Advancements and Innovations in Low-Temperature Hydrogen Electrochemical Conversion Devices Driven by 3D Printing Technology
Corresponding Author: Feng‑Yuan Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 61
Abstract
3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices—specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers—which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components. It begins with a concise introduction to the principles and classifications of mainstream 3D printing methods relevant to the hydrogen energy sector and proceeds to analyze their specific applications and performance impacts across different device architectures. Finally, the review identifies existing technical challenges and outlines future research directions to accelerate the integration of 3D printing in next-generation low-temperature hydrogen energy systems.
Highlights:
1 Outlines 3D printing methods and their benefits in fabricating complex components for low-temperature hydrogen devices.
2 Summarizes current applications in fuel cells and electrolyzers, highlighting recent progress in hydrogen energy.
3 Explores future directions and challenges, offering insights into trends and opportunities in hydrogen-related systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Shi, Renewable energy: finding solutions for a greener tomorrow. Rev. Environ. Sci. Bio/Technol. 9(1), 35–37 (2010). https://doi.org/10.1007/s11157-010-9187-6
- H. Meddeb, M. Götz-Köhler, N. Neugebohrn, U. Banik, N. Osterthun, O. Sergeev, D. Berends, C. Lattyak, K. Gehrke, M. Vehse, Tunable photovoltaics: adapting solar cell technologies to versatile applications. Adv. Energy Mater. 12(28), 2200713 (2022). https://doi.org/10.1002/aenm.202200713
- Z. Li, S. Fang, H. Sun, R.-J. Chung, X. Fang et al., Solar hydrogen. Adv. Energy Mater. 13(8), 2203019 (2023). https://doi.org/10.1002/aenm.202203019
- Z. Li, S. Fang, H. Sun, R.-J. Chung, X. Fang, J.-H. He, Solar hydrogen. Adv. Energy Mater. 13(8), 2203019 (2023). https://doi.org/10.1002/aenm.202203019
- R.M. Navarro, M.C. Sánchez-Sánchez, M.C. Alvarez-Galvan, F. del Valle, J.L.G. Fierro, Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci. 2(1), 35–54 (2009). https://doi.org/10.1039/B808138G
- H. Yang, X. Wang, S. Xia, S. Zhang, R. Zhang et al., Black phosphorus modulated Ru electrocatalyst for highly efficient and durable seawater splitting. Adv. Energy Mater. 13(44), 2302727 (2023). https://doi.org/10.1002/aenm.202302727
- C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
- Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou et al., Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51(23), 9620–9693 (2022). https://doi.org/10.1039/D2CS00038E
- S. Komini Babu, A. Yilmaz, M.A. Uddin, J. LaManna, E. Baltic et al., A goldilocks approach to water management: hydrochannel porous transport layers for unitized reversible fuel cells. Adv. Energy Mater. 13(16), 2203952 (2023). https://doi.org/10.1002/aenm.202203952
- K. Zhang, X. Liang, L. Wang, K. Sun, Y. Wang et al., Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 1, e9120032 (2022). https://doi.org/10.26599/nre.2022.9120032
- H. Li, S. Yuan, J. You, C. Zhao, X. Cheng et al., Revealing the oxygen transport challenges in catalyst layers in proton exchange membrane fuel cells and water electrolysis. Nano-Micro Lett. 17(1), 225 (2025). https://doi.org/10.1007/s40820-025-01719-y
- I. Moradpoor, S. Syri, A. Santasalo-Aarnio, Green hydrogen production for oil ref.ining–Finnish case. Renew. Sustain. Energy Rev. 175, 113159 (2023). https://doi.org/10.1016/j.rser.2023.113159
- K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie et al., Designing the next generation of proton-exchange membrane fuel cells. Nature 595(7867), 361–369 (2021). https://doi.org/10.1038/s41586-021-03482-7
- L. Zhao, J. Zhu, Y. Zheng, M. Xiao, R. Gao et al., Materials engineering toward durable electrocatalysts for proton exchange membrane fuel cells. Adv. Energy Mater. 12(2), 2102665 (2022). https://doi.org/10.1002/aenm.202102665
- B. Tian, Y. Li, Y. Liu, F. Ning, X. Dan et al., Ordered membrane electrode assembly with drastically enhanced proton and mass transport for proton exchange membrane water electrolysis. Nano Lett. 23(14), 6474–6481 (2023). https://doi.org/10.1021/acs.nanolett.3c01331
- M. Wang, E. Sun, Y. Wang, L. Lei, Z. Du et al., Oxygen reduction electrocatalyst degradation and mitigation strategies in proton exchange membrane fuel cells. Appl. Catal. B Environ. Energy 367, 125116 (2025). https://doi.org/10.1016/j.apcatb.2025.125116
- C.-Y. Lee, A.C. Taylor, S. Beirne, G.G. Wallace, A 3D-printed electrochemical water splitting cell. Adv. Mater. Technol. 4(10), 1900433 (2019). https://doi.org/10.1002/admt.201900433
- K. Xu, Y. Gong, Q. Zhao, Comparison of traditional processing and additive manufacturing technologies in various performance aspects: a review. Arch. Civ. Mech. Eng. 23(3), 188 (2023). https://doi.org/10.1007/s43452-023-00699-3
- X. Liu, D. Zhao, J. Wang, Challenges and opportunities in preserving key structural features of 3D-printed metal/covalent organic framework. Nano-Micro Lett. 16(1), 157 (2024). https://doi.org/10.1007/s40820-024-01373-w
- J. Lee, H.-C. Kim, J.-W. Choi, I.H. Lee, A review on 3D printed smart devices for 4D printing. Int. J. Precis. Eng. Manuf. Green Technol. 4(3), 373–383 (2017). https://doi.org/10.1007/s40684-017-0042-x
- V. Shirmohammadli, B. Bahreyni, A 3d-printed computer. Adv. Intell. Syst. 5(8), 2300015 (2023). https://doi.org/10.1002/aisy.202300015
- H. Molavi, K. Mirzaei, M. Barjasteh, S.Y. Rahnamaee, S. Saeedi et al., 3D-printed MOF monoliths: fabrication strategies and environmental applications. Nano-Micro Lett. 16(1), 272 (2024). https://doi.org/10.1007/s40820-024-01487-1
- K. Lu, J. Zhang, H. Ding, Z. Wang, X. Pan, Numerical and experimental investigation of 3D flow field bipolar plates for PEMFCs by metal 3D printing. Fuel 357, 129699 (2024). https://doi.org/10.1016/j.fuel.2023.129699
- A.X.Y. Guo, L. Cheng, S. Zhan, S. Zhang, W. Xiong et al., Biomedical applications of the powder-based 3D printed titanium alloys: a review. J. Mater. Sci. Technol. 125, 252–264 (2022). https://doi.org/10.1016/j.jmst.2021.11.084
- Y. Li, R.K. Kankala, L. Wu, A.-Z. Chen, S.-B. Wang, 3D-printed photocurable resin with synergistic hydrogen bonding based on deep eutectic solvent. ACS Appl. Polym. Mater. 5(1), 991–1001 (2023). https://doi.org/10.1021/acsapm.2c01916
- W. Zheng, J.-M. Wu, S. Chen, K.-B. Yu, S.-B. Hua et al., Fabrication of high-performance silica-based ceramic cores through selective laser sintering combined with vacuum infiltration. Addit. Manuf. 48, 102396 (2021). https://doi.org/10.1016/j.addma.2021.102396
- X. Luo, C. Ren, J. Song, H. Luo, K. Xiao et al., Design and fabrication of bipolar plates for PEM water electrolyser. J. Mater. Sci. Technol. 146, 19–41 (2023). https://doi.org/10.1016/j.jmst.2022.10.039
- K. Fu, Y. Yao, J. Dai, L. Hu, Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 29(9), 1603486 (2017). https://doi.org/10.1002/adma.201603486
- G. Yang, Z. Xie, S. Yu, K. Li, Y. Li et al., All-in-one bipolar electrode: a new concept for compact and efficient water electrolyzers. Nano Energy 90, 106551 (2021). https://doi.org/10.1016/j.nanoen.2021.106551
