huchet, S. Barusseau, F. Perton, J.M. Bodet et al., New Li-ion electrolytes for low temperature applications. J. Power. Sources 97, 576–580 (2001). https://doi.org/10.1016/S0378-7753(01)00670-X
- M.C. Smart, B.V. Ratnakumar, L.D. Whitcanack, K.B. Chin, S. Surampudi et al., Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J. Power. Sources 119, 349–358 (2003). https://doi.org/10.1016/S0378-7753(03)00154-X
- L. Yang, A. Xiao, B.L. Lucht, Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy. J. Mol. Liq. 154(2–3), 131–133 (2010). https://doi.org/10.1016/j.molliq.2010.04.025
- M. Qin, Z. Zeng, F. Ma, C. Gu, X. Chen et al., Doping in solvation structure: enabling fluorinated carbonate electrolyte for high-voltage and high-safety lithium-ion batteries. ACS Energy Lett. 9(6), 2536–2544 (2024). https://doi.org/10.1021/acsenergylett.4c00790
- J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032
- S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102
- H. Zhang, Z. Zeng, Q. Wu, X. Wang, M. Qin et al., Loosely coordinating diluted highly concentrated electrolyte toward −60 °C Li metal batteries. J. Energy Chem. 90, 380–387 (2024). https://doi.org/10.1016/j.jechem.2023.10.050
- S. Lei, Z. Zeng, M. Liu, M. Qin, Y. Wu et al., Nonflammable cosolvent enables methyl acetate-based electrolyte for 4.6 V-class lithium-ion batteries operating at −60 °C. Chem. Eng. J. 478, 147180 (2023). https://doi.org/10.1016/j.cej.2023.147180
- J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6(3), 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
- M. Qin, Z. Zeng, Q. Wu, F. Ma, Q. Liu et al., Microsolvating competition in Li+ solvation structure affording PC-based electrolyte with fast kinetics for lithium-ion batteries. Adv. Funct. Mater. 34(41), 2406357 (2024). https://doi.org/10.1002/adfm.202406357
- J. Wang, J. Kumar, K. Ding, X. Nie, X. Zhang et al., Unlocking low temperature-resistant lithium metal batteries: mechanisms, challenges, AI and functional electrolytes design. Mater. Today (2025). https://doi.org/10.1016/j.mattod.2025.06.039
- X. Su, Y. Xu, Y. Wu, H. Li, J. Yang et al., Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. Energy Storage Mater. 56, 642–663 (2023). https://doi.org/10.1016/j.ensm.2023.01.044
- Q. Sheng, Y. Huang, Q. Han, H. Li, X. Tao et al., The challenges and solutions for low-temperature lithium metal batteries: present and future. Energy Storage Mater. 73, 103783 (2024). https://doi.org/10.1016/j.ensm.2024.103783
- Z. Huang, Z. Xiao, R. Jin, Z. Li, C. Shu et al., A comprehensive review on liquid electrolyte design for low-temperature lithium/sodium metal batteries. Energy Environ. Sci. 17(15), 5365–5386 (2024). https://doi.org/10.1039/D4EE02060J
- N. Yao, X. Chen, X. Shen, R. Zhang, Z.-H. Fu et al., An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes. Angew. Chem. Int. Ed. 60(39), 21473–21478 (2021). https://doi.org/10.1002/anie.202107657
- L. Xu, W. Wei, D. You, H. Xiong, J. Yang, Ion conduction in the comb-branched polyether electrolytes with controlled network structures. Soft Matter 16(8), 1979–1988 (2020). https://doi.org/10.1039/C9SM02117E
- J.N. Al-Dawsari, A. Bessadok-Jemai, I. Wazeer, S. Mokraoui, M.A. AlMansour et al., Fitting of experimental viscosity to temperature data for deep eutectic solvents. J. Mol. Liq. 310, 113127 (2020). https://doi.org/10.1016/j.molliq.2020.113127
- C. Wang, A.C. Thenuwara, J. Luo, P.P. Shetty, M.T. McDowell et al., Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions. Nat. Commun. 13(1), 4934 (2022). https://doi.org/10.1038/s41467-022-32606-4
- Y.-X. Yao, N. Yao, X.-R. Zhou, Z.-H. Li, X.-Y. Yue et al., Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures. Adv. Mater. 34(45), e2206448 (2022). https://doi.org/10.1002/adma.202206448
- C.G. Salzmann, Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150(6), 060901 (2019). https://doi.org/10.1063/1.5085163
- S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49(7), 1057–1061 (2004). https://doi.org/10.1016/j.electacta.2003.10.016
- L. Li, W. Lv, J. Chen, C. Zhu, S. Dmytro et al., Lithium difluorophosphate (LiPO2F2): an electrolyte additive to help boost low-temperature behaviors for lithium-ion batteries. ACS Appl. Energy Mater. 5(9), 11900–11914 (2022). https://doi.org/10.1021/acsaem.2c02658
- S.S. Zhang, K. Xu, T.R. Jow, The low temperature performance of Li-ion batteries. J. Power. Sources 115(1), 137–140 (2003). https://doi.org/10.1016/S0378-7753(02)00618-3
- L. Liao, P. Zuo, Y. Ma, X. Chen, Y. An et al., Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochim. Acta 60, 269–273 (2012). https://doi.org/10.1016/j.electacta.2011.11.041
- K. Ariyoshi, Y. Nagashima, Modelling and analysis of polarisation characteristics in lithium insertion electrodes considering charge transfer and contact resistances. Chem. Commun. 60(88), 12888–12891 (2024). https://doi.org/10.1039/d4cc04375h
- D. Qu, W. Ji, H. Qu, Probing process kinetics in batteries with electrochemical impedance spectroscopy. Commun. Mater. 3, 61 (2022). https://doi.org/10.1038/s43246-022-00284-w
- W. Hu, Y. Peng, Y. Wei, Y. Yang, Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-ion batteries. J. Phys. Chem. C 127(9), 4465–4495 (2023). https://doi.org/10.1021/acs.jpcc.3c00033
- T. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, Z. Ogumi, Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 152(11), A2151 (2005). https://doi.org/10.1149/1.2042907
- Q. Li, D. Lu, J. Zheng, S. Jiao, L. Luo et al., Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl. Mater. Interfaces 9(49), 42761–42768 (2017). https://doi.org/10.1021/acsami.7b13887
- K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111(20), 7411–7421 (2007). https://doi.org/10.1021/jp068691u
- M. Bin Jassar, C. Michel, S. Abada, T. De Bruin, S. Tant et al., A perspective on the molecular modeling of electrolyte decomposition reactions for solid electrolyte interphase growth in lithium-ion batteries. Adv. Funct. Mater. 34(30), 2313188 (2024). https://doi.org/10.1002/adfm.202313188
- H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Lithium batteries and the solid electrolyte interphase (SEI): progress and outlook. Adv. Energy Mater. 13(10), 2203307 (2023). https://doi.org/10.1002/aenm.202203307
- J. Holoubek, Y. Yin, M. Li, M. Yu, Y.S. Meng et al., Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. 58(52), 18892–18897 (2019). https://doi.org/10.1002/anie.201912167
- E.M. Gavilán-Arriazu, M.P. Mercer, O.A. Pinto, O.A. Oviedo, D.E. Barraco et al., Effect of temperature on the kinetics of electrochemical insertion of Li-ions into a graphite electrode studied by kinetic Monte Carlo. J. Electrochem. Soc. 167(1), 013533 (2020). https://doi.org/10.1149/2.0332001jes
- J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
- S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
- M. Yeddala, L. Rynearson, B.L. Lucht, Modification of carbonate electrolytes for lithium metal electrodes. ACS Energy Lett. 8(11), 4782–4793 (2023). https://doi.org/10.1021/acsenergylett.3c01709
- S. Shi, P. Lu, Z. Liu, Y. Qi, L.G. Hector Jr. et al., Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134(37), 15476–15487 (2012). https://doi.org/10.1021/ja305366r
- P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10(34), 2001257 (2020). https://doi.org/10.1002/aenm.202001257
- H. Wu, H. Jia, C. Wang, J.-G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11(5), 2003092 (2021). https://doi.org/10.1002/aenm.202003092
- Z. Zhang, Y. Li, R. Xu, W. Zhou, Y. Li et al., Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375(6576), 66–70 (2022). https://doi.org/10.1126/science.abi8703
- A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar et al., Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 123(16), 10237–10245 (2019). https://doi.org/10.1021/acs.jpcc.9b00436
- Q. Zhang, J. Pan, P. Lu, Z. Liu, M.W. Verbrugge et al., Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16(3), 2011–2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283
- J. Pokharel, A. Cresce, B. Pant, M.Y. Yang, A. Gurung et al., Manipulating the diffusion energy barrier at the lithium metal electrolyte interface for dendrite-free long-life batteries. Nat. Commun. 15(1), 3085 (2024). https://doi.org/10.1038/s41467-024-47521-z
- Y. Yang, X. Wang, J. Zhu, L. Tan, N. Li et al., Dilute electrolytes with fluorine-free ether solvents for 4.5 V lithium metal batteries. Angew. Chem. Int. Ed. 63(40), e202409193 (2024). https://doi.org/10.1002/anie.202409193
- Z.Y. Lu, C.N. Geng, H.J. Yang, P. He, S.C. Wu et al., Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. U.S.A. 119(40), e2210203119 (2022). https://doi.org/10.1073/pnas.2210203119
- L. Benitez, J.M. Seminario, Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries. J. Electrochem. Soc. 164(11), E3159–E3170 (2017). https://doi.org/10.1149/2.0181711jes
- L. Dong, H.-J. Yan, Q.-X. Liu, J.-Y. Liang, J. Yue et al., Quantification of charge transport and mass deprivation in solid electrolyte interphase for kinetically-stable low-temperature lithium-ion batteries. Angew. Chem. Int. Ed. 63(43), e202411029 (2024). https://doi.org/10.1002/anie.202411029
- T.R. Jow, S.A. Delp, J.L. Allen, J.-P. Jones, M.C. Smart, Factors limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165(2), A361–A367 (2018). https://doi.org/10.1149/2.1221802jes
- Q. Zheng, M. Watanabe, Y. Iwatate, D. Azuma, K. Shibazaki et al., Hydrothermal leaching of ternary and binary lithium-ion battery cathode materials with citric acid and the kinetic study. J. Supercrit. Fluids 165, 104990 (2020). https://doi.org/10.1016/j.supflu.2020.104990
- F. Meng, X. Xiong, L. Tan, B. Yuan, R. Hu, Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: a review. Energy Storage Mater. 44, 390–407 (2022). https://doi.org/10.1016/j.ensm.2021.10.032
- J.H. Jeong, O. Min Ju, K.C. Roh, Correlation between lithium-ion accessibility to the electrolyte–active material interface and low-temperature electrochemical performance. J. Alloys Compd. 856, 158233 (2021). https://doi.org/10.1016/j.jallcom.2020.158233
- N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34(15), e2107899 (2022). https://doi.org/10.1002/adma.202107899
- H. Wang, Y. Zhu, S.C. Kim, A. Pei, Y. Li et al., Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proc. Natl. Acad. Sci. U. S. A. 117(47), 29453–29461 (2020). https://doi.org/10.1073/pnas.2009221117
- L. Xu, Y. Xiao, Y. Yang, S.-J. Yang, X.-R. Chen et al., Operando quantified lithium plating determination enabled by dynamic capacitance measurement in working Li-ion batteries. Angew. Chem. Int. Ed. 61(39), e202210365 (2022). https://doi.org/10.1002/anie.202210365
- M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
- C. Uhlmann, J. Illig, M. Ender, R. Schuster, E. Ivers-Tiffée, In situ detection of lithium metal plating on graphite in experimental cells. J. Power. Sources 279, 428–438 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.046
- X. Li, P. Xu, Y. Tian, A. Fortini, S.H. Choi et al., Electrolyte modulators toward polarization-mitigated lithium-ion batteries for sustainable electric transportation. Adv. Mater. 34(7), e2107787 (2022). https://doi.org/10.1002/adma.202107787
- N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu et al., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022). https://doi.org/10.1016/j.etran.2021.100145
- Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng et al., Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 6(91), 88683–88700 (2016). https://doi.org/10.1039/c6ra19482f
- C. von Lüders, V. Zinth, S.V. Erhard, P.J. Osswald, M. Hofmann et al., Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction. J. Power. Sources 342, 17–23 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.032
- G. Zhang, X. Wei, G. Han, H. Dai, J. Zhu et al., Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. J. Power. Sources 484, 229312 (2021). https://doi.org/10.1016/j.jpowsour.2020.229312
- N. Yao, S.-Y. Sun, X. Chen, X.-Q. Zhang, X. Shen et al., The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 61(52), e202210859 (2022). https://doi.org/10.1002/anie.202210859
- Z. Wang, Q. Zhao, S. Wang, Y. Song, B. Shi et al., Aging and post-aging thermal safety of lithium-ion batteries under complex operating conditions: a comprehensive review. J. Power. Sources 623, 235453 (2024). https://doi.org/10.1016/j.jpowsour.2024.235453
- B. Ng, P.T. Coman, E. Faegh, X. Peng, S.G. Karakalos et al., Low-temperature lithium plating/corrosion hazard in lithium-ion batteries: electrode rippling, variable states of charge, and thermal and nonthermal runaway. ACS Appl. Energy Mater. 3(4), 3653–3664 (2020). https://doi.org/10.1021/acsaem.0c00130
- Y. Xiang, M. Tao, X. Chen, P. Shan, D. Zhao et al., Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nat. Commun. 14(1), 177 (2023). https://doi.org/10.1038/s41467-022-35779-0
- S. Xu, K.-H. Chen, N.P. Dasgupta, J.B. Siegel, A.G. Stefanopoulou, Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. J. Electrochem. Soc. 166(14), A3456–A3463 (2019). https://doi.org/10.1149/2.0991914jes