- H. Wang, Y. Xia, Z. Zhang, Z. Xie, 3D gradient printing based on digital light processing. J. Mater. Chem. B 11(37), 8883–8896 (2023). https://doi.org/10.1039/D3TB00763D
- G. Chen, W. Shi, J. Xuan, Ž Penga, Q. Xu et al., Improvement of under-the-rib oxygen concentration and water removal in proton exchange membrane fuel cells through three-dimensional metal printed novel flow fields. AIChE J. 68(9), e17758 (2022). https://doi.org/10.1002/aic.17758
- B. Huang, X. Wang, W. Li, W. Tian, L. Luo et al., Accelerating gas escape in anion exchange membrane water electrolysis by gas diffusion layers with hierarchical grid gradients. Angew. Chem. Int. Ed. 62(33), e202304230 (2023). https://doi.org/10.1002/anie.202304230
- B. Hüner, M. Kıstı, S. Uysal, İN. Uzgören, E. Özdoğan et al., An overview of various additive manufacturing technologies and materials for electrochemical energy conversion applications. ACS Omega 7(45), 40638–40658 (2022). https://doi.org/10.1021/acsomega.2c05096
- Y. Li, Q. Mao, J. Yin, Y. Wang, J. Fu et al., Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit. Manuf. 37, 101716 (2021). https://doi.org/10.1016/j.addma.2020.101716
- H. Cui, W. Zhu, B. Holmes, L.G. Zhang, Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv. Sci. 3(8), 1600058 (2016). https://doi.org/10.1002/advs.201600058
- Z. Han, G. Wang, J. Zhang, Z. Tang, Direct photo-curing 3D printing of nickel-based electrocatalysts for highly-efficient hydrogen evolution. Nano Energy 102, 107615 (2022). https://doi.org/10.1016/j.nanoen.2022.107615
- S. Ng, M. Sanna, E. Redondo, M. Pumera, Engineering 3D-printed carbon structures with atomic layer deposition coatings as photoelectrocatalysts for water splitting. J. Mater. Chem. A 12(1), 396–404 (2024). https://doi.org/10.1039/D3TA04460B
- W. Kang, L. Zeng, S. Ling, C. Zhang, 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv. Energy Mater. 11(12), 2100020 (2021). https://doi.org/10.1002/aenm.202100020
- M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34(28), 2108855 (2022). https://doi.org/10.1002/adma.202108855
- Y. Wang, N. Willenbacher, Phase-change-enabled, rapid, high-resolution direct ink writing of soft silicone. Adv. Mater. 34(15), 2109240 (2022). https://doi.org/10.1002/adma.202109240
- H. Chen, J. Wang, S. Peng, D. Liu, W. Yan et al., A generalized polymer precursor ink design for 3D printing of functional metal oxides. Nano-Micro Lett. 15(1), 180 (2023). https://doi.org/10.1007/s40820-023-01147-w
- D.A. Rau, C.B. Williams, M.J. Bortner, Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog. Mater. Sci. 140, 101188 (2023). https://doi.org/10.1016/j.pmatsci.2023.101188
- L. Zhang, W. Lee, X. Li, Y. Jiang, N.X. Fang et al., 3D direct printing of mechanical and biocompatible hydrogel meta-structures. Bioact. Mater. 10, 48–55 (2022). https://doi.org/10.1016/j.bioactmat.2021.08.015
- R.H. Bean, D.A. Rau, C.B. Williams, T.E. Long, Rheology guiding the design and printability of aqueous colloidal composites for additive manufacturing. J. Vinyl Addit. Technol. 29(4), 607–616 (2023). https://doi.org/10.1002/vnl.22010
- J. Götz, S. Huth, H. Buggisch, Flow behavior of pastes with a deformation history dependent yield stress. J. Non-Newton. Fluid Mech. 103(2–3), 149–166 (2002). https://doi.org/10.1016/S0377-0257(01)00194-X
- A. Shahzad, I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos. B Eng. 225, 109249 (2021). https://doi.org/10.1016/j.compositesb.2021.109249
- P. Carou-Senra, L. Rodríguez-Pombo, A. Awad, A.W. Basit, C. Alvarez-Lorenzo et al., Inkjet printing of pharmaceuticals. Adv. Mater. 36(11), 2309164 (2024). https://doi.org/10.1002/adma.202309164
- F. Lübkemann, J.F. Miethe, F. Steinbach, P. Rusch, A. Schlosser et al., Patterning of nanop-based aerogels and xerogels by inkjet printing. Small 15(39), 1902186 (2019). https://doi.org/10.1002/smll.201902186
- C.J. Stevens, I. Spanos, A. Vallechi, J. McGhee, W. Whittow, 3D printing of functional metal and dielectric composite meta-atoms. Small 18(10), 2105368 (2022). https://doi.org/10.1002/smll.202105368
- D. Acierno, A. Patti, Fused deposition modelling (FDM) of thermoplastic-based filaments: process and rheological properties-an overview. Materials 16(24), 7664 (2023). https://doi.org/10.3390/ma16247664
- R. Arrigo, A. Frache, FDM printability of PLA based-materials: the key role of the rheological behavior. Polymers 14(9), 1754 (2022). https://doi.org/10.3390/polym14091754
- Y. Hu, R.B. Ladani, M. Brandt, Y. Li, A.P. Mouritz, Carbon fibre damage during 3D printing of polymer matrix laminates using the FDM process. Mater. Des. 205, 109679 (2021). https://doi.org/10.1016/j.matdes.2021.109679
- Y.-H. Bian, G. Yu, X. Zhao, S.-X. Li, X.-L. He et al., Exit morphology and mechanical property of FDM printed PLA: influence of hot melt extrusion process. Adv. Manuf. 11(1), 56–74 (2023). https://doi.org/10.1007/s40436-022-00405-1
- S. Wang, Y. Ma, Z. Deng, S. Zhang, J. Cai, Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym. Test. 86, 106483 (2020). https://doi.org/10.1016/j.polymertesting.2020.106483
- O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, J. Azadmanjiri, Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment. J. Mater. Eng. Perform. 25(7), 2922–2935 (2016). https://doi.org/10.1007/s11665-016-2157-6
- M. Quarto, M. Carminati, G. D’Urso, Density and shrinkage evaluation of AISI 316L parts printed via FDM process. Mater. Manuf. Process. 36(13), 1535–1543 (2021). https://doi.org/10.1080/10426914.2021.1905830
- H. Li, J. Dai, Z. Wang, H. Zheng, W. Li et al., Digital light processing (DLP)-based (bio)printing strategies for tissue modeling and regeneration. Aggregate 4(2), e270 (2023). https://doi.org/10.1002/agt2.270
- J. Gong, Y. Qian, K. Lu, Z. Zhu, L. Siow et al., Digital light processing (DLP) in tissue engineering: from promise to reality, and perspectives. Biomed. Mater. 17(6), 062004 (2022). https://doi.org/10.1088/1748-605X/ac96ba
- H. Kadry, S. Wadnap, C. Xu, F. Ahsan, Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur. J. Pharm. Sci. 135, 60–67 (2019). https://doi.org/10.1016/j.ejps.2019.05.008
- S.K. Paral, D.-Z. Lin, Y.-L. Cheng, S.-C. Lin, J.-Y. Jeng, A review of critical issues in high-speed vat photopolymerization. Polymers 15(12), 2716 (2023). https://doi.org/10.3390/polym15122716
- X. Wang, J. Liu, Y. Zhang, P.M. Kristiansen, A. Islam et al., Advances in precision microfabrication through digital light processing: system development, material and applications. Virtual Phys. Prototyping 18(1), e2248101 (2023). https://doi.org/10.1080/17452759.2023.2248101
- S. Zhang, I.A. Sutejo, J. Kim, Y.-J. Choi, C.W. Gal et al., Fabrication of complex three-dimensional structures of Mica through digital light processing-based additive manufacturing. Ceramics 5(3), 562–574 (2022). https://doi.org/10.3390/ceramics5030042
- J. Koffler, W. Zhu, X. Qu, O. Platoshyn, J.N. Dulin et al., Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25(2), 263–269 (2019). https://doi.org/10.1038/s41591-018-0296-z
- M. Klein, S. Steenhusen, P. Löbmann, Inorganic-organic hybrid polymers for printing of optical components: from digital light processing to inkjet 3D-printing. J. Sol-Gel Sci. Technol. 101(3), 649–654 (2022). https://doi.org/10.1007/s10971-022-05748-6
- J. Du, Q. Cao, X. Tang, X. Xu, X. Long et al., 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chem. Eng. J. 416, 127885 (2021). https://doi.org/10.1016/j.cej.2020.127885
- M. Anand, A.K. Das, Issues in fabrication of 3D components through DMLS technique: a review. Opt. Laser Technol. 139, 106914 (2021). https://doi.org/10.1016/j.optlastec.2021.106914
- D.L. Bourell, Sintering in laser sintering. JOM 68(3), 885–889 (2016). https://doi.org/10.1007/s11837-015-1780-2
- J. Yang, H. Bin, X. Zhang, Z. Liu, Fractal scanning path generation and control system for selective laser sintering (SLS). Int. J. Mach. Tools Manuf 43(3), 293–300 (2003). https://doi.org/10.1016/S0890-6955(02)00212-2
- F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, Selective laser sintering (SLS) 3D printing of medicines. Int. J. Pharm. 529(1–2), 285–293 (2017). https://doi.org/10.1016/j.ijpharm.2017.06.082
- W. Han, L. Kong, M. Xu, Advances in selective laser sintering of polymers. Int. J. Extreme Manuf. 4(4), 042002 (2022). https://doi.org/10.1088/2631-7990/ac9096
- D. Sofia, D. Macrì, D. Barletta, P. Lettieri, M. Poletto, Use of titania powders in the laser sintering process: link between process conditions and product mechanical properties. Powder Technol. 381, 181–188 (2021). https://doi.org/10.1016/j.powtec.2020.11.075
- Y.-F. Zhang, J.-L. Gao, S.-G. Chen, L. Li, J.-H. Xu et al., Advanced electrooxidation of florfenicol using 3D printed Nb2O5/Ti electrodes: Degradation efficiency, dehalogenation performance, and toxicity reduction. Chem. Eng. J. 474, 145561 (2023). https://doi.org/10.1016/j.cej.2023.145561
- Y. Wu, K. Sun, S. Yu, L. Zuo, Modeling the selective laser melting-based additive manufacturing of thermoelectric powders. Addit. Manuf. 37, 101666 (2021). https://doi.org/10.1016/j.addma.2020.101666
- W.-N. Zhang, L.-Z. Wang, Z.-X. Feng, Y.-M. Chen, Research progress on selective laser melting (SLM) of magnesium alloys: a review. Optik 207, 163842 (2020). https://doi.org/10.1016/j.ijleo.2019.163842
- Y.K. Xiao, Q. Yang, Z.Y. Bian, H. Chen, Y. Wu et al., Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting. Mater. Sci. Eng. A 809, 140951 (2021). https://doi.org/10.1016/j.msea.2021.140951
- V. Lunetto, M. Galati, L. Settineri, L. Iuliano, Unit process energy consumption analysis and models for electron beam melting (EBM): effects of process and part designs. Addit. Manuf. 33, 101115 (2020). https://doi.org/10.1016/j.addma.2020.101115
- M. Galati, P. Minetola, G. Rizza, Surface roughness characterisation and analysis of the electron beam melting (EBM) process. Materials 12(13), 2211 (2019). https://doi.org/10.3390/ma12132211
- P. Heinl, C. Körner, R.F. Singer, Selective electron beam melting of cellular titanium: mechanical properties. Adv. Eng. Mater. 10(9), 882–888 (2008). https://doi.org/10.1002/adem.200800137
- M. Galati, L. Iuliano, A literature review of powder-based electron beam melting focusing on numerical simulations. Addit. Manuf. 19, 1–20 (2018). https://doi.org/10.1016/j.addma.2017.11.001
- C.J. Smith, F. Derguti, E. Hernandez Nava, M. Thomas, S. Tammas-Williams et al., Dimensional accuracy of electron beam melting (EBM) additive manufacture with regard to weight optimized truss structures. J. Mater. Process. Technol. 229, 128–138 (2016). https://doi.org/10.1016/j.jmatprotec.2015.08.028
- G. Baudana, S. Biamino, D. Ugues, M. Lombardi, P. Fino et al., Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of Politecnico di Torino. Met. Powder Rep. 71(3), 193–199 (2016). https://doi.org/10.1016/j.mprp.2016.02.058
- M. Koike, K. Martinez, L. Guo, G. Chahine, R. Kovacevic et al., Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 211(8), 1400–1408 (2011). https://doi.org/10.1016/j.jmatprotec.2011.03.013
- D. Wei, Y. Koizumi, A. Chiba, K. Ueki, K. Ueda et al., Heterogeneous microstructures and corrosion resistance of biomedical Co-Cr-Mo alloy fabricated by electron beam melting (EBM). Addit. Manuf. 24, 103–114 (2018). https://doi.org/10.1016/j.addma.2018.09.006
- A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater. Des. 137, 345–354 (2018). https://doi.org/10.1016/j.matdes.2017.10.040
- D. Deng, R.L. Peng, H. Söderberg, J. Moverare, On the formation of microstructural gradients in a nickel-base superalloy during electron beam melting. Mater. Des. 160, 251–261 (2018). https://doi.org/10.1016/j.matdes.2018.09.006
- G. Loke, R. Yuan, M. Rein, T. Khudiyev, Y. Jain et al., Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019). https://doi.org/10.1038/s41467-019-11986-0
- J.O. Hardin, T.J. Ober, A.D. Valentine, J.A. Lewis, Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27(21), 3279–3284 (2015). https://doi.org/10.1002/adma.201500222
- D. Kokkinis, F. Bouville, A.R. Studart, 3D printing of materials with tunable failure via bioinspired mechanical gradients. Adv. Mater. 30(19), 1705808 (2018). https://doi.org/10.1002/adma.201705808
- J. Mueller, J.R. Raney, K. Shea, J.A. Lewis, Architected lattices with high stiffness and toughness via multicore-shell 3D printing. Adv. Mater. 30(12), e1705001 (2018). https://doi.org/10.1002/adma.201705001
- N.C. Brown, D.C. Ames, J. Mueller, Multimaterial extrusion 3D printing printheads. Nat. Rev. Mater. (2025). https://doi.org/10.1038/s41578-025-00809-y
- M. Xie, T. Chu, T. Wang, K. Wan, D. Yang et al., Preparation, performance and challenges of catalyst layer for proton exchange membrane fuel cell. Membranes 11(11), 879 (2021). https://doi.org/10.3390/membranes11110879
- S.A. Mauger, M. Wang, F.C. Cetinbas, M.J. Dzara, J. Park et al., Development of high-performance roll-to-roll-coated gas-diffusion-electrode-based fuel cells. J. Power. Sources 506, 230039 (2021). https://doi.org/10.1016/j.jpowsour.2021.230039
- S.A. Mauger, J.R. Pfeilsticker, M. Wang, S. Medina, A.C. Yang-Neyerlin et al., Fabrication of high-performance gas-diffusion-electrode based membrane-electrode assemblies. J. Power. Sources 450, 227581 (2020). https://doi.org/10.1016/j.jpowsour.2019.227581
- S. Medina, J.G. Foster, M.J. Dzara, M. Wang, M. Ulsh et al., Multi-technique characterization of spray coated and roll-to-roll coated gas diffusion fuel cell electrodes. J. Power. Sources 560, 232670 (2023). https://doi.org/10.1016/j.jpowsour.2023.232670
- T.-H. Kong, P. Thangavel, S. Shin, S. Kwon, H. Choi et al., In-situ ionomer-free catalyst-coated membranes for anion exchange membrane water electrolyzers. ACS Energy Lett. 8(11), 4666–4673 (2023). https://doi.org/10.1021/acsenergylett.3c01418
- M. Wang, E. Sun, S. Zhao, Y. Sun, S. Zhang et al., Elucidating the mechanistic synergy of fluorine and oxygen doping in boosting platinum-based catalysts for proton exchange membrane fuel cells. J. Colloid Interface Sci. 682, 115–123 (2025). https://doi.org/10.1016/j.jcis.2024.11.196
- M. Wang, S. Zhang, H. Wang, E. Sun, Y. Liu et al., Regulating catalyst and ionomer interactions to promote oxygen transport in fuel cells. Appl. Catal. B Environ. Energy 365, 124894 (2025). https://doi.org/10.1016/j.apcatb.2024.124894
- S. Zaman, M. Wang, H. Liu, F. Sun, Y. Yu et al., Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends Chem. 4(10), 886–906 (2022). https://doi.org/10.1016/j.trechm.2022.07.007