- M. Abdollahifar, A. Paolella, “Dead lithium” formation and mitigation strategies in anode-free Li-metal batteries. Batter. Supercaps 8(3), e202400505 (2025). https://doi.org/10.1002/batt.202400505
- X. Duan, J. Sun, L. Shi, S. Dong, G. Cui, Exploring the active lithium loss in anode-free lithium metal batteries: mechanisms, challenges, and strategies. Interdiscip. Mater. 4(2), 217–234 (2025). https://doi.org/10.1002/idm2.12232
- M. Wang, X. Guo, R. Luo, X. Jiang, Y. Tang et al., The nucleation and growth mechanism of spherical Li for advanced Li metal anodes–a review. Chem. Commun. 61(19), 3777–3793 (2025). https://doi.org/10.1039/D4CC06729K
- L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang et al., Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15(2), 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x
- L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar et al., Self-heating–induced healing of lithium dendrites. Science 359(6383), 1513–1516 (2018). https://doi.org/10.1126/science.aap8787
- X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4(9), 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
- C. Guo, K. Du, R. Tao, Y. Guo, S. Yao et al., Inorganic filler enhanced formation of stable inorganic-rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33(29), 2301111 (2023). https://doi.org/10.1002/adfm.202301111
- N. Chen, M. Feng, C. Li, Y. Shang, Y. Ma et al., Anion-dominated conventional-concentrations electrolyte to improve low-temperature performance of lithium-ion batteries. Adv. Funct. Mater. 34(33), 2400337 (2024). https://doi.org/10.1002/adfm.202400337
- J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614(7949), 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
- Y. Yang, Y. Chen, L. Tan, J. Zhang, N. Li et al., Rechargeable LiNi(0.65)co(0.15)Mn(0.2)O(2)||Graphite batteries operating at -60 °C. Angew. Chem. Int. Ed. 61(42), e202209619 (2022). https://doi.org/10.1002/anie.202209619
- C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
- X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
- Y. Xu, Z. Li, L. Wu, H. Dou, X. Zhang, Solvation engineering via fluorosurfactant additive toward boosted lithium-ion thermoelectrochemical cells. Nano-Micro Lett. 16(1), 72 (2024). https://doi.org/10.1007/s40820-023-01292-2
- S. Kim, J.-A. Lee, T.K. Lee, K. Baek, J. Kim et al., Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes. Energy Environ. Sci. 16(11), 5108–5122 (2023). https://doi.org/10.1039/D3EE02106H
- X. Dong, Y.-G. Wang, Y. Xia, Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 54(20), 3883–3894 (2021). https://doi.org/10.1021/acs.accounts.1c00420
- W. Lin, M. Zhu, Y. Fan, H. Wang, G. Tao et al., Low temperature lithium-ion batteries electrolytes: rational design, advancements, and future perspectives. J. Alloys Compd. 905, 164163 (2022). https://doi.org/10.1016/j.jallcom.2022.164163
- A. Hu, F. Li, W. Chen, T. Lei, Y. Li et al., Ion transport kinetics in low-temperature lithium metal batteries. Adv. Energy Mater. 12(42), 2202432 (2022). https://doi.org/10.1002/aenm.202202432
- W. Lv, C. Zhu, J. Chen, C. Ou, Q. Zhang et al., High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives. Chem. Eng. J. 418, 129400 (2021). https://doi.org/10.1016/j.cej.2021.129400
- H. Zhang, Z. Song, W. Yuan, W. Feng, J. Nie et al., Impact of negative charge delocalization on the properties of solid polymer electrolytes. ChemElectroChem 8(7), 1322–1328 (2021). https://doi.org/10.1002/celc.202100045
- X. Tian, Y. Yi, B. Fang, P. Yang, T. Wang et al., Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 32(23), 9821–9848 (2020). https://doi.org/10.1021/acs.chemmater.0c02428
- T.M. Tekaligne, H.K. Bezabh, S.K. Merso, K.N. Shitaw, M.A. Weret et al., Enhancing aluminum foil performance in aqueous and organic electrolytes: dual-secure passivation with phthalocyanine as a corrosion inhibitor. J. Mater. Chem. A 12(4), 2157–2171 (2024). https://doi.org/10.1039/D3TA02977H
- X. Chen, Z. Li, H. Zhao, J. Li, W. Li et al., Dominant solvent-separated ion pairs in electrolytes enable superhigh conductivity for fast-charging and low-temperature lithium ion batteries. ACS Nano 18(11), 8350–8359 (2024). https://doi.org/10.1021/acsnano.3c12877
- X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4(10), 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
- J. Li, J. Yang, Z. Ji, M. Su, H. Li et al., Prospective application, mechanism, and deficiency of lithium bis(oxalate)borate as the electrolyte additive for lithium-batteries. Adv. Energy Mater. 13(35), 2301422 (2023). https://doi.org/10.1002/aenm.202301422
- M. Mao, B. Huang, Q. Li, C. Wang, Y.-B. He et al., In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 78, 105282 (2020). https://doi.org/10.1016/j.nanoen.2020.105282
- Y. Li, B. Cheng, F. Jiao, K. Wu, The roles and working mechanism of salt-type additives on the performance of high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 12(14), 16298–16307 (2020). https://doi.org/10.1021/acsami.9b22360
- Q. Dong, F. Guo, Z. Cheng, Y. Mao, R. Huang et al., Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||Graphite cells. ACS Appl. Energy Mater. 3(1), 695–704 (2020). https://doi.org/10.1021/acsaem.9b01894
- Z. Cao, X. Zheng, Q. Qu, Y. Huang, H. Zheng, Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode–electrolyte interphase. Adv. Mater. 33(38), 2103178 (2021). https://doi.org/10.1002/adma.202103178
- J. Zhang, H. Zhang, L. Deng, Y. Yang, L. Tan et al., An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Mater. 54, 450–460 (2023). https://doi.org/10.1016/j.ensm.2022.10.052
- J. Chen, Z. Yang, X. Xu, Y. Qiao, Z. Zhou et al., Nonflammable succinonitrile-based deep eutectic electrolyte for intrinsically safe high-voltage sodium-ion batteries. Adv. Mater. 36(28), 2400169 (2024). https://doi.org/10.1002/adma.202400169
- X. Sang, K. Hu, J. Chen, Z. Wang, H. Xu et al., Temperature-inert weakly solvating electrolytes for low-temperature lithium-ion batteries with micro-sized silicon anodes. Angew. Chem. Int. Ed. 64(17), e202500367 (2025). https://doi.org/10.1002/anie.202500367
- N. Zhang, A.-M. Li, W. Zhang, Z. Wang, Y. Liu et al., 4.6 V moisture-tolerant electrolytes for lithium-ion batteries. Adv. Mater. 36(50), e2408039 (2024). https://doi.org/10.1002/adma.202408039
- Y. Lu, Q. Cao, W. Zhang, T. Zeng, Y. Ou et al., Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions. Nat. Energy 10(2), 191–204 (2025). https://doi.org/10.1038/s41560-024-01679-4
- Y. Li, S. Song, H. Kim, K. Nomoto, H. Kim et al., A lithium superionic conductor for millimeter-thick battery electrode. Science 381(6653), 50–53 (2023). https://doi.org/10.1126/science.add7138
- S.C. Kim, J. Wang, R. Xu, P. Zhang, Y. Chen et al., High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8(8), 814–826 (2023). https://doi.org/10.1038/s41560-023-01280-1
- Q. Wang, C. Zhao, Z. Yao, J. Wang, F. Wu et al., Entropy-driven liquid electrolytes for lithium batteries. Adv. Mater. 35(17), 2210677 (2023). https://doi.org/10.1002/adma.202210677
- Y. Xiao, X. Wang, K. Yang, J. Wu, Y. Chao et al., The anion-dominated dynamic coordination field in the electrolytes for high-performance lithium metal batteries. Energy Storage Mater. 55, 773–781 (2023). https://doi.org/10.1016/j.ensm.2022.12.038
- X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33(52), 2007945 (2021). https://doi.org/10.1002/adma.202007945
- T. Li, X.-Q. Zhang, N. Yao, Y.-X. Yao, L.-P. Hou et al., Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 60(42), 22683–22687 (2021). https://doi.org/10.1002/anie.202107732
- Y. Zheng, H. Ji, T. Qian, S. Li, J. Liu et al., Achieving rapid ultralow-temperature ion transfer via constructing lithium–anion nanometric aggregates to eliminate Li+–dipole interactions. Nano Lett. 23(8), 3181–3188 (2023). https://doi.org/10.1021/acs.nanolett.2c04876
- L. Wang, F.-D. Yu, L.-F. Que, X.-G. Zhang, K.-Y. Xie, 12-ah-level Li-ion pouch cells enabling fast charging at temperatures between −20 and 50 °C. Adv. Funct. Mater. 34(48), 2408422 (2024). https://doi.org/10.1002/adfm.202408422
- Y. Zhao, Z. Hu, Z. Zhao, X. Chen, S. Zhang et al., Strong solvent and dual lithium salts enable fast-charging lithium-ion batteries operating from −78 to 60 °C. J. Am. Chem. Soc. 145(40), 22184–22193 (2023). https://doi.org/10.1021/jacs.3c08313
- P. Liang, H. Hu, Y. Dong, Z. Wang, K. Liu et al., Competitive coordination of ternary anions enabling fast Li-ion desolvation for low-temperature lithium metal batteries. Adv. Funct. Mater. 34(16), 2309858 (2024). https://doi.org/10.1002/adfm.202309858
- Y. Mo, G. Liu, Y. Yin, M. Tao, J. Chen et al., Fluorinated solvent molecule tuning enables fast-charging and low-temperature lithium-ion batteries. Adv. Energy Mater. 13(32), 2301285 (2023). https://doi.org/10.1002/aenm.202301285
- Y. Zou, Z. Ma, G. Liu, Q. Li, D. Yin et al., Non-flammable electrolyte enables high-voltage and wide-temperature lithium-ion batteries with fast charging. Angew. Chem. Int. Ed. 62(8), e202216189 (2023). https://doi.org/10.1002/anie.202216189
- X. Dong, Z. Guo, Z. Guo, Y. Wang, Y. Xia, Organic batteries operated at −70 °C. Joule 2(5), 902–913 (2018). https://doi.org/10.1016/j.joule.2018.01.017
- S. Ming, S. Qurban, Y. Du, W. Su, Asymmetric synthesis of multi-substituted tetrahydrofurans via palladium/rhodium synergistic catalyzed [3+2] decarboxylative cycloaddition of vinylethylene carbonates. Chem. 27(50), 12742–12746 (2021). https://doi.org/10.1002/chem.202102024
- W. Yang, W. Chen, H. Zou, J. Lai, X. Zeng et al., Electrolyte chemistry towards ultra-high voltage (4.7 V) and ultra-wide temperature (-30 to 70 °C) LiCoO2 batteries. Angew. Chem. Int. Ed. 64(13), e202424353 (2025). https://doi.org/10.1002/anie.202424353
- Y. Qian, Y. Chu, Z. Zheng, Z. Shadike, B. Han et al., A new cyclic carbonate enables high power/low temperature lithium-ion batteries. Energy Storage Mater. 45, 14–23 (2022). https://doi.org/10.1016/j.ensm.2021.11.029
- D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15(2), 550–578 (2022). https://doi.org/10.1039/d1ee01789f
- T. Waldmann, B.-I. Hogg, M. Wohlfahrt-Mehrens, Li plating as unwanted side reaction in commercial Li-ion cells–a review. J. Power. Sources 384, 107–124 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.063
- G. Kang, G. Zhong, J. Ma, R. Yin, K. Cai et al., Weakly solvated EC-free linear alkyl carbonate electrolytes for Ni-rich cathode in rechargeable lithium battery. iScience 25(12), 105710 (2022). https://doi.org/10.1016/j.isci.2022.105710
- Q.Y. Li, S.H. Jiao, L.L. Luo, M.S. Ding, J.M. Zheng et al., Wide-temperature electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 9(22), 18826–18835 (2017). https://doi.org/10.1021/acsami.7b04099
- X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 59(10), 3802–3832 (2020). https://doi.org/10.1002/anie.201814294
- H. Jiang, X. Han, X. Du, Z. Chen, C. Lu et al., A PF6−-permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery. Adv. Mater. 34(9), 2108665 (2022). https://doi.org/10.1002/adma.202108665
- Y. Yang, L. Zhao, Y. Zhang, Z. Yang, W.-H. Lai et al., Challenges and prospects of low-temperature rechargeable batteries: electrolytes, interfaces, and electrodes. Adv. Sci. 11(46), 2410318 (2024). https://doi.org/10.1002/advs.202410318
- L. Li, W. Lv, J. Chen, M. Liu, P. Yang et al., EB (ethyl butyrate) as a cosolvent of electrolyte tuning an ultrathin CEI membrane for improving the ultralow-temperature behaviors of LiNi0.8Co0.1Mn0.1O2 batteries. ACS Sustainable Chem. Eng. 12(2), 1116–1131 (2024). https://doi.org/10.1021/acssuschemeng.3c07276
- Z. Li, N. Yao, L. Yu, Y.-X. Yao, C.-B. Jin et al., Inhibiting gas generation to achieve ultralong-lifespan lithium-ion batteries at low temperatures. Matter 6(7), 2274–2292 (2023). https://doi.org/10.1016/j.matt.2023.04.012
- Z. Li, Y.-X. Yao, M. Zheng, S. Sun, Y. Yang et al., Electrolyte design enables rechargeable LiFePO4/graphite batteries from –80 °C to 80 °C. Angew. Chem. Int. Ed. 64(2), e202409409 (2025). https://doi.org/10.1002/anie.202409409
- J. Hao, W. Liu, Y. Tian, J. Wu, H. Guo et al., Unraveling the mechanism of methyl acetate additive for reinforcing the solid electrolyte interface on graphite anodes. J. Mater. Chem. A 12(34), 22679–22688 (2024). https://doi.org/10.1039/D4TA03301A
- E.R. Logan, D.S. Hall, M.M.E. Cormier, T. Taskovic, M. Bauer et al., Ester-based electrolytes for fast charging of energy dense lithium-ion batteries. J. Phys. Chem. C 124(23), 12269–12280 (2020). https://doi.org/10.1021/acs.jpcc.0c02370
- L. Zhang, H. Fan, H. Wang, Methyl acetate–based solutions for dual–ion batteries. Electrochim. Acta 342, 135992 (2020). https://doi.org/10.1016/j.electacta.2020.135992
- Y. Zou, Z. Cao, J. Zhang, W. Wahyudi, Y. Wu et al., Interfacial model deciphering high-voltage electrolytes for high energy density, high safety, and fast-charging lithium-ion batteries. Adv. Mater. 33(43), e2102964 (2021). https://doi.org/10.1002/adma.202102964
- S. Lei, Z. Zeng, H. Yan, M. Qin, M. Liu et al., Nonpolar cosolvent driving LUMO energy evolution of methyl acetate electrolyte to afford lithium-ion batteries operating at–60 °C. Adv. Funct. Mater. 33(34), 2301028 (2023). https://doi.org/10.1002/adfm.202301028