- M. Wang, J. Chen, S. Zhang, Y. Sun, W. Kong et al., Synergistic interactions between co nanops and unsaturated Co-N2 sites for efficient electrocatalysis. Adv. Funct. Mater. 34(51), 2410373 (2024). https://doi.org/10.1002/adfm.202410373
- Q. Zhang, S. Dong, P. Shao, Y. Zhu, Z. Mu et al., Covalent organic framework–based porous ionomers for high-performance fuel cells. Science 378(6616), 181–186 (2022). https://doi.org/10.1126/science.abm6304
- T.A.M. Suter, K. Smith, J. Hack, L. Rasha, Z. Rana et al., Engineering catalyst layers for next-generation polymer electrolyte fuel cells: a review of design, materials, and methods. Adv. Energy Mater. 11(37), 2101025 (2021). https://doi.org/10.1002/aenm.202101025
- A.D. Taylor, E.Y. Kim, V.P. Humes, J. Kizuka, L.T. Thompson, Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J. Power. Sources 171(1), 101–106 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.024
- C.A. Gomes Bezerra, L.J. Deiner, G. Tremiliosi-Filho, Unexpected performance of inkjet-printed membrane electrode assemblies for proton exchange membrane fuel cells. Adv. Eng. Mater. 21(11), 1900703 (2019). https://doi.org/10.1002/adem.201900703
- A. Willert, F.Z. Tabary, T. Zubkova, P.E. Santangelo, M. Romagnoli et al., Multilayer additive manufacturing of catalyst-coated membranes for polymer electrolyte membrane fuel cells by inkjet printing. Int. J. Hydrogen Energy 47(48), 20973–20986 (2022). https://doi.org/10.1016/j.ijhydene.2022.04.197
- M.T.Y. Paul, D. Kim, M.S. Saha, J. Stumper, B.D. Gates, Patterning catalyst layers with microscale features by soft lithography techniques for proton exchange membrane fuel cells. ACS Appl. Energy Mater. 3(1), 478–486 (2020). https://doi.org/10.1021/acsaem.9b01754
- D.-H. Lee, W. Jo, S. Yuk, J. Choi, S. Choi et al., In-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells. ACS Appl. Mater. Interfaces 10(5), 4682–4688 (2018). https://doi.org/10.1021/acsami.7b16433
- J.M. Kim, A. Jo, K.A. Lee, H.J. Han, Y.J. Kim et al., Conformation-modulated three-dimensional electrocatalysts for high-performance fuel cell electrodes. Sci. Adv. 7(30), eabe9083 (2021). https://doi.org/10.1126/sciadv.abe9083
- C. Zhu, Z. Qi, V.A. Beck, M. Luneau, J. Lattimer et al., Toward digitally controlled catalyst architectures: hierarchical nanoporous gold via 3D printing. Sci. Adv. 4(8), eaas9459 (2018). https://doi.org/10.1126/sciadv.aas9459
- S. Chang, X. Huang, C.Y.A. Ong, L. Zhao, L. Li et al., High loading accessible active sites via designable 3D-printed metal architecture towards promoting electrocatalytic performance. J. Mater. Chem. A 7(31), 18338–18347 (2019). https://doi.org/10.1039/C9TA05161A
- T.M. Benedetti, A. Nattestad, A.C. Taylor, S. Beirne, G.G. Wallace, 3D printed electrodes for improved gas reactant transport for electrochemical reactions. 3D Print. Addit. Manuf. 5(3), 215–219 (2018). https://doi.org/10.1089/3dp.2017.0108
- F. Yu, K. Wang, L. Cui, S. Wang, M. Hou et al., Vertical-graphene-reinforced titanium alloy bipolar plates in fuel cells. Adv. Mater. 34(21), e2110565 (2022). https://doi.org/10.1002/adma.202110565
- B.D. Gould, J.A. Rodgers, M. Schuette, K. Bethune, S. Louis et al., Performance and limitations of 3D-printed bipolar plates in fuel cells. ECS J. Solid State Sci. Technol. 4(4), P3063–P3068 (2015). https://doi.org/10.1149/2.0091504jss
- D.L. Bourell, M.C. Leu, K. Chakravarthy, N. Guo, K. Alayavalli, Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions. CIRP Ann. 60(1), 275–278 (2011). https://doi.org/10.1016/j.cirp.2011.03.105
- U.-G. Lee, C.-K. Jin, A study on manufacturing of microchannel bipolar plate in fuel cell by fdm 3d printer. J. Korean Soc. Industry Convergence. 24(2_1), 103–110 (2021). https://doi.org/10.21289/KSIC.2021.24.2.103
- G.-E. Jang, G.-Y. Cho, Effects of Ag current collecting layer fabricated by sputter for 3D-printed polymer bipolar plate of ultra-light polymer electrolyte membrane fuel cells. Sustainability 14(5), 2997 (2022). https://doi.org/10.3390/su14052997
- C. Hoon, K. Gyun, L. Seop, L. Sung, C. Park et al., Experimental study on non-uniform arrangement of 3D printed structure for cathodic flow channel in PEMFC. Int. J. Hydrog. Energy 47(2), 1192–1201 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.059
- H. Yang, Y.-Y. Zhao, M.-L. Zheng, F. Jin, X.-Z. Dong et al., Stepwise optimized 3D printing of arbitrary 3D structures at millimeter scale with high precision surface. Macromol. Mater. Eng. 304(11), 1900400 (2019). https://doi.org/10.1002/mame.201900400
- P. Huang, Z. Chen, J. Zhang, M. Wu, Y. Liu et al., Stainless steel bipolar plate fuel cell with different flow field structures prepared by laser additive manufacturing. Int. J. Heat Mass Transf. 183, 122186 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122186
- Z. Wang, K. Hu, J. Zhang, H. Ding, D. Xin et al., Gas-liquid mass transfer characteristics of a novel three-dimensional flow field bipolar plate for laser additive manufacturing of proton exchange membrane fuel cell. Renew. Energy 212, 308–319 (2023). https://doi.org/10.1016/j.renene.2023.05.015
- X. Yan, C. Guan, Y. Zhang, K. Jiang, G. Wei et al., Flow field design with 3D geometry for proton exchange membrane fuel cells. Appl. Therm. Eng. 147, 1107–1114 (2019). https://doi.org/10.1016/j.applthermaleng.2018.09.110
- Y. Yang, X. Zhu, Q. Wang, D. Ye, R. Chen et al., Towards flexible fuel cells: development, challenge and prospect. Appl. Therm. Eng. 203, 117937 (2022). https://doi.org/10.1016/j.applthermaleng.2021.117937
- H. Yoo, O. Kwon, J. Kim, H. Cha, H. Kim et al., 3D-printed flexible flow-field plates for bendable polymer electrolyte membrane fuel cells. J. Power. Sources 532, 231273 (2022). https://doi.org/10.1016/j.jpowsour.2022.231273
- G. Zhang, Z. Qu, W.-Q. Tao, X. Wang, L. Wu et al., Porous flow field for next-generation proton exchange membrane fuel cells: materials, characterization, design, and challenges. Chem. Rev. 123(3), 989–1039 (2023). https://doi.org/10.1021/acs.chemrev.2c00539
- X. Chen, Y. Chen, Q. Liu, J. Xu, Q. Liu et al., Performance study on a stepped flow field design for bipolar plate in PEMFC. Energy Rep. 7, 336–347 (2021). https://doi.org/10.1016/j.egyr.2021.01.003
- W. Li, Q. Zhang, C. Wang, X. Yan, S. Shen et al., Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Appl. Energy 195, 278–288 (2017). https://doi.org/10.1016/j.apenergy.2017.03.008
- X. Cheng, C. He, Q. Wen, Y. Jiang, W. Li et al., Easily accessible 3D flow fields through 3D-patterned GDL to enhance PEMFC performance via excellent water–gas separation transport. J. Mater. Chem. A (2025). https://doi.org/10.1039/d5ta02041g
- S.R. Badduri, G.N. Srinivasulu, S.S. Rao, V. Venkateswarlu, C. Karunakar et al., Effect of interdigitated leaf channel design bipolar plate on the performance of proton exchange membrane fuel cell. Chem. Pap. 77(2), 1095–1106 (2023). https://doi.org/10.1007/s11696-022-02517-1
- S. Zhang, S. Liu, H. Xu, G. Liu, K. Wang, Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design. Energy 239, 122102 (2022). https://doi.org/10.1016/j.energy.2021.122102
- A. Ozden, S. Shahgaldi, X. Li, F. Hamdullahpur, A review of gas diffusion layers for proton exchange membrane fuel cells: with a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci. 74, 50–102 (2019). https://doi.org/10.1016/j.pecs.2019.05.002
- M. Wang, S. Medina, J.R. Pfeilsticker, S. Pylypenko, M. Ulsh et al., Impact of microporous layer roughness on gas-diffusion-electrode-based polymer electrolyte membrane fuel cell performance. ACS Appl. Energy Mater. 2(11), 7757–7761 (2019). https://doi.org/10.1021/acsaem.9b01871
- M. Wang, W. Zhao, S. Kong, J. Chen, Y. Li et al., Elucidating the mass transportation behavior of gas diffusion layers via a H(2) limiting current test. Materials 16(16), 5670 (2023). https://doi.org/10.3390/ma16165670
- Y. Nagai, J. Eller, T. Hatanaka, S. Yamaguchi, S. Kato et al., Improving water management in fuel cells through microporous layer modifications: fast operando tomographic imaging of liquid water. J. Power. Sources 435, 226809 (2019). https://doi.org/10.1016/j.jpowsour.2019.226809
- K. Xu, Q. Di, F. Sun, M. Chen, H. Wang, Degradation mechanism analysis of substrate and microporous layer of gas diffusion layer in proton exchange membrane fuel cell. Fuel 358, 130198 (2024). https://doi.org/10.1016/j.fuel.2023.130198
- P. Yang, X. Wu, Z. Xie, P. Wang, C. Liu et al., Durability improving and corrosion-resistance mechanism of graphene oxide modified ultra-thin carbon paper used in PEM fuel cell. Corros. Sci. 130, 95–102 (2018). https://doi.org/10.1016/j.corsci.2017.10.025
- A. Jayakumar, M. Ramos, A. Al-Jumaily, A novel 3D printing technique to synthesise gas diffusion layer for PEM fuel cell application. ASME 2016 International Mechanical Engineering Congress and Exposition (2017). https://doi.org/10.1115/IMECE2016-65554
- D. Niblett, Z. Guo, S. Holmes, V. Niasar, R. Prosser, Utilization of 3D printed carbon gas diffusion layers in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 47(55), 23393–23410 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.134
- T. Dörenkamp, A. Zaccarelli, E. Zürich, F.N. Büchi, T.J. Schmidt et al., Guided water percolation in 3D-printed gas diffusion layers for polymer electrolyte fuel cells. ACS Appl. Mater. Interfaces 17(16), 23959–23971 (2025). https://doi.org/10.1021/acsami.5c00770
- Y. Li, F. Yuan, R. Weng, F. Xi, W. Liu, Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells. Energy 235, 121350 (2021). https://doi.org/10.1016/j.energy.2021.121350
- G. Zhang, L. Wu, C. Tongsh, Z. Qu, S. Wu et al., Structure design for ultrahigh power density proton exchange membrane fuel cell. Small Methods 7(3), e2201537 (2023). https://doi.org/10.1002/smtd.202201537
- X. Wang, J. Zou, Z. Zhang, C. Zhao, M. Wang et al., Optimization of anode porous transport layer’s coating for enhanced proton exchange membrane electrolyzer cells. Fuel 381, 133559 (2025). https://doi.org/10.1016/j.fuel.2024.133559
- A. Ambrosi, M. Pumera, Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts. ACS Sustain. Chem. Eng. 6(12), 16968–16975 (2018). https://doi.org/10.1021/acssuschemeng.8b04327
- A. Ambrosi, M. Pumera, Self-contained polymer/metal 3D printed electrochemical platform for tailored water splitting. Adv. Funct. Mater. 28(27), 1700655 (2018). https://doi.org/10.1002/adfm.201700655
- R. Ciriminna, M. Pagliaro, Enhanced nickel catalysts for producing electrolytic hydrogen. RSC Sustain. 1(6), 1386–1393 (2023). https://doi.org/10.1039/d3su00177f
- J.C. Bui, J.T. Davis, D.V. Esposito, 3D-printed electrodes for membraneless water electrolysis. Sustain. Energy Fuels 4(1), 213–225 (2020). https://doi.org/10.1039/c9se00710e
- J. Tourneur, L. Joanny, L. Perrin, S. Paul, B. Fabre, Efficient and highly stable 3D-printed NiFe and NiCo bifunctional electrodes for practical HER and OER. ACS Appl. Eng. Mater. 1(10), 2676–2684 (2023). https://doi.org/10.1021/acsaenm.3c00417
- T. Kou, S. Wang, R. Shi, T. Zhang, S. Chiovoloni et al., Periodic porous 3D electrodes mitigate gas bubble traffic during alkaline water electrolysis at high current densities. Adv. Energy Mater. 10(46), 2002955 (2020). https://doi.org/10.1002/aenm.202002955
- X. Xu, G. Fu, Y. Wang, Q. Cao, Y. Xun et al., Highly efficient all-3D-printed electrolyzer toward ultrastable water electrolysis. Nano Lett. 23(2), 629–636 (2023). https://doi.org/10.1021/acs.nanolett.2c04380
- G. Fu, X. Sun, Z. Zheng, Y. Wang, J. Qiu et al., Stereolithgraphy of metallic electrode with Janus porosity toward controllable bubble behavior and ultra-stable water electrolysis. Small Struct. 4(12), 2300176 (2023). https://doi.org/10.1002/sstr.202300176
- F. Rocha, R. Delmelle, C. Georgiadis, J. Proost, Electrochemical performance enhancement of 3D printed electrodes tailored for enhanced gas evacuation during alkaline water electrolysis. Adv. Energy Mater. 13(1), 2203087 (2023). https://doi.org/10.1002/aenm.202203087
- M. Peng, D. Shi, Y. Sun, J. Cheng, B. Zhao et al., 3D printed mechanically robust graphene/CNT electrodes for highly efficient overall water splitting. Adv. Mater. 32(23), e1908201 (2020). https://doi.org/10.1002/adma.201908201
- S. Liu, R. Liu, D. Gao, I. Trentin, C. Streb, A 3d-printed composite electrode for sustained electrocatalytic oxygen evolution. Chem. Commun. 56(60), 8476–8479 (2020). https://doi.org/10.1039/d0cc03579c
- R.A. Márquez, K. Kawashima, Y.J. Son, R. Rose, L.A. Smith et al., Tailoring 3D-printed electrodes for enhanced water splitting. ACS Appl. Mater. Interfaces 14(37), 42153–42170 (2022). https://doi.org/10.1021/acsami.2c12579
- A. Hofer, S. Wachter, D. Döhler, A. Laube, B. Sánchez Batalla et al., Practically applicable water oxidation electrodes from 3D-printed Ti6Al4V scaffolds with surface nanostructuration and iridium catalyst coating. Electrochim. Acta 417, 140308 (2022). https://doi.org/10.1016/j.electacta.2022.140308
- X. Sun, R. Zhong, C. Wu, S. Ye, H. Yuan et al., 3D printed titanium scaffolds with bi-directional gradient QK-functionalized surface. Adv. Mater. 37(8), e2406421 (2025). https://doi.org/10.1002/adma.202406421
- J. Mo, R.R. Dehoff, W.H. Peter, T.J. Toops, J.B. Green et al., Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production. Int. J. Hydrogen Energy 41(4), 3128–3135 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.111
- B. Huang, C. Lei, X. Sun, L. Luo, G. Wang et al., Improving mass transfer in anion exchange membrane water electrolysis by ordered gas diffusion layer. Int. J. Hydrogen Energy 48(91), 35453–35462 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.331
- T. Husaini, R. Kishida, N. Affiqah Arzaee, Digital light processing 3-dimensional printer to manufacture electrolyzer bipolar plate. IOP Conf. Ser. Earth Environ. Sci. 268(1), 012039 (2019). https://doi.org/10.1088/1755-1315/268/1/012039
- M. Sánchez-Molina, E. Amores, N. Rojas, M. Kunowsky, Additive manufacturing of bipolar plates for hydrogen production in proton exchange membrane water electrolysis cells. Int. J. Hydrog. Energy 46(79), 38983–38991 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.152
- G. Yang, J. Mo, Z. Kang, F.A. List, J.B. Green et al., Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells. Int. J. Hydrog. Energy 42(21), 14734–14740 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.100
- G. Yang, S. Yu, J. Mo, Z. Kang, Y. Dohrmann et al., Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. J. Power. Sources 396, 590–598 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.078