- S. He, H. Yuan, P. Zhu, X. Wang, B. Xu, Fluorinated co-solvent electrolytes enable lithium metal batteries to operate at low temperatures. Chem. Eng. J. 500, 156302 (2024). https://doi.org/10.1016/j.cej.2024.156302
- N. von Aspern, G.-V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem. Int. Ed. 58(45), 15978–16000 (2019). https://doi.org/10.1002/anie.201901381
- Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao et al., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5(7), 526–533 (2020). https://doi.org/10.1038/s41560-020-0634-5
- S. Zhang, S. Li, Y. Lu, Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience 1(2), 163–177 (2021). https://doi.org/10.1016/j.esci.2021.12.003
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- Y. Yang, Z. Fang, Y. Yin, Y. Cao, Y. Wang et al., Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem. Int. Ed. 61(36), e202208345 (2022). https://doi.org/10.1002/anie.202208345
- K. An, D. Kim, Y.H.T. Tran, D.T.T. Vu, S.J. Park et al., Weakly binding molecules-based fast charging Li-ion batteries. Adv. Funct. Mater. 34(8), 2311782 (2024). https://doi.org/10.1002/adfm.202311782
- S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16(1), 35 (2023). https://doi.org/10.1007/s40820-023-01245-9
- Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7(1), 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
- D.-J. Yoo, Q. Liu, O. Cohen, M. Kim, K.A. Persson et al., Rational design of fluorinated electrolytes for low temperature lithium-ion batteries. Adv. Energy Mater. 13(20), 2204182 (2023). https://doi.org/10.1002/aenm.202204182
- Y. Wei, H. Wang, X. Lin, T. Wang, Y. Cui et al., Moderate solvation structures of lithium ions for high-voltage lithium metal batteries at −40 °C. Energy Environ. Sci. 18(2), 786–798 (2025). https://doi.org/10.1039/D4EE03192J
- Y. Wang, S. Dong, Y. Gao, P.-K. Lee, Y. Tian et al., Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions. Nat. Commun. 15(1), 5408 (2024). https://doi.org/10.1038/s41467-024-49795-9
- Z. Li, Y. Chen, X. Yun, P. Gao, C. Zheng et al., Critical review of fluorinated electrolytes for high-performance lithium metal batteries. Adv. Funct. Mater. 33(32), 2300502 (2023). https://doi.org/10.1002/adfm.202300502
- Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(11), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
- Y. Zhao, T. Zhou, T. Ashirov, M. El Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13(1), 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
- C.-B. Jin, N. Yao, Y. Xiao, J. Xie, Z. Li et al., Taming solvent-solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries. Adv. Mater. 35(3), e2208340 (2023). https://doi.org/10.1002/adma.202208340
- J.-F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao et al., Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60(20), 11442–11447 (2021). https://doi.org/10.1002/anie.202101627
- G.-X. Li, V. Koverga, A. Nguyen, R. Kou, M. Ncube et al., Enhancing lithium-metal battery longevity through minimized coordinating diluent. Nat. Energy 9(7), 817–827 (2024). https://doi.org/10.1038/s41560-024-01519-5
- Z. Jiang, T. Yang, C. Li, J. Zou, H. Yang et al., Synergistic additives enabling stable cycling of ether electrolyte in 4.4 V Ni-rich/Li metal batteries. Adv. Funct. Mater. 33(51), 2306868 (2023). https://doi.org/10.1002/adfm.202306868
- Y. Zhao, T. Zhou, L.P.H. Jeurgens, X. Kong, J.W. Choi et al., Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. Chem 9(3), 682–697 (2023). https://doi.org/10.1016/j.chempr.2022.12.005
- X. Wang, D. Ren, H. Liang, Y. Song, H. Huo et al., Ni crossover catalysis: truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries. Energy Environ. Sci. 16(3), 1200–1209 (2023). https://doi.org/10.1039/D2EE04109J
- Z. Wang, X. Che, D. Wang, Y. Wang, X. He et al., Non-fluorinated ethers to mitigate electrode surface reactivity in high-voltage NCM811-Li batteries. Angew. Chem. Int. Ed. 63(25), e202404109 (2024). https://doi.org/10.1002/anie.202404109
- S. Chen, J. Fan, Z. Cui, L. Tan, D. Ruan et al., Unveiling the critical role of ion coordination configuration of ether electrolytes for high voltage lithium metal batteries. Angew. Chem. Int. Ed. 62(23), e202219310 (2023). https://doi.org/10.1002/anie.202219310
- T. Xu, T. Zheng, Z. Ru, J. Song, M. Gu, Ye. Yue, Y. Xiao, S. Amzil, J. Gao, P. Müller‐Buschbaum, Ke. Wang, H. Zhao, Y.-J. Cheng, Y. Xia, Ether-based electrolyte for high-temperature and high-voltage lithium metal batteries. Adv. Funct. Mater. 34(19), 2313319 (2024). https://doi.org/10.1002/adfm.202313319
- F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4(10), eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
- H. Yang, M. Jing, L. Wang, H. Xu, X. Yan et al., PDOL-based solid electrolyte toward practical application: opportunities and challenges. Nano-Micro Lett. 16(1), 127 (2024). https://doi.org/10.1007/s40820-024-01354-z
- Q. Zhao, X. Liu, J. Zheng, Y. Deng, A. Warren et al., Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proc. Natl. Acad. Sci. U. S. A. 117(42), 26053–26060 (2020). https://doi.org/10.1073/pnas.2004576117
- H.-Z. Jiang, C. Yang, M. Chen, X.-W. Liu, L.-M. Yin et al., Electrophilically trapping water for preventing polymerization of cyclic ether towards low-temperature Li metal battery. Angew. Chem. Int. Ed. 62(14), e202300238 (2023). https://doi.org/10.1002/anie.202300238
- Y. Lin, Z. Yang, X. Zhang, Y. Liu, G. Hu et al., Activating ultra-low temperature Li-metal batteries by tetrahydrofuran-based localized saturated electrolyte. Energy Storage Mater. 58, 184–194 (2023). https://doi.org/10.1016/j.ensm.2023.03.026
- T. Chen, J. You, R. Li, H. Li, Y. Wang et al., Ultra-low concentration electrolyte enabling LiF-rich SEI and dense plating/stripping processes for lithium metal batteries. Adv. Sci. 9(28), 2203216 (2022). https://doi.org/10.1002/advs.202203216
- H. Hu, J. Li, Q. Zhang, G. Ding, J. Liu et al., Non-concentrated electrolyte with weak anion coordination enables low Li-ion desolvation energy for low-temperature lithium batteries. Chem. Eng. J. 457, 141273 (2023). https://doi.org/10.1016/j.cej.2023.141273
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- S. Lin, H. Hua, Z. Li, J. Zhao, Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. ACS Appl. Mater. Interfaces 12(30), 33710–33718 (2020). https://doi.org/10.1021/acsami.0c07904
- X. Ren, X. Zhang, Z. Shadike, L. Zou, H. Jia et al., Designing advanced in situ electrode/electrolyte interphases for wide temperature operation of 4.5 V Li||LiCoO2 batteries. Adv. Mater. 32(49), e2004898 (2020). https://doi.org/10.1002/adma.202004898
- S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
- J. Yang, J. Shang, Q. Liu, X. Yang, Y. Tan et al., Variant-localized high-concentration electrolyte without phase separation for low-temperature batteries. Angew. Chem. Int. Ed. 63(33), e202406182 (2024). https://doi.org/10.1002/anie.202406182
- X. Cao, X. Ren, L. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4(9), 796–805 (2019). https://doi.org/10.1038/s41560-019-0464-5
- S. Kim, V.G. Pol, Tailored solvation and interface structures by tetrahydrofuran-derived electrolyte facilitates ultralow temperature lithium metal battery operations. Chemsuschem 16(5), e202202143 (2023). https://doi.org/10.1002/cssc.202202143
- X. Peng, T. Wang, B. Liu, Y. Li, T. Zhao, A solvent molecule reconstruction strategy enabling a high-voltage ether-based electrolyte. Energy Environ. Sci. 15(12), 5350–5361 (2022). https://doi.org/10.1039/d2ee02344j
- J. Holoubek, K. Kim, Y. Yin, Z. Wu, H. Liu et al., Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ. Sci. 15(4), 1647–1658 (2022). https://doi.org/10.1039/d1ee03422g
- J. Shi, C. Xu, J. Lai, Z. Li, Y. Zhang et al., An amphiphilic molecule-regulated core-shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. 62(13), e202218151 (2023). https://doi.org/10.1002/anie.202218151
- Z. Cui, D. Wang, J. Guo, Q. Nian, D. Ruan et al., Push–pull electrolyte design strategy enables high-voltage low-temperature lithium metal batteries. J. Am. Chem. Soc. 146(40), 27644–27654 (2024). https://doi.org/10.1021/jacs.4c09027
- F. Ren, Z. Li, J. Chen, P. Huguet, Z. Peng et al., Solvent–diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14(3), 4211–4219 (2022). https://doi.org/10.1021/acsami.1c21638
- Z. Jiang, C. Li, T. Yang, Y. Deng, J. Zou et al., Fluorine-free lithium metal batteries with a stable LiF-free solid electrolyte interphase. ACS Energy Lett. 9(4), 1389–1396 (2024). https://doi.org/10.1021/acsenergylett.3c02724
- J. Moon, D.O. Kim, L. Bekaert, M. Song, J. Chung et al., Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nat. Commun. 13(1), 4538 (2022). https://doi.org/10.1038/s41467-022-32192-5
- A.-M. Li, O. Borodin, T.P. Pollard, W. Zhang, N. Zhang et al., Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries. Nat. Chem. 16(6), 922–929 (2024). https://doi.org/10.1038/s41557-024-01497-x
- T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin et al., Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 134(39), e202207927 (2022). https://doi.org/10.1002/ange.202207927
- Y. Huang, R. Li, S. Weng, H. Zhang, C. Zhu et al., Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15(10), 4349–4361 (2022). https://doi.org/10.1039/D2EE01756C
- Y. Liao, M. Zhou, L. Yuan, K. Huang, D. Wang et al., Eco-friendly tetrahydropyran enables weakly solvating “4S” electrolytes for lithium-metal batteries. Adv. Energy Mater. 13(32), 2301477 (2023). https://doi.org/10.1002/aenm.202301477
- Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 133(8), 4136–4143 (2021). https://doi.org/10.1002/ange.202011482
- Z. Li, Y. Liao, H. Ji, X. Lin, Y. Wei et al., A tetrahydropyran-based weakly solvating electrolyte for low-temperature and high-voltage lithium metal batteries. Adv. Energy Mater. 15(15), 2404120 (2025). https://doi.org/10.1002/aenm.202404120
- Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143(44), 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
- H. Zhang, Z. Zeng, F. Ma, Q. Wu, X. Wang et al., Cyclopentylmethyl ether, a non-fluorinated, weakly solvating and wide temperature solvent for high-performance lithium metal battery. Angew. Chem. Int. Ed. 62(21), e202300771 (2023). https://doi.org/10.1002/anie.202300771
- X. Zhu, J. Chen, G. Liu, Y. Mo, Y. Xie et al., Non-fluorinated cyclic ether-based electrolyte with quasi-conjugate effect for high-performance lithium metal batteries. Angew. Chem. Int. Ed. 64(1), e202412859 (2025). https://doi.org/10.1002/anie.202412859
- X. Liu, J. Zhang, X. Yun, J. Li, H. Yu et al., Anchored weakly-solvated electrolytes for high-voltage and low-temperature lithium-ion batteries. Angew. Chem. Int. Ed. 63(36), e202406596 (2024). https://doi.org/10.1002/anie.202406596
- P. Liang, J. Li, Y. Dong, Z. Wang, G. Ding et al., Modulating interfacial solvation via ion dipole interactions for low-temperature and high-voltage lithium batteries. Angew. Chem. Int. Ed. 64(4), e202415853 (2025). https://doi.org/10.1002/anie.202415853
- N. Piao, J. Wang, X. Gao, R. Li, H. Zhang et al., Designing temperature-insensitive solvated electrolytes for low-temperature lithium metal batteries. J. Am. Chem. Soc. 146(27), 18281–18291 (2024). https://doi.org/10.1021/jacs.4c01735
- Y. Yang, Y. Yin, D.M. Davies, M. Zhang, M. Mayer et al., Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ. Sci. 13(7), 2209–2219 (2020). https://doi.org/10.1039/d0ee01446j
- Z. Wang, Z. He, Z. Wang, J. Yang, K. Long et al., A nitrile solvent structure induced stable solid electrolyte interphase for wide-temperature lithium-ion batteries. Chem. Sci. 15(34), 13768–13778 (2024). https://doi.org/10.1039/D4SC03890H
- Q. Li, G. Liu, H. Cheng, Q. Sun, J. Zhang et al., Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chem. Eur. J. 27(64), 15842–15865 (2021). https://doi.org/10.1002/chem.202101407
- R. Rohan, T.-C. Kuo, J.-H. Lin, Y.-C. Hsu, C.-C. Li et al., Dinitrile–mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles. J. Phys. Chem. C 120(12), 6450–6458 (2016). https://doi.org/10.1021/acs.jpcc.6b00980
- Y.-S. Kim, H. Lee, H.-K. Song, Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries. ACS Appl. Mater. Interfaces 6(11), 8913–8920 (2014). https://doi.org/10.1021/am501671p
- Y.-G. Cho, Y.-S. Kim, D.-G. Sung, M.-S. Seo, H.-K. Song, Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges. Energy Environ. Sci. 7(5), 1737–1743 (2014). https://doi.org/10.1039/C3EE43029D
- L. Luo, K. Chen, H. Chen, H. Li, R. Cao et al., Enabling ultralow-temperature (-70 °C) lithium-ion batteries: advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent. Adv. Mater. 36(5), e2308881 (2024). https://doi.org/10.1002/adma.202308881
- D. Lu, R. Li, M.M. Rahman, P. Yu, L. Lv et al., Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627(8002), 101–107 (2024). https://doi.org/10.1038/s41586-024-07045-4
- S. Li, H. Liu, L. Zheng, C. Ma, H. Yu et al., Electrolyte with weakly coordinating solvents for high-performance FeS2 cathode. Nano Energy 131, 110234 (2024). https://doi.org/10.1016/j.nanoen.2024.110234
- S. Tan, H. Liu, Z. Wu, C. Weiland, S.-M. Bak et al., Isoxazole-based electrolytes for lithium metal protection and lithium-sulfurized polyacrylonitrile (SPAN) battery operating at low temperature. J. Electrochem. Soc. 169(3), 030513 (2022). https://doi.org/10.1149/1945-7111/ac58c5
- T. Liu, J. Feng, Z. Shi, H. Li, W. Zhao et al., Diminishing ether-oxygen content of electrolytes enables temperature-immune lithium metal batteries. Sci. China Chem. 66(9), 2700–2710 (2023). https://doi.org/10.1007/s11426-023-1705-9
- L. Cheng, Y. Wang, J. Yang, M. Tang, C. Zhang et al., An ultrafast and stable Li-metal battery cycled at –40 °C. Adv. Funct. Mater. 33(11), 2212349 (2023). https://doi.org/10.1002/adfm.202212349
- A. Wang, L. Wang, Y. Wu, Y. He, D. Ren et al., Uncovering the effect of solid electrolyte interphase on ion desolvation for rational interface design in Li-ion batteries. Adv. Energy Mater. 13(25), 2300626 (2023). https://doi.org/10.1002/aenm.202300626
- S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang et al., Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat. Energy 8(12), 1365–1374 (2023). https://doi.org/10.1038/s41560-023-01387-5
- C. Wang, Y. Xie, Y. Huang, S. Zhou, H. Xie et al., Li3PO4-enriched SEI on graphite anode boosts Li+ de-solvation enabling fast-charging and low-temperature lithium-ion batteries. Angew. Chem. Int. Ed. 63(21), e202402301 (2024). https://doi.org/10.1002/anie.202402301
- S. Wang, Z. Xue, F. Chu, Z. Guan, J. Lei et al., Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range. J. Energy Chem. 79, 201–210 (2023). https://doi.org/10.1016/j.jechem.2022.12.060
- D. Zhao, S. Li, Regulating the performance of lithium-ion battery focus on the electrode-electrolyte interface. Front. Chem. 8, 821 (2020). https://doi.org/10.3389/fchem.2020.00821
- W. Zhang, Y. Lu, Q. Cao, H. Liu, Q. Feng et al., A reversible self-assembled molecular layer for lithium metal batteries with high energy/power densities at ultra-low temperatures. Energy Environ. Sci. 17(13), 4531–4543 (2024). https://doi.org/10.1039/D4EE01298D
- H. Wang, S. Chen, Y. Li, Y. Liu, Q. Jing et al., Organosilicon-based functional electrolytes for high-performance lithium batteries. Adv. Energy Mater. 11(28), 2101057 (2021). https://doi.org/10.1002/aenm.202101057
- Y. Wang, J. Liu, H. Ji, S. Wang, M. Wang et al., Optimizing Si─O conjugation to enhance interfacial kinetics for low-temperature rechargeable lithium-ion batteries. Adv. Mater. 37(3), 2412155 (2025). https://doi.org/10.1002/adma.202412155
- W. Zhang, Y. Lu, Q. Feng, H. Wang, G. Cheng et al., Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures. Nat. Commun. 16(1), 3344 (2025). https://doi.org/10.1038/s41467-025-58627-3
- Y. Ou, D. Zhu, P. Zhou, C. Li, Y. Lu et al., Self-compartmented electrolyte design for stable cycling of lithium metal batteries under extreme conditions. Angew. Chem. Int. Ed. 64(24), e202504632 (2025). https://doi.org/10.1002/anie.202504632
- F. Chu, R. Deng, F. Wu, Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Mater. 56, 141–154 (2023). https://doi.org/10.1016/j.ensm.2023.01.001
- X. Weng, Y. Qin, X. Da, Y. Zhao, X. Deng et al., N-fluorobenzenesulfonimide as a multifunctional electrolyte additive for co-stabilizing dual-electrodes of lithium metal batteries with enhanced electrochemical performance. Chem. Eng. J. 466, 143302 (2023). https://doi.org/10.1016/j.cej.2023.143302
- X. Yin, B. Li, H. Liu, B. Wen, J. Liu et al., Solvent-derived organic-rich SEI enables capacity enhancement for low-temperature lithium metal batteries. Joule 9(4), 101823 (2025). https://doi.org/10.1016/j.joule.2025.101823
- X. Meng, J. Qin, Y. Liu, Z. Liu, Y. Zhao et al., Electrolyte strategy toward the low-temperature Li-metal secondary battery. Chem. Eng. J. 465, 142913 (2023). https://doi.org/10.1016/j.cej.2023.142913
- D. Zhang, D. Zhu, W. Guo, C. Deng, Q. Xu et al., The fluorine-rich electrolyte as an interface modifier to stabilize lithium metal battery at ultra-low temperature. Adv. Funct. Mater. 32(23), 2112764 (2022). https://doi.org/10.1002/adfm.202112764
- X. Zhou, Y. Zhou, L. Yu, L. Qi, K.-S. Oh et al., Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 53(10), 5291–5337 (2024). https://doi.org/10.1039/d3cs00551h
- L.-Z. Fan, H. He, C.-W. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6(11), 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
- D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao et al., Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv. Sci. 8(18), e2101051 (2021). https://doi.org/10.1002/advs.202101051
- Q. Liu, L. Wang, Fundamentals of electrolyte design for wide-temperature lithium metal batteries. Adv. Energy Mater. 13(37), 2301742 (2023). https://doi.org/10.1002/aenm.202301742
- F. Wang, J. Zhong, Y. Guo, Q. Han, H. Liu et al., Fluorinated nonflammable in situ gel polymer electrolyte for high-voltage lithium metal batteries. ACS Appl. Mater. Interfaces 15(33), 39265–39275 (2023). https://doi.org/10.1021/acsami.3c05840
- Z. Lin, Y. Wang, Y. Li, Y. Liu, S. Zhong et al., Regulating solvation structure in gel polymer electrolytes with covalent organic frameworks for lithium metal batteries. Energy Storage Mater. 53, 917–926 (2022). https://doi.org/10.1016/j.ensm.2022.10.019
- K. Huang, S. Bi, H. Xu, L. Wu, C. Fang et al., Optimizing Li-ion solvation in gel polymer electrolytes to stabilize Li-metal anode. Chemsuschem 16(19), e202300671 (2023). https://doi.org/10.1002/cssc.202300671
- J. Yu, X. Lin, J. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12(2), 2102932 (2022). https://doi.org/10.1002/aenm.202102932
- S. Mo, H. An, Q. Liu, J. Zhu, C. Fu et al., Multistage bridge engineering for electrolyte and interface enables quasi-solid batteries to operate at -40 °C. Energy Storage Mater. 65, 103179 (2024). https://doi.org/10.1016/j.ensm.2024.103179
- X. Chen, C. Qin, F. Chu, F. Li, J. Liu et al., Contriving a gel polymer electrolyte to drive quasi-solid-state high-voltage Li metal batteries at ultralow temperatures. Energy Environ. Sci. 18(2), 910–922 (2025). https://doi.org/10.1039/D4EE04011B
- M. Xin, Y. Zhang, Z. Liu, Y. Zhang, Y. Zhai et al., In situ-initiated poly-1, 3-dioxolane gel electrolyte for high-voltage lithium metal batteries. Molecules 29(11), 2454 (2024). https://doi.org/10.3390/molecules29112454
- X. Liu, D. Wang, Z. Zhang, G. Li, J. Wang et al., Gel polymer electrolyte enables low-temperature and high-rate lithium-ion batteries via bionic interface design. Small 20(45), 2404879 (2024). https://doi.org/10.1002/smll.202404879
- A. Benayad, D. Diddens, A. Heuer, A.N. Krishnamoorthy, M. Maiti et al., High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Adv. Energy Mater. 12(17), 2102678 (2022). https://doi.org/10.1002/aenm.202102678
- Y. Cao, A. Aspuru-Guzik, Accelerating discovery in organic redox flow batteries. Nat. Comput. Sci. 4(2), 89–91 (2024). https://doi.org/10.1038/s43588-024-00600-z
- M. Reza Izadi, R. Haghbakhsh, S. Raeissi, Thermodynamic screening of various group contribution methods for estimation of the critical properties and acentric factors of deep eutectic solvents. J. Mol. Liq. 399, 124345 (2024). https://doi.org/10.1016/j.molliq.2024.124345
- N. Yao, L. Yu, Z.-H. Fu, X. Shen, T.-Z. Hou et al., Probing the origin of viscosity of liquid electrolytes for lithium batteries. Angew. Chem. Int. Ed. 62(41), e202305331 (2023). https://doi.org/10.1002/anie.202305331
- B. He, Q. Zhang, Z. Pan, L. Li, C. Li et al., Freestanding metal–organic frameworks and their derivatives: an emerging platform for electrochemical energy storage and conversion. Chem. Rev. 122(11), 10087–10125 (2022). https://doi.org/10.1021/acs.chemrev.1c00978
- X. Chen, X. Liu, X. Shen, Q. Zhang, Applying machine learning to rechargeable batteries: from the microscale to the macroscale. Angew. Chem. Int. Ed. 60(46), 24354–24366 (2021). https://doi.org/10.1002/anie.202107369
- N. Yao, X. Chen, Z.-H. Fu, Q. Zhang, Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 122(12), 10970–11021 (2022). https://doi.org/10.1021/acs.chemrev.1c00904
- S.C. Kim, S.T. Oyakhire, C. Athanitis, J. Wang, Z. Zhang et al., Data-driven electrolyte design for lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A. 120(10), e2214357120 (2023). https://doi.org/10.1073/pnas.2214357120
- Y.-C. Gao, N. Yao, X. Chen, L. Yu, R. Zhang et al., Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145(43), 23764–23770 (2023). https://doi.org/10.1021/jacs.3c08346
- Y. Liu, B. Guo, X. Zou, Y. Li, S. Shi, Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater. 31, 434–450 (2020). https://doi.org/10.1016/j.ensm.2020.06.033
- D.K.J. Lee, T.L. Tan, M.-F. Ng, Machine learning-assisted Bayesian optimization for the discovery of effective additives for dendrite suppression in lithium metal batteries. ACS Appl. Mater. Interfaces 16(46), 64364–64376 (2024). https://doi.org/10.1021/acsami.4c16611
- T. Lombardo, M. Duquesnoy, H. El-Bouysidy, F. Årén, A. Gallo-Bueno et al., Artificial intelligence applied to battery research: hype or reality? Chem. Rev. 122(12), 10899–10969 (2022). https://doi.org/10.1021/acs.chemrev.1c00108
- Y. Chen, Y. Liu, Z. He, L. Xu, P. Yu et al., Artificial intelligence for the understanding of electrolyte chemistry and electrode interface in lithium battery. Natl. Sci. Open (2023). https://doi.org/10.1360/nso/20230039
- Y. Kitazawa, K. Iwata, R. Kido, S. Imaizumi, S. Tsuzuki et al., Polymer electrolytes containing solvate ionic liquids: a new approach to achieve high ionic conductivity, thermal stability, and a wide potential window. Chem. Mater. 30(1), 252–261 (2018). https://doi.org/10.1021/acs.chemmater.7b04274
- J. Zhang, J. Zhu, R. Zhao, J. Liu, X. Song et al., An all-in-one free-standing single-ion conducting semi-solid polymer electrolyte for high-performance practical Li metal batteries. Energy Environ. Sci. 17(19), 7119–7128 (2024). https://doi.org/10.1039/D4EE02208D
- G.R. Zhu, Q. Zhang, Q.S. Liu, Q.Y. Bai, Y.Z. Quan et al., Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat. Commun. 14(1), 4617 (2023). https://doi.org/10.1
References
W.-M. Qin, Z. Li, W.-X. Su, J.-M. Hu, H. Zou et al., Porous organic cage-based quasi-solid-state electrolyte with cavity-induced anion-trapping effect for long-life lithium metal batteries. Nano-Micro Lett. 17(1), 38 (2024). https://doi.org/10.1007/s40820-024-01499-x
J. You, Q. Wang, R. Wei, L. Deng, Y. Hu et al., Boosting high-voltage practical lithium metal batteries with tailored additives. Nano-Micro Lett. 16(1), 257 (2024). https://doi.org/10.1007/s40820-024-01479-1
Y. Cao, J. Li, H. Qu, H. Ji, L. Li et al., Reconstruction of lithium replenishment channel with an amorphous structure for efficient regeneration of spent LiCoO2 cathodes. Energy Mater. Devices 3(1), 9370059 (2025). https://doi.org/10.26599/emd.2025.9370059
J. Mohammadi Moradian, A. Ali, X. Yan, G. Pei, S. Zhang et al., Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges. Nano-Micro Lett. 17(1), 279 (2025). https://doi.org/10.1007/s40820-025-01786-1
Z. Han, P. Maitarad, N. Yodsin, B. Zhao, H. Ma et al., Catalysis-induced highly-stable interface on porous silicon for high-rate lithium-ion batteries. Nano-Micro Lett. 17(1), 200 (2025). https://doi.org/10.1007/s40820-025-01701-8
H. Xiao, X. Li, Y. Fu, Advances in anion chemistry in the electrolyte design for better lithium batteries. Nano-Micro Lett. 17(1), 149 (2025). https://doi.org/10.1007/s40820-024-01629-5
F. Yu, Y. Mu, M. Han, J. Liu, K. Zheng et al., Electrochemically stable and ultrathin polymer-based solid electrolytes for dendrite-free all-solid-state lithium-metal batteries. Mater. Futur. 4(1), 015101 (2025). https://doi.org/10.1088/2752-5724/ada0cc
H. Hu, J. Li, F. Lin, J. Huang, H. Zheng et al., Induction effect of fluorine-grafted polymer-based electrolytes for high-performance lithium metal batteries. Nano-Micro Lett. 17(1), 256 (2025). https://doi.org/10.1007/s40820-025-01738-9
F. Yao, J. Meng, X. Wang, J. Wang, L. Chang et al., Theoretical investigation of the doping effect on interface storage in the graphene/silicene heterostructure as the anode for lithium-ion batteries. Energy Mater. Devices 1(2), 9370020 (2023). https://doi.org/10.26599/emd.2023.9370020
S. Dong, L. Shi, S. Geng, Y. Ning, C. Kang et al., Breaking solvation dominance effect enabled by ion-dipole interaction toward long-spanlife silicon oxide anodes in lithium-ion batteries. Nano-Micro Lett. 17(1), 95 (2024). https://doi.org/10.1007/s40820-024-01592-1
X. Lin, J. Lin, X. Lu, X. Tan, H. Li et al., Vacancy-engineered LiMn2O4 embedded in dual-heteroatom-doped carbon via metal-organic framework-mediated synthesis towards longevous lithium ion battery. Mater. Futures 4(2), 025101 (2025). https://doi.org/10.1088/2752-5724/ad9e08
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
Z. Li, Y.-X. Yao, S. Sun, C.-B. Jin, N. Yao et al., 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. 62(37), e202303888 (2023). https://doi.org/10.1002/anie.202303888
M. Qin, Z. Zeng, S. Cheng, J. Xie, Challenges and strategies of formulating low-temperature electrolytes in lithium-ion batteries. Interdiscip. Mater. 2(2), 308–336 (2023). https://doi.org/10.1002/idm2.12077