- G. Chisholm, P.J. Kitson, N.D. Kirkaldy, L.G. Bloor, L. Cronin, 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy Environ. Sci. 7(9), 3026–3032 (2014). https://doi.org/10.1039/c4ee01426j
- G. Yang, S. Yu, Z. Kang, Y. Dohrmann, G. Bender et al., A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis. Energy Convers. Manage. 182, 108–116 (2019). https://doi.org/10.1016/j.enconman.2018.12.046
- G. Yang, J. Mo, Z. Kang, Y. Dohrmann, F.A. List et al., Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting. Appl. Energy 215, 202–210 (2018). https://doi.org/10.1016/j.apenergy.2018.02.001
- S. Toghyani, E. Afshari, E. Baniasadi, S.A. Atyabi, Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochim. Acta 267, 234–245 (2018). https://doi.org/10.1016/j.electacta.2018.02.078
- A.C. Olesen, C. Rømer, S.K. Kær, A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell. Int. J. Hydrog. Energy 41(1), 52–68 (2016). https://doi.org/10.1016/j.ijhydene.2015.09.140
References
W. Shi, Renewable energy: finding solutions for a greener tomorrow. Rev. Environ. Sci. Bio/Technol. 9(1), 35–37 (2010). https://doi.org/10.1007/s11157-010-9187-6
H. Meddeb, M. Götz-Köhler, N. Neugebohrn, U. Banik, N. Osterthun, O. Sergeev, D. Berends, C. Lattyak, K. Gehrke, M. Vehse, Tunable photovoltaics: adapting solar cell technologies to versatile applications. Adv. Energy Mater. 12(28), 2200713 (2022). https://doi.org/10.1002/aenm.202200713
Z. Li, S. Fang, H. Sun, R.-J. Chung, X. Fang et al., Solar hydrogen. Adv. Energy Mater. 13(8), 2203019 (2023). https://doi.org/10.1002/aenm.202203019
Z. Li, S. Fang, H. Sun, R.-J. Chung, X. Fang, J.-H. He, Solar hydrogen. Adv. Energy Mater. 13(8), 2203019 (2023). https://doi.org/10.1002/aenm.202203019
R.M. Navarro, M.C. Sánchez-Sánchez, M.C. Alvarez-Galvan, F. del Valle, J.L.G. Fierro, Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci. 2(1), 35–54 (2009). https://doi.org/10.1039/B808138G
H. Yang, X. Wang, S. Xia, S. Zhang, R. Zhang et al., Black phosphorus modulated Ru electrocatalyst for highly efficient and durable seawater splitting. Adv. Energy Mater. 13(44), 2302727 (2023). https://doi.org/10.1002/aenm.202302727
C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou et al., Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51(23), 9620–9693 (2022). https://doi.org/10.1039/D2CS00038E
S. Komini Babu, A. Yilmaz, M.A. Uddin, J. LaManna, E. Baltic et al., A goldilocks approach to water management: hydrochannel porous transport layers for unitized reversible fuel cells. Adv. Energy Mater. 13(16), 2203952 (2023). https://doi.org/10.1002/aenm.202203952
K. Zhang, X. Liang, L. Wang, K. Sun, Y. Wang et al., Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 1, e9120032 (2022). https://doi.org/10.26599/nre.2022.9120032
H. Li, S. Yuan, J. You, C. Zhao, X. Cheng et al., Revealing the oxygen transport challenges in catalyst layers in proton exchange membrane fuel cells and water electrolysis. Nano-Micro Lett. 17(1), 225 (2025). https://doi.org/10.1007/s40820-025-01719-y
I. Moradpoor, S. Syri, A. Santasalo-Aarnio, Green hydrogen production for oil ref.ining–Finnish case. Renew. Sustain. Energy Rev. 175, 113159 (2023). https://doi.org/10.1016/j.rser.2023.113159
K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie et al., Designing the next generation of proton-exchange membrane fuel cells. Nature 595(7867), 361–369 (2021). https://doi.org/10.1038/s41586-021-03482-7
L. Zhao, J. Zhu, Y. Zheng, M. Xiao, R. Gao et al., Materials engineering toward durable electrocatalysts for proton exchange membrane fuel cells. Adv. Energy Mater. 12(2), 2102665 (2022). https://doi.org/10.1002/aenm.202102665
B. Tian, Y. Li, Y. Liu, F. Ning, X. Dan et al., Ordered membrane electrode assembly with drastically enhanced proton and mass transport for proton exchange membrane water electrolysis. Nano Lett. 23(14), 6474–6481 (2023). https://doi.org/10.1021/acs.nanolett.3c01331
M. Wang, E. Sun, Y. Wang, L. Lei, Z. Du et al., Oxygen reduction electrocatalyst degradation and mitigation strategies in proton exchange membrane fuel cells. Appl. Catal. B Environ. Energy 367, 125116 (2025). https://doi.org/10.1016/j.apcatb.2025.125116
C.-Y. Lee, A.C. Taylor, S. Beirne, G.G. Wallace, A 3D-printed electrochemical water splitting cell. Adv. Mater. Technol. 4(10), 1900433 (2019). https://doi.org/10.1002/admt.201900433
K. Xu, Y. Gong, Q. Zhao, Comparison of traditional processing and additive manufacturing technologies in various performance aspects: a review. Arch. Civ. Mech. Eng. 23(3), 188 (2023). https://doi.org/10.1007/s43452-023-00699-3
X. Liu, D. Zhao, J. Wang, Challenges and opportunities in preserving key structural features of 3D-printed metal/covalent organic framework. Nano-Micro Lett. 16(1), 157 (2024). https://doi.org/10.1007/s40820-024-01373-w
J. Lee, H.-C. Kim, J.-W. Choi, I.H. Lee, A review on 3D printed smart devices for 4D printing. Int. J. Precis. Eng. Manuf. Green Technol. 4(3), 373–383 (2017). https://doi.org/10.1007/s40684-017-0042-x
V. Shirmohammadli, B. Bahreyni, A 3d-printed computer. Adv. Intell. Syst. 5(8), 2300015 (2023). https://doi.org/10.1002/aisy.202300015
H. Molavi, K. Mirzaei, M. Barjasteh, S.Y. Rahnamaee, S. Saeedi et al., 3D-printed MOF monoliths: fabrication strategies and environmental applications. Nano-Micro Lett. 16(1), 272 (2024). https://doi.org/10.1007/s40820-024-01487-1
K. Lu, J. Zhang, H. Ding, Z. Wang, X. Pan, Numerical and experimental investigation of 3D flow field bipolar plates for PEMFCs by metal 3D printing. Fuel 357, 129699 (2024). https://doi.org/10.1016/j.fuel.2023.129699
A.X.Y. Guo, L. Cheng, S. Zhan, S. Zhang, W. Xiong et al., Biomedical applications of the powder-based 3D printed titanium alloys: a review. J. Mater. Sci. Technol. 125, 252–264 (2022). https://doi.org/10.1016/j.jmst.2021.11.084
Y. Li, R.K. Kankala, L. Wu, A.-Z. Chen, S.-B. Wang, 3D-printed photocurable resin with synergistic hydrogen bonding based on deep eutectic solvent. ACS Appl. Polym. Mater. 5(1), 991–1001 (2023). https://doi.org/10.1021/acsapm.2c01916
W. Zheng, J.-M. Wu, S. Chen, K.-B. Yu, S.-B. Hua et al., Fabrication of high-performance silica-based ceramic cores through selective laser sintering combined with vacuum infiltration. Addit. Manuf. 48, 102396 (2021). https://doi.org/10.1016/j.addma.2021.102396
X. Luo, C. Ren, J. Song, H. Luo, K. Xiao et al., Design and fabrication of bipolar plates for PEM water electrolyser. J. Mater. Sci. Technol. 146, 19–41 (2023). https://doi.org/10.1016/j.jmst.2022.10.039
K. Fu, Y. Yao, J. Dai, L. Hu, Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 29(9), 1603486 (2017). https://doi.org/10.1002/adma.201603486
G. Yang, Z. Xie, S. Yu, K. Li, Y. Li et al., All-in-one bipolar electrode: a new concept for compact and efficient water electrolyzers. Nano Energy 90, 106551 (2021). https://doi.org/10.1016/j.nanoen.2021.106551
H. Wang, Y. Xia, Z. Zhang, Z. Xie, 3D gradient printing based on digital light processing. J. Mater. Chem. B 11(37), 8883–8896 (2023). https://doi.org/10.1039/D3TB00763D
G. Chen, W. Shi, J. Xuan, Ž Penga, Q. Xu et al., Improvement of under-the-rib oxygen concentration and water removal in proton exchange membrane fuel cells through three-dimensional metal printed novel flow fields. AIChE J. 68(9), e17758 (2022). https://doi.org/10.1002/aic.17758