M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
G. Wang, G. Wang, L. Fei, L. Zhao, H. Zhang, Structural engineering of anode materials for low-temperature lithium-ion batteries: mechanisms, strategies, and prospects. Nano-Micro Lett. 16(1), 150 (2024). https://doi.org/10.1007/s40820-024-01363-y
X. Wu, M. Wang, H. Pan, X. Sun, S. Tang et al., Developing high-energy, stable all-solid-state lithium batteries using aluminum-based anodes and high-nickel cathodes. Nano-Micro Lett. 17(1), 239 (2025). https://doi.org/10.1007/s40820-025-01751-y
Z. Zhu, X. Li, X. Qi, J. Ji, Y. Ji et al., Demystifying the salt-induced Li loss: a universal procedure for the electrolyte design of lithium-metal batteries. Nano-Micro Lett. 15(1), 234 (2023). https://doi.org/10.1007/s40820-023-01205-3
J. Hou, M. Yang, D. Wang, J. Zhang, Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 10(18), 1904152 (2020). https://doi.org/10.1002/aenm.201904152
Y.-G. Cho, M. Li, J. Holoubek, W. Li, Y. Yin et al., Enabling the low-temperature cycling of NMC||Graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 6(5), 2016–2023 (2021). https://doi.org/10.1021/acsenergylett.1c00484
J. Xu, X. Wang, N. Yuan, J. Ding, S. Qin et al., Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Mater. 23, 383–389 (2019). https://doi.org/10.1016/j.ensm.2019.04.033
X. Huang, J. Meng, W. Jiang, W. Liu, K. Liu et al., Alternating current heating techniques for lithium-ion batteries in electric vehicles: recent advances and perspectives. J. Energy Chem. 96, 679–697 (2024). https://doi.org/10.1016/j.jechem.2024.05.027
S. Liu, W. Tian, J. Shen, Z. Wang, H. Pan et al., Bioinspired gel polymer electrolyte for wide temperature lithium metal battery. Nat. Commun. 16(1), 2474 (2025). https://doi.org/10.1038/s41467-025-57856-w
Y. Li, B. Wen, N. Li, Y. Zhao, Y. Chen et al., Electrolyte engineering to construct robust interphase with high ionic conductivity for wide temperature range lithium metal batteries. Angew. Chem. Int. Ed. 64(2), e202414636 (2025). https://doi.org/10.1002/anie.202414636
G. Zhang, J. Chang, L. Wang, J. Li, C. Wang et al., A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14(1), 1081 (2023). https://doi.org/10.1038/s41467-023-36793-6
X. Min, L. Wang, Y. Wu, Z. Zhang, H. Xu et al., Overcoming low-temperature challenges in LIBs: the role of anion-rich solvation sheath in strong solvents. J. Energy Chem. 106, 63–70 (2025). https://doi.org/10.1016/j.jechem.2025.02.027
A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10(38), 2001972 (2020). https://doi.org/10.1002/aenm.202001972
C. Zhang, S. Huo, B. Su, C. Bi, C. Zhang et al., Challenges of film-forming additives in low-temperature lithium-ion batteries: a review. J. Power. Sources 606, 234559 (2024). https://doi.org/10.1016/j.jpowsour.2024.234559
Y. Xiong, D. Zhang, X. Ruan, S. Jiang, X. Zou et al., Artificial intelligence in rechargeable battery: advancements and prospects. Energy Storage Mater. 73, 103860 (2024). https://doi.org/10.1016/j.ensm.2024.103860
K.M. Abraham, J.L. Goldman, The use of the reactive ether, tetrahydrofuran (THF), in rechargeable lithium cells. J. Power. Sources 9(3), 239–245 (1983). https://doi.org/10.1016/0378-7753(83)87024-4
M.C. Smart, B.V. Ratnakumar, S. Surampudi, Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates. J. Electrochem. Soc. 146(2), 486–492 (1999). https://doi.org/10.1149/1.1391633
L.F. Xiao, Y.L. Cao, X.P. Ai, H.X. Yang, Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries. Electrochim. Acta 49(27), 4857–4863 (2004). https://doi.org/10.1016/j.electacta.2004.05.038
S. Herreyre, O. Huchet, S. Barusseau, F. Perton, J.M. Bodet et al., New Li-ion electrolytes for low temperature applications. J. Power. Sources 97, 576–580 (2001). https://doi.org/10.1016/S0378-7753(01)00670-X
M.C. Smart, B.V. Ratnakumar, L.D. Whitcanack, K.B. Chin, S. Surampudi et al., Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J. Power. Sources 119, 349–358 (2003). https://doi.org/10.1016/S0378-7753(03)00154-X
L. Yang, A. Xiao, B.L. Lucht, Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy. J. Mol. Liq. 154(2–3), 131–133 (2010). https://doi.org/10.1016/j.molliq.2010.04.025
M. Qin, Z. Zeng, F. Ma, C. Gu, X. Chen et al., Doping in solvation structure: enabling fluorinated carbonate electrolyte for high-voltage and high-safety lithium-ion batteries. ACS Energy Lett. 9(6), 2536–2544 (2024). https://doi.org/10.1021/acsenergylett.4c00790
J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032
S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102
H. Zhang, Z. Zeng, Q. Wu, X. Wang, M. Qin et al., Loosely coordinating diluted highly concentrated electrolyte toward −60 °C Li metal batteries. J. Energy Chem. 90, 380–387 (2024). https://doi.org/10.1016/j.jechem.2023.10.050
S. Lei, Z. Zeng, M. Liu, M. Qin, Y. Wu et al., Nonflammable cosolvent enables methyl acetate-based electrolyte for 4.6 V-class lithium-ion batteries operating at −60 °C. Chem. Eng. J. 478, 147180 (2023). https://doi.org/10.1016/j.cej.2023.147180
J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6(3), 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
M. Qin, Z. Zeng, Q. Wu, F. Ma, Q. Liu et al., Microsolvating competition in Li+ solvation structure affording PC-based electrolyte with fast kinetics for lithium-ion batteries. Adv. Funct. Mater. 34(41), 2406357 (2024). https://doi.org/10.1002/adfm.202406357
J. Wang, J. Kumar, K. Ding, X. Nie, X. Zhang et al., Unlocking low temperature-resistant lithium metal batteries: mechanisms, challenges, AI and functional electrolytes design. Mater. Today (2025). https://doi.org/10.1016/j.mattod.2025.06.039
X. Su, Y. Xu, Y. Wu, H. Li, J. Yang et al., Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. Energy Storage Mater. 56, 642–663 (2023). https://doi.org/10.1016/j.ensm.2023.01.044
Q. Sheng, Y. Huang, Q. Han, H. Li, X. Tao et al., The challenges and solutions for low-temperature lithium metal batteries: present and future. Energy Storage Mater. 73, 103783 (2024). https://doi.org/10.1016/j.ensm.2024.103783
Z. Huang, Z. Xiao, R. Jin, Z. Li, C. Shu et al., A comprehensive review on liquid electrolyte design for low-temperature lithium/sodium metal batteries. Energy Environ. Sci. 17(15), 5365–5386 (2024). https://doi.org/10.1039/D4EE02060J
N. Yao, X. Chen, X. Shen, R. Zhang, Z.-H. Fu et al., An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes. Angew. Chem. Int. Ed. 60(39), 21473–21478 (2021). https://doi.org/10.1002/anie.202107657
L. Xu, W. Wei, D. You, H. Xiong, J. Yang, Ion conduction in the comb-branched polyether electrolytes with controlled network structures. Soft Matter 16(8), 1979–1988 (2020). https://doi.org/10.1039/C9SM02117E
J.N. Al-Dawsari, A. Bessadok-Jemai, I. Wazeer, S. Mokraoui, M.A. AlMansour et al., Fitting of experimental viscosity to temperature data for deep eutectic solvents. J. Mol. Liq. 310, 113127 (2020). https://doi.org/10.1016/j.molliq.2020.113127
C. Wang, A.C. Thenuwara, J. Luo, P.P. Shetty, M.T. McDowell et al., Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions. Nat. Commun. 13(1), 4934 (2022). https://doi.org/10.1038/s41467-022-32606-4
Y.-X. Yao, N. Yao, X.-R. Zhou, Z.-H. Li, X.-Y. Yue et al., Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures. Adv. Mater. 34(45), e2206448 (2022). https://doi.org/10.1002/adma.202206448
C.G. Salzmann, Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150(6), 060901 (2019). https://doi.org/10.1063/1.5085163
S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49(7), 1057–1061 (2004). https://doi.org/10.1016/j.electacta.2003.10.016
L. Li, W. Lv, J. Chen, C. Zhu, S. Dmytro et al., Lithium difluorophosphate (LiPO2F2): an electrolyte additive to help boost low-temperature behaviors for lithium-ion batteries. ACS Appl. Energy Mater. 5(9), 11900–11914 (2022). https://doi.org/10.1021/acsaem.2c02658
S.S. Zhang, K. Xu, T.R. Jow, The low temperature performance of Li-ion batteries. J. Power. Sources 115(1), 137–140 (2003). https://doi.org/10.1016/S0378-7753(02)00618-3
L. Liao, P. Zuo, Y. Ma, X. Chen, Y. An et al., Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochim. Acta 60, 269–273 (2012). https://doi.org/10.1016/j.electacta.2011.11.041
K. Ariyoshi, Y. Nagashima, Modelling and analysis of polarisation characteristics in lithium insertion electrodes considering charge transfer and contact resistances. Chem. Commun. 60(88), 12888–12891 (2024). https://doi.org/10.1039/d4cc04375h
D. Qu, W. Ji, H. Qu, Probing process kinetics in batteries with electrochemical impedance spectroscopy. Commun. Mater. 3, 61 (2022). https://doi.org/10.1038/s43246-022-00284-w
W. Hu, Y. Peng, Y. Wei, Y. Yang, Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-ion batteries. J. Phys. Chem. C 127(9), 4465–4495 (2023). https://doi.org/10.1021/acs.jpcc.3c00033
T. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, Z. Ogumi, Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 152(11), A2151 (2005). https://doi.org/10.1149/1.2042907
Q. Li, D. Lu, J. Zheng, S. Jiao, L. Luo et al., Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl. Mater. Interfaces 9(49), 42761–42768 (2017). https://doi.org/10.1021/acsami.7b13887
K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111(20), 7411–7421 (2007). https://doi.org/10.1021/jp068691u
M. Bin Jassar, C. Michel, S. Abada, T. De Bruin, S. Tant et al., A perspective on the molecular modeling of electrolyte decomposition reactions for solid electrolyte interphase growth in lithium-ion batteries. Adv. Funct. Mater. 34(30), 2313188 (2024). https://doi.org/10.1002/adfm.202313188
H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Lithium batteries and the solid electrolyte interphase (SEI): progress and outlook. Adv. Energy Mater. 13(10), 2203307 (2023). https://doi.org/10.1002/aenm.202203307
J. Holoubek, Y. Yin, M. Li, M. Yu, Y.S. Meng et al., Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. 58(52), 18892–18897 (2019). https://doi.org/10.1002/anie.201912167
E.M. Gavilán-Arriazu, M.P. Mercer, O.A. Pinto, O.A. Oviedo, D.E. Barraco et al., Effect of temperature on the kinetics of electrochemical insertion of Li-ions into a graphite electrode studied by kinetic Monte Carlo. J. Electrochem. Soc. 167(1), 013533 (2020). https://doi.org/10.1149/2.0332001jes
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
M. Yeddala, L. Rynearson, B.L. Lucht, Modification of carbonate electrolytes for lithium metal electrodes. ACS Energy Lett. 8(11), 4782–4793 (2023). https://doi.org/10.1021/acsenergylett.3c01709
S. Shi, P. Lu, Z. Liu, Y. Qi, L.G. Hector Jr. et al., Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134(37), 15476–15487 (2012). https://doi.org/10.1021/ja305366r
P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10(34), 2001257 (2020). https://doi.org/10.1002/aenm.202001257
H. Wu, H. Jia, C. Wang, J.-G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11(5), 2003092 (2021). https://doi.org/10.1002/aenm.202003092
Z. Zhang, Y. Li, R. Xu, W. Zhou, Y. Li et al., Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375(6576), 66–70 (2022). https://doi.org/10.1126/science.abi8703
A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar et al., Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 123(16), 10237–10245 (2019). https://doi.org/10.1021/acs.jpcc.9b00436
Q. Zhang, J. Pan, P. Lu, Z. Liu, M.W. Verbrugge et al., Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16(3), 2011–2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283
J. Pokharel, A. Cresce, B. Pant, M.Y. Yang, A. Gurung et al., Manipulating the diffusion energy barrier at the lithium metal electrolyte interface for dendrite-free long-life batteries. Nat. Commun. 15(1), 3085 (2024). https://doi.org/10.1038/s41467-024-47521-z
Y. Yang, X. Wang, J. Zhu, L. Tan, N. Li et al., Dilute electrolytes with fluorine-free ether solvents for 4.5 V lithium metal batteries. Angew. Chem. Int. Ed. 63(40), e202409193 (2024). https://doi.org/10.1002/anie.202409193
Z.Y. Lu, C.N. Geng, H.J. Yang, P. He, S.C. Wu et al., Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. U.S.A. 119(40), e2210203119 (2022). https://doi.org/10.1073/pnas.2210203119
L. Benitez, J.M. Seminario, Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries. J. Electrochem. Soc. 164(11), E3159–E3170 (2017). https://doi.org/10.1149/2.0181711jes
L. Dong, H.-J. Yan, Q.-X. Liu, J.-Y. Liang, J. Yue et al., Quantification of charge transport and mass deprivation in solid electrolyte interphase for kinetically-stable low-temperature lithium-ion batteries. Angew. Chem. Int. Ed. 63(43), e202411029 (2024). https://doi.org/10.1002/anie.202411029
T.R. Jow, S.A. Delp, J.L. Allen, J.-P. Jones, M.C. Smart, Factors limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165(2), A361–A367 (2018). https://doi.org/10.1149/2.1221802jes
Q. Zheng, M. Watanabe, Y. Iwatate, D. Azuma, K. Shibazaki et al., Hydrothermal leaching of ternary and binary lithium-ion battery cathode materials with citric acid and the kinetic study. J. Supercrit. Fluids 165, 104990 (2020). https://doi.org/10.1016/j.supflu.2020.104990