B. Huang, X. Wang, W. Li, W. Tian, L. Luo et al., Accelerating gas escape in anion exchange membrane water electrolysis by gas diffusion layers with hierarchical grid gradients. Angew. Chem. Int. Ed. 62(33), e202304230 (2023). https://doi.org/10.1002/anie.202304230
B. Hüner, M. Kıstı, S. Uysal, İN. Uzgören, E. Özdoğan et al., An overview of various additive manufacturing technologies and materials for electrochemical energy conversion applications. ACS Omega 7(45), 40638–40658 (2022). https://doi.org/10.1021/acsomega.2c05096
Y. Li, Q. Mao, J. Yin, Y. Wang, J. Fu et al., Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit. Manuf. 37, 101716 (2021). https://doi.org/10.1016/j.addma.2020.101716
H. Cui, W. Zhu, B. Holmes, L.G. Zhang, Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv. Sci. 3(8), 1600058 (2016). https://doi.org/10.1002/advs.201600058
Z. Han, G. Wang, J. Zhang, Z. Tang, Direct photo-curing 3D printing of nickel-based electrocatalysts for highly-efficient hydrogen evolution. Nano Energy 102, 107615 (2022). https://doi.org/10.1016/j.nanoen.2022.107615
S. Ng, M. Sanna, E. Redondo, M. Pumera, Engineering 3D-printed carbon structures with atomic layer deposition coatings as photoelectrocatalysts for water splitting. J. Mater. Chem. A 12(1), 396–404 (2024). https://doi.org/10.1039/D3TA04460B
W. Kang, L. Zeng, S. Ling, C. Zhang, 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv. Energy Mater. 11(12), 2100020 (2021). https://doi.org/10.1002/aenm.202100020
M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34(28), 2108855 (2022). https://doi.org/10.1002/adma.202108855
Y. Wang, N. Willenbacher, Phase-change-enabled, rapid, high-resolution direct ink writing of soft silicone. Adv. Mater. 34(15), 2109240 (2022). https://doi.org/10.1002/adma.202109240
H. Chen, J. Wang, S. Peng, D. Liu, W. Yan et al., A generalized polymer precursor ink design for 3D printing of functional metal oxides. Nano-Micro Lett. 15(1), 180 (2023). https://doi.org/10.1007/s40820-023-01147-w
D.A. Rau, C.B. Williams, M.J. Bortner, Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog. Mater. Sci. 140, 101188 (2023). https://doi.org/10.1016/j.pmatsci.2023.101188
L. Zhang, W. Lee, X. Li, Y. Jiang, N.X. Fang et al., 3D direct printing of mechanical and biocompatible hydrogel meta-structures. Bioact. Mater. 10, 48–55 (2022). https://doi.org/10.1016/j.bioactmat.2021.08.015
R.H. Bean, D.A. Rau, C.B. Williams, T.E. Long, Rheology guiding the design and printability of aqueous colloidal composites for additive manufacturing. J. Vinyl Addit. Technol. 29(4), 607–616 (2023). https://doi.org/10.1002/vnl.22010
J. Götz, S. Huth, H. Buggisch, Flow behavior of pastes with a deformation history dependent yield stress. J. Non-Newton. Fluid Mech. 103(2–3), 149–166 (2002). https://doi.org/10.1016/S0377-0257(01)00194-X
A. Shahzad, I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos. B Eng. 225, 109249 (2021). https://doi.org/10.1016/j.compositesb.2021.109249
P. Carou-Senra, L. Rodríguez-Pombo, A. Awad, A.W. Basit, C. Alvarez-Lorenzo et al., Inkjet printing of pharmaceuticals. Adv. Mater. 36(11), 2309164 (2024). https://doi.org/10.1002/adma.202309164
F. Lübkemann, J.F. Miethe, F. Steinbach, P. Rusch, A. Schlosser et al., Patterning of nanop-based aerogels and xerogels by inkjet printing. Small 15(39), 1902186 (2019). https://doi.org/10.1002/smll.201902186
C.J. Stevens, I. Spanos, A. Vallechi, J. McGhee, W. Whittow, 3D printing of functional metal and dielectric composite meta-atoms. Small 18(10), 2105368 (2022). https://doi.org/10.1002/smll.202105368
D. Acierno, A. Patti, Fused deposition modelling (FDM) of thermoplastic-based filaments: process and rheological properties-an overview. Materials 16(24), 7664 (2023). https://doi.org/10.3390/ma16247664
R. Arrigo, A. Frache, FDM printability of PLA based-materials: the key role of the rheological behavior. Polymers 14(9), 1754 (2022). https://doi.org/10.3390/polym14091754
Y. Hu, R.B. Ladani, M. Brandt, Y. Li, A.P. Mouritz, Carbon fibre damage during 3D printing of polymer matrix laminates using the FDM process. Mater. Des. 205, 109679 (2021). https://doi.org/10.1016/j.matdes.2021.109679
Y.-H. Bian, G. Yu, X. Zhao, S.-X. Li, X.-L. He et al., Exit morphology and mechanical property of FDM printed PLA: influence of hot melt extrusion process. Adv. Manuf. 11(1), 56–74 (2023). https://doi.org/10.1007/s40436-022-00405-1
S. Wang, Y. Ma, Z. Deng, S. Zhang, J. Cai, Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym. Test. 86, 106483 (2020). https://doi.org/10.1016/j.polymertesting.2020.106483
O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, J. Azadmanjiri, Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment. J. Mater. Eng. Perform. 25(7), 2922–2935 (2016). https://doi.org/10.1007/s11665-016-2157-6
M. Quarto, M. Carminati, G. D’Urso, Density and shrinkage evaluation of AISI 316L parts printed via FDM process. Mater. Manuf. Process. 36(13), 1535–1543 (2021). https://doi.org/10.1080/10426914.2021.1905830
H. Li, J. Dai, Z. Wang, H. Zheng, W. Li et al., Digital light processing (DLP)-based (bio)printing strategies for tissue modeling and regeneration. Aggregate 4(2), e270 (2023). https://doi.org/10.1002/agt2.270
J. Gong, Y. Qian, K. Lu, Z. Zhu, L. Siow et al., Digital light processing (DLP) in tissue engineering: from promise to reality, and perspectives. Biomed. Mater. 17(6), 062004 (2022). https://doi.org/10.1088/1748-605X/ac96ba
H. Kadry, S. Wadnap, C. Xu, F. Ahsan, Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur. J. Pharm. Sci. 135, 60–67 (2019). https://doi.org/10.1016/j.ejps.2019.05.008
S.K. Paral, D.-Z. Lin, Y.-L. Cheng, S.-C. Lin, J.-Y. Jeng, A review of critical issues in high-speed vat photopolymerization. Polymers 15(12), 2716 (2023). https://doi.org/10.3390/polym15122716
X. Wang, J. Liu, Y. Zhang, P.M. Kristiansen, A. Islam et al., Advances in precision microfabrication through digital light processing: system development, material and applications. Virtual Phys. Prototyping 18(1), e2248101 (2023). https://doi.org/10.1080/17452759.2023.2248101
S. Zhang, I.A. Sutejo, J. Kim, Y.-J. Choi, C.W. Gal et al., Fabrication of complex three-dimensional structures of Mica through digital light processing-based additive manufacturing. Ceramics 5(3), 562–574 (2022). https://doi.org/10.3390/ceramics5030042
J. Koffler, W. Zhu, X. Qu, O. Platoshyn, J.N. Dulin et al., Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25(2), 263–269 (2019). https://doi.org/10.1038/s41591-018-0296-z
M. Klein, S. Steenhusen, P. Löbmann, Inorganic-organic hybrid polymers for printing of optical components: from digital light processing to inkjet 3D-printing. J. Sol-Gel Sci. Technol. 101(3), 649–654 (2022). https://doi.org/10.1007/s10971-022-05748-6
J. Du, Q. Cao, X. Tang, X. Xu, X. Long et al., 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chem. Eng. J. 416, 127885 (2021). https://doi.org/10.1016/j.cej.2020.127885
M. Anand, A.K. Das, Issues in fabrication of 3D components through DMLS technique: a review. Opt. Laser Technol. 139, 106914 (2021). https://doi.org/10.1016/j.optlastec.2021.106914
D.L. Bourell, Sintering in laser sintering. JOM 68(3), 885–889 (2016). https://doi.org/10.1007/s11837-015-1780-2