F. Meng, X. Xiong, L. Tan, B. Yuan, R. Hu, Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: a review. Energy Storage Mater. 44, 390–407 (2022). https://doi.org/10.1016/j.ensm.2021.10.032
J.H. Jeong, O. Min Ju, K.C. Roh, Correlation between lithium-ion accessibility to the electrolyte–active material interface and low-temperature electrochemical performance. J. Alloys Compd. 856, 158233 (2021). https://doi.org/10.1016/j.jallcom.2020.158233
N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34(15), e2107899 (2022). https://doi.org/10.1002/adma.202107899
H. Wang, Y. Zhu, S.C. Kim, A. Pei, Y. Li et al., Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proc. Natl. Acad. Sci. U. S. A. 117(47), 29453–29461 (2020). https://doi.org/10.1073/pnas.2009221117
L. Xu, Y. Xiao, Y. Yang, S.-J. Yang, X.-R. Chen et al., Operando quantified lithium plating determination enabled by dynamic capacitance measurement in working Li-ion batteries. Angew. Chem. Int. Ed. 61(39), e202210365 (2022). https://doi.org/10.1002/anie.202210365
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
C. Uhlmann, J. Illig, M. Ender, R. Schuster, E. Ivers-Tiffée, In situ detection of lithium metal plating on graphite in experimental cells. J. Power. Sources 279, 428–438 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.046
X. Li, P. Xu, Y. Tian, A. Fortini, S.H. Choi et al., Electrolyte modulators toward polarization-mitigated lithium-ion batteries for sustainable electric transportation. Adv. Mater. 34(7), e2107787 (2022). https://doi.org/10.1002/adma.202107787
N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu et al., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022). https://doi.org/10.1016/j.etran.2021.100145
Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng et al., Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 6(91), 88683–88700 (2016). https://doi.org/10.1039/c6ra19482f
C. von Lüders, V. Zinth, S.V. Erhard, P.J. Osswald, M. Hofmann et al., Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction. J. Power. Sources 342, 17–23 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.032
G. Zhang, X. Wei, G. Han, H. Dai, J. Zhu et al., Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. J. Power. Sources 484, 229312 (2021). https://doi.org/10.1016/j.jpowsour.2020.229312
N. Yao, S.-Y. Sun, X. Chen, X.-Q. Zhang, X. Shen et al., The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 61(52), e202210859 (2022). https://doi.org/10.1002/anie.202210859
Z. Wang, Q. Zhao, S. Wang, Y. Song, B. Shi et al., Aging and post-aging thermal safety of lithium-ion batteries under complex operating conditions: a comprehensive review. J. Power. Sources 623, 235453 (2024). https://doi.org/10.1016/j.jpowsour.2024.235453
B. Ng, P.T. Coman, E. Faegh, X. Peng, S.G. Karakalos et al., Low-temperature lithium plating/corrosion hazard in lithium-ion batteries: electrode rippling, variable states of charge, and thermal and nonthermal runaway. ACS Appl. Energy Mater. 3(4), 3653–3664 (2020). https://doi.org/10.1021/acsaem.0c00130
Y. Xiang, M. Tao, X. Chen, P. Shan, D. Zhao et al., Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nat. Commun. 14(1), 177 (2023). https://doi.org/10.1038/s41467-022-35779-0
S. Xu, K.-H. Chen, N.P. Dasgupta, J.B. Siegel, A.G. Stefanopoulou, Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. J. Electrochem. Soc. 166(14), A3456–A3463 (2019). https://doi.org/10.1149/2.0991914jes
M. Abdollahifar, A. Paolella, “Dead lithium” formation and mitigation strategies in anode-free Li-metal batteries. Batter. Supercaps 8(3), e202400505 (2025). https://doi.org/10.1002/batt.202400505
X. Duan, J. Sun, L. Shi, S. Dong, G. Cui, Exploring the active lithium loss in anode-free lithium metal batteries: mechanisms, challenges, and strategies. Interdiscip. Mater. 4(2), 217–234 (2025). https://doi.org/10.1002/idm2.12232
M. Wang, X. Guo, R. Luo, X. Jiang, Y. Tang et al., The nucleation and growth mechanism of spherical Li for advanced Li metal anodes–a review. Chem. Commun. 61(19), 3777–3793 (2025). https://doi.org/10.1039/D4CC06729K
L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang et al., Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15(2), 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x
L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar et al., Self-heating–induced healing of lithium dendrites. Science 359(6383), 1513–1516 (2018). https://doi.org/10.1126/science.aap8787
X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4(9), 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
C. Guo, K. Du, R. Tao, Y. Guo, S. Yao et al., Inorganic filler enhanced formation of stable inorganic-rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33(29), 2301111 (2023). https://doi.org/10.1002/adfm.202301111
N. Chen, M. Feng, C. Li, Y. Shang, Y. Ma et al., Anion-dominated conventional-concentrations electrolyte to improve low-temperature performance of lithium-ion batteries. Adv. Funct. Mater. 34(33), 2400337 (2024). https://doi.org/10.1002/adfm.202400337
J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614(7949), 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
Y. Yang, Y. Chen, L. Tan, J. Zhang, N. Li et al., Rechargeable LiNi(0.65)co(0.15)Mn(0.2)O(2)||Graphite batteries operating at -60 °C. Angew. Chem. Int. Ed. 61(42), e202209619 (2022). https://doi.org/10.1002/anie.202209619
C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
Y. Xu, Z. Li, L. Wu, H. Dou, X. Zhang, Solvation engineering via fluorosurfactant additive toward boosted lithium-ion thermoelectrochemical cells. Nano-Micro Lett. 16(1), 72 (2024). https://doi.org/10.1007/s40820-023-01292-2
S. Kim, J.-A. Lee, T.K. Lee, K. Baek, J. Kim et al., Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes. Energy Environ. Sci. 16(11), 5108–5122 (2023). https://doi.org/10.1039/D3EE02106H
X. Dong, Y.-G. Wang, Y. Xia, Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 54(20), 3883–3894 (2021). https://doi.org/10.1021/acs.accounts.1c00420
W. Lin, M. Zhu, Y. Fan, H. Wang, G. Tao et al., Low temperature lithium-ion batteries electrolytes: rational design, advancements, and future perspectives. J. Alloys Compd. 905, 164163 (2022). https://doi.org/10.1016/j.jallcom.2022.164163
A. Hu, F. Li, W. Chen, T. Lei, Y. Li et al., Ion transport kinetics in low-temperature lithium metal batteries. Adv. Energy Mater. 12(42), 2202432 (2022). https://doi.org/10.1002/aenm.202202432
W. Lv, C. Zhu, J. Chen, C. Ou, Q. Zhang et al., High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives. Chem. Eng. J. 418, 129400 (2021). https://doi.org/10.1016/j.cej.2021.129400
H. Zhang, Z. Song, W. Yuan, W. Feng, J. Nie et al., Impact of negative charge delocalization on the properties of solid polymer electrolytes. ChemElectroChem 8(7), 1322–1328 (2021). https://doi.org/10.1002/celc.202100045
X. Tian, Y. Yi, B. Fang, P. Yang, T. Wang et al., Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 32(23), 9821–9848 (2020). https://doi.org/10.1021/acs.chemmater.0c02428
T.M. Tekaligne, H.K. Bezabh, S.K. Merso, K.N. Shitaw, M.A. Weret et al., Enhancing aluminum foil performance in aqueous and organic electrolytes: dual-secure passivation with phthalocyanine as a corrosion inhibitor. J. Mater. Chem. A 12(4), 2157–2171 (2024). https://doi.org/10.1039/D3TA02977H
X. Chen, Z. Li, H. Zhao, J. Li, W. Li et al., Dominant solvent-separated ion pairs in electrolytes enable superhigh conductivity for fast-charging and low-temperature lithium ion batteries. ACS Nano 18(11), 8350–8359 (2024). https://doi.org/10.1021/acsnano.3c12877
X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4(10), 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
J. Li, J. Yang, Z. Ji, M. Su, H. Li et al., Prospective application, mechanism, and deficiency of lithium bis(oxalate)borate as the electrolyte additive for lithium-batteries. Adv. Energy Mater. 13(35), 2301422 (2023). https://doi.org/10.1002/aenm.202301422
M. Mao, B. Huang, Q. Li, C. Wang, Y.-B. He et al., In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 78, 105282 (2020). https://doi.org/10.1016/j.nanoen.2020.105282
Y. Li, B. Cheng, F. Jiao, K. Wu, The roles and working mechanism of salt-type additives on the performance of high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 12(14), 16298–16307 (2020). https://doi.org/10.1021/acsami.9b22360
Q. Dong, F. Guo, Z. Cheng, Y. Mao, R. Huang et al., Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||Graphite cells. ACS Appl. Energy Mater. 3(1), 695–704 (2020). https://doi.org/10.1021/acsaem.9b01894
Z. Cao, X. Zheng, Q. Qu, Y. Huang, H. Zheng, Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode–electrolyte interphase. Adv. Mater. 33(38), 2103178 (2021). https://doi.org/10.1002/adma.202103178
J. Zhang, H. Zhang, L. Deng, Y. Yang, L. Tan et al., An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Mater. 54, 450–460 (2023). https://doi.org/10.1016/j.ensm.2022.10.052
J. Chen, Z. Yang, X. Xu, Y. Qiao, Z. Zhou et al., Nonflammable succinonitrile-based deep eutectic electrolyte for intrinsically safe high-voltage sodium-ion batteries. Adv. Mater. 36(28), 2400169 (2024). https://doi.org/10.1002/adma.202400169
X. Sang, K. Hu, J. Chen, Z. Wang, H. Xu et al., Temperature-inert weakly solvating electrolytes for low-temperature lithium-ion batteries with micro-sized silicon anodes. Angew. Chem. Int. Ed. 64(17), e202500367 (2025). https://doi.org/10.1002/anie.202500367
N. Zhang, A.-M. Li, W. Zhang, Z. Wang, Y. Liu et al., 4.6 V moisture-tolerant electrolytes for lithium-ion batteries. Adv. Mater. 36(50), e2408039 (2024). https://doi.org/10.1002/adma.202408039
Y. Lu, Q. Cao, W. Zhang, T. Zeng, Y. Ou et al., Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions. Nat. Energy 10(2), 191–204 (2025). https://doi.org/10.1038/s41560-024-01679-4
Y. Li, S. Song, H. Kim, K. Nomoto, H. Kim et al., A lithium superionic conductor for millimeter-thick battery electrode. Science 381(6653), 50–53 (2023). https://doi.org/10.1126/science.add7138
S.C. Kim, J. Wang, R. Xu, P. Zhang, Y. Chen et al., High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8(8), 814–826 (2023). https://doi.org/10.1038/s41560-023-01280-1
Q. Wang, C. Zhao, Z. Yao, J. Wang, F. Wu et al., Entropy-driven liquid electrolytes for lithium batteries. Adv. Mater. 35(17), 2210677 (2023). https://doi.org/10.1002/adma.202210677
Y. Xiao, X. Wang, K. Yang, J. Wu, Y. Chao et al., The anion-dominated dynamic coordination field in the electrolytes for high-performance lithium metal batteries. Energy Storage Mater. 55, 773–781 (2023). https://doi.org/10.1016/j.ensm.2022.12.038
X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33(52), 2007945 (2021). https://doi.org/10.1002/adma.202007945
T. Li, X.-Q. Zhang, N. Yao, Y.-X. Yao, L.-P. Hou et al., Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 60(42), 22683–22687 (2021). https://doi.org/10.1002/anie.202107732
Y. Zheng, H. Ji, T. Qian, S. Li, J. Liu et al., Achieving rapid ultralow-temperature ion transfer via constructing lithium–anion nanometric aggregates to eliminate Li+–dipole interactions. Nano Lett. 23(8), 3181–3188 (2023). https://doi.org/10.1021/acs.nanolett.2c04876
L. Wang, F.-D. Yu, L.-F. Que, X.-G. Zhang, K.-Y. Xie, 12-ah-level Li-ion pouch cells enabling fast charging at temperatures between −20 and 50 °C. Adv. Funct. Mater. 34(48), 2408422 (2024). https://doi.org/10.1002/adfm.202408422
Y. Zhao, Z. Hu, Z. Zhao, X. Chen, S. Zhang et al., Strong solvent and dual lithium salts enable fast-charging lithium-ion batteries operating from −78 to 60 °C. J. Am. Chem. Soc. 145(40), 22184–22193 (2023). https://doi.org/10.1021/jacs.3c08313
P. Liang, H. Hu, Y. Dong, Z. Wang, K. Liu et al., Competitive coordination of ternary anions enabling fast Li-ion desolvation for low-temperature lithium metal batteries. Adv. Funct. Mater. 34(16), 2309858 (2024). https://doi.org/10.1002/adfm.202309858
Y. Mo, G. Liu, Y. Yin, M. Tao, J. Chen et al., Fluorinated solvent molecule tuning enables fast-charging and low-temperature lithium-ion batteries. Adv. Energy Mater. 13(32), 2301285 (2023). https://doi.org/10.1002/aenm.202301285
Y. Zou, Z. Ma, G. Liu, Q. Li, D. Yin et al., Non-flammable electrolyte enables high-voltage and wide-temperature lithium-ion batteries with fast charging. Angew. Chem. Int. Ed. 62(8), e202216189 (2023). https://doi.org/10.1002/anie.202216189
X. Dong, Z. Guo, Z. Guo, Y. Wang, Y. Xia, Organic batteries operated at −70 °C. Joule 2(5), 902–913 (2018). https://doi.org/10.1016/j.joule.2018.01.017
S. Ming, S. Qurban, Y. Du, W. Su, Asymmetric synthesis of multi-substituted tetrahydrofurans via palladium/rhodium synergistic catalyzed [3+2] decarboxylative cycloaddition of vinylethylene carbonates. Chem. 27(50), 12742–12746 (2021). https://doi.org/10.1002/chem.202102024
W. Yang, W. Chen, H. Zou, J. Lai, X. Zeng et al., Electrolyte chemistry towards ultra-high voltage (4.7 V) and ultra-wide temperature (-30 to 70 °C) LiCoO2 batteries. Angew. Chem. Int. Ed. 64(13), e202424353 (2025). https://doi.org/10.1002/anie.202424353
Y. Qian, Y. Chu, Z. Zheng, Z. Shadike, B. Han et al., A new cyclic carbonate enables high power/low temperature lithium-ion batteries. Energy Storage Mater. 45, 14–23 (2022). https://doi.org/10.1016/j.ensm.2021.11.029
D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15(2), 550–578 (2022). https://doi.org/10.1039/d1ee01789f
T. Waldmann, B.-I. Hogg, M. Wohlfahrt-Mehrens, Li plating as unwanted side reaction in commercial Li-ion cells–a review. J. Power. Sources 384, 107–124 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.063
G. Kang, G. Zhong, J. Ma, R. Yin, K. Cai et al., Weakly solvated EC-free linear alkyl carbonate electrolytes for Ni-rich cathode in rechargeable lithium battery. iScience 25(12), 105710 (2022). https://doi.org/10.1016/j.isci.2022.105710
Q.Y. Li, S.H. Jiao, L.L. Luo, M.S. Ding, J.M. Zheng et al., Wide-temperature electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 9(22), 18826–18835 (2017). https://doi.org/10.1021/acsami.7b04099
X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 59(10), 3802–3832 (2020). https://doi.org/10.1002/anie.201814294
H. Jiang, X. Han, X. Du, Z. Chen, C. Lu et al., A PF6−-permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery. Adv. Mater. 34(9), 2108665 (2022). https://doi.org/10.1002/adma.202108665
Y. Yang, L. Zhao, Y. Zhang, Z. Yang, W.-H. Lai et al., Challenges and prospects of low-temperature rechargeable batteries: electrolytes, interfaces, and electrodes. Adv. Sci. 11(46), 2410318 (2024). https://doi.org/10.1002/advs.202410318
L. Li, W. Lv, J. Chen, M. Liu, P. Yang et al., EB (ethyl butyrate) as a cosolvent of electrolyte tuning an ultrathin CEI membrane for improving the ultralow-temperature behaviors of LiNi0.8Co0.1Mn0.1O2 batteries. ACS Sustainable Chem. Eng. 12(2), 1116–1131 (2024). https://doi.org/10.1021/acssuschemeng.3c07276
Z. Li, N. Yao, L. Yu, Y.-X. Yao, C.-B. Jin et al., Inhibiting gas generation to achieve ultralong-lifespan lithium-ion batteries at low temperatures. Matter 6(7), 2274–2292 (2023). https://doi.org/10.1016/j.matt.2023.04.012
Z. Li, Y.-X. Yao, M. Zheng, S. Sun, Y. Yang et al., Electrolyte design enables rechargeable LiFePO4/graphite batteries from –80 °C to 80 °C. Angew. Chem. Int. Ed. 64(2), e202409409 (2025). https://doi.org/10.1002/anie.202409409
J. Hao, W. Liu, Y. Tian, J. Wu, H. Guo et al., Unraveling the mechanism of methyl acetate additive for reinforcing the solid electrolyte interface on graphite anodes. J. Mater. Chem. A 12(34), 22679–22688 (2024). https://doi.org/10.1039/D4TA03301A
E.R. Logan, D.S. Hall, M.M.E. Cormier, T. Taskovic, M. Bauer et al., Ester-based electrolytes for fast charging of energy dense lithium-ion batteries. J. Phys. Chem. C 124(23), 12269–12280 (2020). https://doi.org/10.1021/acs.jpcc.0c02370
L. Zhang, H. Fan, H. Wang, Methyl acetate–based solutions for dual–ion batteries. Electrochim. Acta 342, 135992 (2020). https://doi.org/10.1016/j.electacta.2020.135992
Y. Zou, Z. Cao, J. Zhang, W. Wahyudi, Y. Wu et al., Interfacial model deciphering high-voltage electrolytes for high energy density, high safety, and fast-charging lithium-ion batteries. Adv. Mater. 33(43), e2102964 (2021). https://doi.org/10.1002/adma.202102964
S. Lei, Z. Zeng, H. Yan, M. Qin, M. Liu et al., Nonpolar cosolvent driving LUMO energy evolution of methyl acetate electrolyte to afford lithium-ion batteries operating at–60 °C. Adv. Funct. Mater. 33(34), 2301028 (2023). https://doi.org/10.1002/adfm.202301028
S. He, H. Yuan, P. Zhu, X. Wang, B. Xu, Fluorinated co-solvent electrolytes enable lithium metal batteries to operate at low temperatures. Chem. Eng. J. 500, 156302 (2024). https://doi.org/10.1016/j.cej.2024.156302
N. von Aspern, G.-V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem. Int. Ed. 58(45), 15978–16000 (2019). https://doi.org/10.1002/anie.201901381
Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao et al., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5(7), 526–533 (2020). https://doi.org/10.1038/s41560-020-0634-5
S. Zhang, S. Li, Y. Lu, Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience 1(2), 163–177 (2021). https://doi.org/10.1016/j.esci.2021.12.003
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
Y. Yang, Z. Fang, Y. Yin, Y. Cao, Y. Wang et al., Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem. Int. Ed. 61(36), e202208345 (2022). https://doi.org/10.1002/anie.202208345
K. An, D. Kim, Y.H.T. Tran, D.T.T. Vu, S.J. Park et al., Weakly binding molecules-based fast charging Li-ion batteries. Adv. Funct. Mater. 34(8), 2311782 (2024). https://doi.org/10.1002/adfm.202311782
S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16(1), 35 (2023). https://doi.org/10.1007/s40820-023-01245-9
Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7(1), 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
D.-J. Yoo, Q. Liu, O. Cohen, M. Kim, K.A. Persson et al., Rational design of fluorinated electrolytes for low temperature lithium-ion batteries. Adv. Energy Mater. 13(20), 2204182 (2023). https://doi.org/10.1002/aenm.202204182
Y. Wei, H. Wang, X. Lin, T. Wang, Y. Cui et al., Moderate solvation structures of lithium ions for high-voltage lithium metal batteries at −40 °C. Energy Environ. Sci. 18(2), 786–798 (2025). https://doi.org/10.1039/D4EE03192J
Y. Wang, S. Dong, Y. Gao, P.-K. Lee, Y. Tian et al., Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions. Nat. Commun. 15(1), 5408 (2024). https://doi.org/10.1038/s41467-024-49795-9
Z. Li, Y. Chen, X. Yun, P. Gao, C. Zheng et al., Critical review of fluorinated electrolytes for high-performance lithium metal batteries. Adv. Funct. Mater. 33(32), 2300502 (2023). https://doi.org/10.1002/adfm.202300502
Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(11), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
Y. Zhao, T. Zhou, T. Ashirov, M. El Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13(1), 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
C.-B. Jin, N. Yao, Y. Xiao, J. Xie, Z. Li et al., Taming solvent-solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries. Adv. Mater. 35(3), e2208340 (2023). https://doi.org/10.1002/adma.202208340
J.-F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao et al., Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60(20), 11442–11447 (2021). https://doi.org/10.1002/anie.202101627
G.-X. Li, V. Koverga, A. Nguyen, R. Kou, M. Ncube et al., Enhancing lithium-metal battery longevity through minimized coordinating diluent. Nat. Energy 9(7), 817–827 (2024). https://doi.org/10.1038/s41560-024-01519-5
Z. Jiang, T. Yang, C. Li, J. Zou, H. Yang et al., Synergistic additives enabling stable cycling of ether electrolyte in 4.4 V Ni-rich/Li metal batteries. Adv. Funct. Mater. 33(51), 2306868 (2023). https://doi.org/10.1002/adfm.202306868
Y. Zhao, T. Zhou, L.P.H. Jeurgens, X. Kong, J.W. Choi et al., Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. Chem 9(3), 682–697 (2023). https://doi.org/10.1016/j.chempr.2022.12.005
X. Wang, D. Ren, H. Liang, Y. Song, H. Huo et al., Ni crossover catalysis: truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries. Energy Environ. Sci. 16(3), 1200–1209 (2023). https://doi.org/10.1039/D2EE04109J
Z. Wang, X. Che, D. Wang, Y. Wang, X. He et al., Non-fluorinated ethers to mitigate electrode surface reactivity in high-voltage NCM811-Li batteries. Angew. Chem. Int. Ed. 63(25), e202404109 (2024). https://doi.org/10.1002/anie.202404109
S. Chen, J. Fan, Z. Cui, L. Tan, D. Ruan et al., Unveiling the critical role of ion coordination configuration of ether electrolytes for high voltage lithium metal batteries. Angew. Chem. Int. Ed. 62(23), e202219310 (2023). https://doi.org/10.1002/anie.202219310
T. Xu, T. Zheng, Z. Ru, J. Song, M. Gu, Ye. Yue, Y. Xiao, S. Amzil, J. Gao, P. Müller‐Buschbaum, Ke. Wang, H. Zhao, Y.-J. Cheng, Y. Xia, Ether-based electrolyte for high-temperature and high-voltage lithium metal batteries. Adv. Funct. Mater. 34(19), 2313319 (2024). https://doi.org/10.1002/adfm.202313319
F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4(10), eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
H. Yang, M. Jing, L. Wang, H. Xu, X. Yan et al., PDOL-based solid electrolyte toward practical application: opportunities and challenges. Nano-Micro Lett. 16(1), 127 (2024). https://doi.org/10.1007/s40820-024-01354-z
Q. Zhao, X. Liu, J. Zheng, Y. Deng, A. Warren et al., Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proc. Natl. Acad. Sci. U. S. A. 117(42), 26053–26060 (2020). https://doi.org/10.1073/pnas.2004576117
H.-Z. Jiang, C. Yang, M. Chen, X.-W. Liu, L.-M. Yin et al., Electrophilically trapping water for preventing polymerization of cyclic ether towards low-temperature Li metal battery. Angew. Chem. Int. Ed. 62(14), e202300238 (2023). https://doi.org/10.1002/anie.202300238
Y. Lin, Z. Yang, X. Zhang, Y. Liu, G. Hu et al., Activating ultra-low temperature Li-metal batteries by tetrahydrofuran-based localized saturated electrolyte. Energy Storage Mater. 58, 184–194 (2023). https://doi.org/10.1016/j.ensm.2023.03.026
T. Chen, J. You, R. Li, H. Li, Y. Wang et al., Ultra-low concentration electrolyte enabling LiF-rich SEI and dense plating/stripping processes for lithium metal batteries. Adv. Sci. 9(28), 2203216 (2022). https://doi.org/10.1002/advs.202203216
H. Hu, J. Li, Q. Zhang, G. Ding, J. Liu et al., Non-concentrated electrolyte with weak anion coordination enables low Li-ion desolvation energy for low-temperature lithium batteries. Chem. Eng. J. 457, 141273 (2023). https://doi.org/10.1016/j.cej.2023.141273
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
S. Lin, H. Hua, Z. Li, J. Zhao, Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. ACS Appl. Mater. Interfaces 12(30), 33710–33718 (2020). https://doi.org/10.1021/acsami.0c07904
X. Ren, X. Zhang, Z. Shadike, L. Zou, H. Jia et al., Designing advanced in situ electrode/electrolyte interphases for wide temperature operation of 4.5 V Li||LiCoO2 batteries. Adv. Mater. 32(49), e2004898 (2020). https://doi.org/10.1002/adma.202004898
S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
J. Yang, J. Shang, Q. Liu, X. Yang, Y. Tan et al., Variant-localized high-concentration electrolyte without phase separation for low-temperature batteries. Angew. Chem. Int. Ed. 63(33), e202406182 (2024). https://doi.org/10.1002/anie.202406182
X. Cao, X. Ren, L. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4(9), 796–805 (2019). https://doi.org/10.1038/s41560-019-0464-5
S. Kim, V.G. Pol, Tailored solvation and interface structures by tetrahydrofuran-derived electrolyte facilitates ultralow temperature lithium metal battery operations. Chemsuschem 16(5), e202202143 (2023). https://doi.org/10.1002/cssc.202202143
X. Peng, T. Wang, B. Liu, Y. Li, T. Zhao, A solvent molecule reconstruction strategy enabling a high-voltage ether-based electrolyte. Energy Environ. Sci. 15(12), 5350–5361 (2022). https://doi.org/10.1039/d2ee02344j
J. Holoubek, K. Kim, Y. Yin, Z. Wu, H. Liu et al., Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ. Sci. 15(4), 1647–1658 (2022). https://doi.org/10.1039/d1ee03422g
J. Shi, C. Xu, J. Lai, Z. Li, Y. Zhang et al., An amphiphilic molecule-regulated core-shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. 62(13), e202218151 (2023). https://doi.org/10.1002/anie.202218151
Z. Cui, D. Wang, J. Guo, Q. Nian, D. Ruan et al., Push–pull electrolyte design strategy enables high-voltage low-temperature lithium metal batteries. J. Am. Chem. Soc. 146(40), 27644–27654 (2024). https://doi.org/10.1021/jacs.4c09027
F. Ren, Z. Li, J. Chen, P. Huguet, Z. Peng et al., Solvent–diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14(3), 4211–4219 (2022). https://doi.org/10.1021/acsami.1c21638
Z. Jiang, C. Li, T. Yang, Y. Deng, J. Zou et al., Fluorine-free lithium metal batteries with a stable LiF-free solid electrolyte interphase. ACS Energy Lett. 9(4), 1389–1396 (2024). https://doi.org/10.1021/acsenergylett.3c02724
J. Moon, D.O. Kim, L. Bekaert, M. Song, J. Chung et al., Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nat. Commun. 13(1), 4538 (2022). https://doi.org/10.1038/s41467-022-32192-5
A.-M. Li, O. Borodin, T.P. Pollard, W. Zhang, N. Zhang et al., Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries. Nat. Chem. 16(6), 922–929 (2024). https://doi.org/10.1038/s41557-024-01497-x
T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin et al., Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 134(39), e202207927 (2022). https://doi.org/10.1002/ange.202207927
Y. Huang, R. Li, S. Weng, H. Zhang, C. Zhu et al., Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15(10), 4349–4361 (2022). https://doi.org/10.1039/D2EE01756C
Y. Liao, M. Zhou, L. Yuan, K. Huang, D. Wang et al., Eco-friendly tetrahydropyran enables weakly solvating “4S” electrolytes for lithium-metal batteries. Adv. Energy Mater. 13(32), 2301477 (2023). https://doi.org/10.1002/aenm.202301477
Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 133(8), 4136–4143 (2021). https://doi.org/10.1002/ange.202011482
Z. Li, Y. Liao, H. Ji, X. Lin, Y. Wei et al., A tetrahydropyran-based weakly solvating electrolyte for low-temperature and high-voltage lithium metal batteries. Adv. Energy Mater. 15(15), 2404120 (2025). https://doi.org/10.1002/aenm.202404120
Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143(44), 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
H. Zhang, Z. Zeng, F. Ma, Q. Wu, X. Wang et al., Cyclopentylmethyl ether, a non-fluorinated, weakly solvating and wide temperature solvent for high-performance lithium metal battery. Angew. Chem. Int. Ed. 62(21), e202300771 (2023). https://doi.org/10.1002/anie.202300771
X. Zhu, J. Chen, G. Liu, Y. Mo, Y. Xie et al., Non-fluorinated cyclic ether-based electrolyte with quasi-conjugate effect for high-performance lithium metal batteries. Angew. Chem. Int. Ed. 64(1), e202412859 (2025). https://doi.org/10.1002/anie.202412859
X. Liu, J. Zhang, X. Yun, J. Li, H. Yu et al., Anchored weakly-solvated electrolytes for high-voltage and low-temperature lithium-ion batteries. Angew. Chem. Int. Ed. 63(36), e202406596 (2024). https://doi.org/10.1002/anie.202406596
P. Liang, J. Li, Y. Dong, Z. Wang, G. Ding et al., Modulating interfacial solvation via ion dipole interactions for low-temperature and high-voltage lithium batteries. Angew. Chem. Int. Ed. 64(4), e202415853 (2025). https://doi.org/10.1002/anie.202415853
N. Piao, J. Wang, X. Gao, R. Li, H. Zhang et al., Designing temperature-insensitive solvated electrolytes for low-temperature lithium metal batteries. J. Am. Chem. Soc. 146(27), 18281–18291 (2024). https://doi.org/10.1021/jacs.4c01735
Y. Yang, Y. Yin, D.M. Davies, M. Zhang, M. Mayer et al., Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ. Sci. 13(7), 2209–2219 (2020). https://doi.org/10.1039/d0ee01446j
Z. Wang, Z. He, Z. Wang, J. Yang, K. Long et al., A nitrile solvent structure induced stable solid electrolyte interphase for wide-temperature lithium-ion batteries. Chem. Sci. 15(34), 13768–13778 (2024). https://doi.org/10.1039/D4SC03890H
Q. Li, G. Liu, H. Cheng, Q. Sun, J. Zhang et al., Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chem. Eur. J. 27(64), 15842–15865 (2021). https://doi.org/10.1002/chem.202101407
R. Rohan, T.-C. Kuo, J.-H. Lin, Y.-C. Hsu, C.-C. Li et al., Dinitrile–mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles. J. Phys. Chem. C 120(12), 6450–6458 (2016). https://doi.org/10.1021/acs.jpcc.6b00980
Y.-S. Kim, H. Lee, H.-K. Song, Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries. ACS Appl. Mater. Interfaces 6(11), 8913–8920 (2014). https://doi.org/10.1021/am501671p
Y.-G. Cho, Y.-S. Kim, D.-G. Sung, M.-S. Seo, H.-K. Song, Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges. Energy Environ. Sci. 7(5), 1737–1743 (2014). https://doi.org/10.1039/C3EE43029D
L. Luo, K. Chen, H. Chen, H. Li, R. Cao et al., Enabling ultralow-temperature (-70 °C) lithium-ion batteries: advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent. Adv. Mater. 36(5), e2308881 (2024). https://doi.org/10.1002/adma.202308881
D. Lu, R. Li, M.M. Rahman, P. Yu, L. Lv et al., Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627(8002), 101–107 (2024). https://doi.org/10.1038/s41586-024-07045-4
S. Li, H. Liu, L. Zheng, C. Ma, H. Yu et al., Electrolyte with weakly coordinating solvents for high-performance FeS2 cathode. Nano Energy 131, 110234 (2024). https://doi.org/10.1016/j.nanoen.2024.110234
S. Tan, H. Liu, Z. Wu, C. Weiland, S.-M. Bak et al., Isoxazole-based electrolytes for lithium metal protection and lithium-sulfurized polyacrylonitrile (SPAN) battery operating at low temperature. J. Electrochem. Soc. 169(3), 030513 (2022). https://doi.org/10.1149/1945-7111/ac58c5
T. Liu, J. Feng, Z. Shi, H. Li, W. Zhao et al., Diminishing ether-oxygen content of electrolytes enables temperature-immune lithium metal batteries. Sci. China Chem. 66(9), 2700–2710 (2023). https://doi.org/10.1007/s11426-023-1705-9
L. Cheng, Y. Wang, J. Yang, M. Tang, C. Zhang et al., An ultrafast and stable Li-metal battery cycled at –40 °C. Adv. Funct. Mater. 33(11), 2212349 (2023). https://doi.org/10.1002/adfm.202212349
A. Wang, L. Wang, Y. Wu, Y. He, D. Ren et al., Uncovering the effect of solid electrolyte interphase on ion desolvation for rational interface design in Li-ion batteries. Adv. Energy Mater. 13(25), 2300626 (2023). https://doi.org/10.1002/aenm.202300626
S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang et al., Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat. Energy 8(12), 1365–1374 (2023). https://doi.org/10.1038/s41560-023-01387-5
C. Wang, Y. Xie, Y. Huang, S. Zhou, H. Xie et al., Li3PO4-enriched SEI on graphite anode boosts Li+ de-solvation enabling fast-charging and low-temperature lithium-ion batteries. Angew. Chem. Int. Ed. 63(21), e202402301 (2024). https://doi.org/10.1002/anie.202402301
S. Wang, Z. Xue, F. Chu, Z. Guan, J. Lei et al., Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range. J. Energy Chem. 79, 201–210 (2023). https://doi.org/10.1016/j.jechem.2022.12.060
D. Zhao, S. Li, Regulating the performance of lithium-ion battery focus on the electrode-electrolyte interface. Front. Chem. 8, 821 (2020). https://doi.org/10.3389/fchem.2020.00821
W. Zhang, Y. Lu, Q. Cao, H. Liu, Q. Feng et al., A reversible self-assembled molecular layer for lithium metal batteries with high energy/power densities at ultra-low temperatures. Energy Environ. Sci. 17(13), 4531–4543 (2024). https://doi.org/10.1039/D4EE01298D
H. Wang, S. Chen, Y. Li, Y. Liu, Q. Jing et al., Organosilicon-based functional electrolytes for high-performance lithium batteries. Adv. Energy Mater. 11(28), 2101057 (2021). https://doi.org/10.1002/aenm.202101057
Y. Wang, J. Liu, H. Ji, S. Wang, M. Wang et al., Optimizing Si─O conjugation to enhance interfacial kinetics for low-temperature rechargeable lithium-ion batteries. Adv. Mater. 37(3), 2412155 (2025). https://doi.org/10.1002/adma.202412155
W. Zhang, Y. Lu, Q. Feng, H. Wang, G. Cheng et al., Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures. Nat. Commun. 16(1), 3344 (2025). https://doi.org/10.1038/s41467-025-58627-3
Y. Ou, D. Zhu, P. Zhou, C. Li, Y. Lu et al., Self-compartmented electrolyte design for stable cycling of lithium metal batteries under extreme conditions. Angew. Chem. Int. Ed. 64(24), e202504632 (2025). https://doi.org/10.1002/anie.202504632
F. Chu, R. Deng, F. Wu, Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Mater. 56, 141–154 (2023). https://doi.org/10.1016/j.ensm.2023.01.001
X. Weng, Y. Qin, X. Da, Y. Zhao, X. Deng et al., N-fluorobenzenesulfonimide as a multifunctional electrolyte additive for co-stabilizing dual-electrodes of lithium metal batteries with enhanced electrochemical performance. Chem. Eng. J. 466, 143302 (2023). https://doi.org/10.1016/j.cej.2023.143302
X. Yin, B. Li, H. Liu, B. Wen, J. Liu et al., Solvent-derived organic-rich SEI enables capacity enhancement for low-temperature lithium metal batteries. Joule 9(4), 101823 (2025). https://doi.org/10.1016/j.joule.2025.101823
X. Meng, J. Qin, Y. Liu, Z. Liu, Y. Zhao et al., Electrolyte strategy toward the low-temperature Li-metal secondary battery. Chem. Eng. J. 465, 142913 (2023). https://doi.org/10.1016/j.cej.2023.142913
D. Zhang, D. Zhu, W. Guo, C. Deng, Q. Xu et al., The fluorine-rich electrolyte as an interface modifier to stabilize lithium metal battery at ultra-low temperature. Adv. Funct. Mater. 32(23), 2112764 (2022). https://doi.org/10.1002/adfm.202112764
X. Zhou, Y. Zhou, L. Yu, L. Qi, K.-S. Oh et al., Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 53(10), 5291–5337 (2024). https://doi.org/10.1039/d3cs00551h
L.-Z. Fan, H. He, C.-W. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6(11), 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
D. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao et al., Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv. Sci. 8(18), e2101051 (2021). https://doi.org/10.1002/advs.202101051
Q. Liu, L. Wang, Fundamentals of electrolyte design for wide-temperature lithium metal batteries. Adv. Energy Mater. 13(37), 2301742 (2023). https://doi.org/10.1002/aenm.202301742
F. Wang, J. Zhong, Y. Guo, Q. Han, H. Liu et al., Fluorinated nonflammable in situ gel polymer electrolyte for high-voltage lithium metal batteries. ACS Appl. Mater. Interfaces 15(33), 39265–39275 (2023). https://doi.org/10.1021/acsami.3c05840
Z. Lin, Y. Wang, Y. Li, Y. Liu, S. Zhong et al., Regulating solvation structure in gel polymer electrolytes with covalent organic frameworks for lithium metal batteries. Energy Storage Mater. 53, 917–926 (2022). https://doi.org/10.1016/j.ensm.2022.10.019
K. Huang, S. Bi, H. Xu, L. Wu, C. Fang et al., Optimizing Li-ion solvation in gel polymer electrolytes to stabilize Li-metal anode. Chemsuschem 16(19), e202300671 (2023). https://doi.org/10.1002/cssc.202300671
J. Yu, X. Lin, J. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12(2), 2102932 (2022). https://doi.org/10.1002/aenm.202102932
S. Mo, H. An, Q. Liu, J. Zhu, C. Fu et al., Multistage bridge engineering for electrolyte and interface enables quasi-solid batteries to operate at -40 °C. Energy Storage Mater. 65, 103179 (2024). https://doi.org/10.1016/j.ensm.2024.103179
X. Chen, C. Qin, F. Chu, F. Li, J. Liu et al., Contriving a gel polymer electrolyte to drive quasi-solid-state high-voltage Li metal batteries at ultralow temperatures. Energy Environ. Sci. 18(2), 910–922 (2025). https://doi.org/10.1039/D4EE04011B
M. Xin, Y. Zhang, Z. Liu, Y. Zhang, Y. Zhai et al., In situ-initiated poly-1, 3-dioxolane gel electrolyte for high-voltage lithium metal batteries. Molecules 29(11), 2454 (2024). https://doi.org/10.3390/molecules29112454
X. Liu, D. Wang, Z. Zhang, G. Li, J. Wang et al., Gel polymer electrolyte enables low-temperature and high-rate lithium-ion batteries via bionic interface design. Small 20(45), 2404879 (2024). https://doi.org/10.1002/smll.202404879
A. Benayad, D. Diddens, A. Heuer, A.N. Krishnamoorthy, M. Maiti et al., High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Adv. Energy Mater. 12(17), 2102678 (2022). https://doi.org/10.1002/aenm.202102678
Y. Cao, A. Aspuru-Guzik, Accelerating discovery in organic redox flow batteries. Nat. Comput. Sci. 4(2), 89–91 (2024). https://doi.org/10.1038/s43588-024-00600-z
M. Reza Izadi, R. Haghbakhsh, S. Raeissi, Thermodynamic screening of various group contribution methods for estimation of the critical properties and acentric factors of deep eutectic solvents. J. Mol. Liq. 399, 124345 (2024). https://doi.org/10.1016/j.molliq.2024.124345
N. Yao, L. Yu, Z.-H. Fu, X. Shen, T.-Z. Hou et al., Probing the origin of viscosity of liquid electrolytes for lithium batteries. Angew. Chem. Int. Ed. 62(41), e202305331 (2023). https://doi.org/10.1002/anie.202305331
B. He, Q. Zhang, Z. Pan, L. Li, C. Li et al., Freestanding metal–organic frameworks and their derivatives: an emerging platform for electrochemical energy storage and conversion. Chem. Rev. 122(11), 10087–10125 (2022). https://doi.org/10.1021/acs.chemrev.1c00978
X. Chen, X. Liu, X. Shen, Q. Zhang, Applying machine learning to rechargeable batteries: from the microscale to the macroscale. Angew. Chem. Int. Ed. 60(46), 24354–24366 (2021). https://doi.org/10.1002/anie.202107369
N. Yao, X. Chen, Z.-H. Fu, Q. Zhang, Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 122(12), 10970–11021 (2022). https://doi.org/10.1021/acs.chemrev.1c00904
S.C. Kim, S.T. Oyakhire, C. Athanitis, J. Wang, Z. Zhang et al., Data-driven electrolyte design for lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A. 120(10), e2214357120 (2023). https://doi.org/10.1073/pnas.2214357120
Y.-C. Gao, N. Yao, X. Chen, L. Yu, R. Zhang et al., Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145(43), 23764–23770 (2023). https://doi.org/10.1021/jacs.3c08346
Y. Liu, B. Guo, X. Zou, Y. Li, S. Shi, Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater. 31, 434–450 (2020). https://doi.org/10.1016/j.ensm.2020.06.033
D.K.J. Lee, T.L. Tan, M.-F. Ng, Machine learning-assisted Bayesian optimization for the discovery of effective additives for dendrite suppression in lithium metal batteries. ACS Appl. Mater. Interfaces 16(46), 64364–64376 (2024). https://doi.org/10.1021/acsami.4c16611
T. Lombardo, M. Duquesnoy, H. El-Bouysidy, F. Årén, A. Gallo-Bueno et al., Artificial intelligence applied to battery research: hype or reality? Chem. Rev. 122(12), 10899–10969 (2022). https://doi.org/10.1021/acs.chemrev.1c00108
Y. Chen, Y. Liu, Z. He, L. Xu, P. Yu et al., Artificial intelligence for the understanding of electrolyte chemistry and electrode interface in lithium battery. Natl. Sci. Open (2023). https://doi.org/10.1360/nso/20230039
Y. Kitazawa, K. Iwata, R. Kido, S. Imaizumi, S. Tsuzuki et al., Polymer electrolytes containing solvate ionic liquids: a new approach to achieve high ionic conductivity, thermal stability, and a wide potential window. Chem. Mater. 30(1), 252–261 (2018). https://doi.org/10.1021/acs.chemmater.7b04274
J. Zhang, J. Zhu, R. Zhao, J. Liu, X. Song et al., An all-in-one free-standing single-ion conducting semi-solid polymer electrolyte for high-performance practical Li metal batteries. Energy Environ. Sci. 17(19), 7119–7128 (2024). https://doi.org/10.1039/D4EE02208D
G.R. Zhu, Q. Zhang, Q.S. Liu, Q.Y. Bai, Y.Z. Quan et al., Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat. Commun. 14(1), 4617 (2023). https://doi.org/10.1