J. Yang, H. Bin, X. Zhang, Z. Liu, Fractal scanning path generation and control system for selective laser sintering (SLS). Int. J. Mach. Tools Manuf 43(3), 293–300 (2003). https://doi.org/10.1016/S0890-6955(02)00212-2
F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, Selective laser sintering (SLS) 3D printing of medicines. Int. J. Pharm. 529(1–2), 285–293 (2017). https://doi.org/10.1016/j.ijpharm.2017.06.082
W. Han, L. Kong, M. Xu, Advances in selective laser sintering of polymers. Int. J. Extreme Manuf. 4(4), 042002 (2022). https://doi.org/10.1088/2631-7990/ac9096
D. Sofia, D. Macrì, D. Barletta, P. Lettieri, M. Poletto, Use of titania powders in the laser sintering process: link between process conditions and product mechanical properties. Powder Technol. 381, 181–188 (2021). https://doi.org/10.1016/j.powtec.2020.11.075
Y.-F. Zhang, J.-L. Gao, S.-G. Chen, L. Li, J.-H. Xu et al., Advanced electrooxidation of florfenicol using 3D printed Nb2O5/Ti electrodes: Degradation efficiency, dehalogenation performance, and toxicity reduction. Chem. Eng. J. 474, 145561 (2023). https://doi.org/10.1016/j.cej.2023.145561
Y. Wu, K. Sun, S. Yu, L. Zuo, Modeling the selective laser melting-based additive manufacturing of thermoelectric powders. Addit. Manuf. 37, 101666 (2021). https://doi.org/10.1016/j.addma.2020.101666
W.-N. Zhang, L.-Z. Wang, Z.-X. Feng, Y.-M. Chen, Research progress on selective laser melting (SLM) of magnesium alloys: a review. Optik 207, 163842 (2020). https://doi.org/10.1016/j.ijleo.2019.163842
Y.K. Xiao, Q. Yang, Z.Y. Bian, H. Chen, Y. Wu et al., Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting. Mater. Sci. Eng. A 809, 140951 (2021). https://doi.org/10.1016/j.msea.2021.140951
V. Lunetto, M. Galati, L. Settineri, L. Iuliano, Unit process energy consumption analysis and models for electron beam melting (EBM): effects of process and part designs. Addit. Manuf. 33, 101115 (2020). https://doi.org/10.1016/j.addma.2020.101115
M. Galati, P. Minetola, G. Rizza, Surface roughness characterisation and analysis of the electron beam melting (EBM) process. Materials 12(13), 2211 (2019). https://doi.org/10.3390/ma12132211
P. Heinl, C. Körner, R.F. Singer, Selective electron beam melting of cellular titanium: mechanical properties. Adv. Eng. Mater. 10(9), 882–888 (2008). https://doi.org/10.1002/adem.200800137
M. Galati, L. Iuliano, A literature review of powder-based electron beam melting focusing on numerical simulations. Addit. Manuf. 19, 1–20 (2018). https://doi.org/10.1016/j.addma.2017.11.001
C.J. Smith, F. Derguti, E. Hernandez Nava, M. Thomas, S. Tammas-Williams et al., Dimensional accuracy of electron beam melting (EBM) additive manufacture with regard to weight optimized truss structures. J. Mater. Process. Technol. 229, 128–138 (2016). https://doi.org/10.1016/j.jmatprotec.2015.08.028
G. Baudana, S. Biamino, D. Ugues, M. Lombardi, P. Fino et al., Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of Politecnico di Torino. Met. Powder Rep. 71(3), 193–199 (2016). https://doi.org/10.1016/j.mprp.2016.02.058
M. Koike, K. Martinez, L. Guo, G. Chahine, R. Kovacevic et al., Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 211(8), 1400–1408 (2011). https://doi.org/10.1016/j.jmatprotec.2011.03.013
D. Wei, Y. Koizumi, A. Chiba, K. Ueki, K. Ueda et al., Heterogeneous microstructures and corrosion resistance of biomedical Co-Cr-Mo alloy fabricated by electron beam melting (EBM). Addit. Manuf. 24, 103–114 (2018). https://doi.org/10.1016/j.addma.2018.09.006
A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater. Des. 137, 345–354 (2018). https://doi.org/10.1016/j.matdes.2017.10.040
D. Deng, R.L. Peng, H. Söderberg, J. Moverare, On the formation of microstructural gradients in a nickel-base superalloy during electron beam melting. Mater. Des. 160, 251–261 (2018). https://doi.org/10.1016/j.matdes.2018.09.006
G. Loke, R. Yuan, M. Rein, T. Khudiyev, Y. Jain et al., Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019). https://doi.org/10.1038/s41467-019-11986-0
J.O. Hardin, T.J. Ober, A.D. Valentine, J.A. Lewis, Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27(21), 3279–3284 (2015). https://doi.org/10.1002/adma.201500222
D. Kokkinis, F. Bouville, A.R. Studart, 3D printing of materials with tunable failure via bioinspired mechanical gradients. Adv. Mater. 30(19), 1705808 (2018). https://doi.org/10.1002/adma.201705808
J. Mueller, J.R. Raney, K. Shea, J.A. Lewis, Architected lattices with high stiffness and toughness via multicore-shell 3D printing. Adv. Mater. 30(12), e1705001 (2018). https://doi.org/10.1002/adma.201705001
N.C. Brown, D.C. Ames, J. Mueller, Multimaterial extrusion 3D printing printheads. Nat. Rev. Mater. (2025). https://doi.org/10.1038/s41578-025-00809-y
M. Xie, T. Chu, T. Wang, K. Wan, D. Yang et al., Preparation, performance and challenges of catalyst layer for proton exchange membrane fuel cell. Membranes 11(11), 879 (2021). https://doi.org/10.3390/membranes11110879
S.A. Mauger, M. Wang, F.C. Cetinbas, M.J. Dzara, J. Park et al., Development of high-performance roll-to-roll-coated gas-diffusion-electrode-based fuel cells. J. Power. Sources 506, 230039 (2021). https://doi.org/10.1016/j.jpowsour.2021.230039
S.A. Mauger, J.R. Pfeilsticker, M. Wang, S. Medina, A.C. Yang-Neyerlin et al., Fabrication of high-performance gas-diffusion-electrode based membrane-electrode assemblies. J. Power. Sources 450, 227581 (2020). https://doi.org/10.1016/j.jpowsour.2019.227581
S. Medina, J.G. Foster, M.J. Dzara, M. Wang, M. Ulsh et al., Multi-technique characterization of spray coated and roll-to-roll coated gas diffusion fuel cell electrodes. J. Power. Sources 560, 232670 (2023). https://doi.org/10.1016/j.jpowsour.2023.232670
T.-H. Kong, P. Thangavel, S. Shin, S. Kwon, H. Choi et al., In-situ ionomer-free catalyst-coated membranes for anion exchange membrane water electrolyzers. ACS Energy Lett. 8(11), 4666–4673 (2023). https://doi.org/10.1021/acsenergylett.3c01418
M. Wang, E. Sun, S. Zhao, Y. Sun, S. Zhang et al., Elucidating the mechanistic synergy of fluorine and oxygen doping in boosting platinum-based catalysts for proton exchange membrane fuel cells. J. Colloid Interface Sci. 682, 115–123 (2025). https://doi.org/10.1016/j.jcis.2024.11.196
M. Wang, S. Zhang, H. Wang, E. Sun, Y. Liu et al., Regulating catalyst and ionomer interactions to promote oxygen transport in fuel cells. Appl. Catal. B Environ. Energy 365, 124894 (2025). https://doi.org/10.1016/j.apcatb.2024.124894
S. Zaman, M. Wang, H. Liu, F. Sun, Y. Yu et al., Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends Chem. 4(10), 886–906 (2022). https://doi.org/10.1016/j.trechm.2022.07.007
M. Wang, J. Chen, S. Zhang, Y. Sun, W. Kong et al., Synergistic interactions between co nanops and unsaturated Co-N2 sites for efficient electrocatalysis. Adv. Funct. Mater. 34(51), 2410373 (2024). https://doi.org/10.1002/adfm.202410373
Q. Zhang, S. Dong, P. Shao, Y. Zhu, Z. Mu et al., Covalent organic framework–based porous ionomers for high-performance fuel cells. Science 378(6616), 181–186 (2022). https://doi.org/10.1126/science.abm6304
T.A.M. Suter, K. Smith, J. Hack, L. Rasha, Z. Rana et al., Engineering catalyst layers for next-generation polymer electrolyte fuel cells: a review of design, materials, and methods. Adv. Energy Mater. 11(37), 2101025 (2021). https://doi.org/10.1002/aenm.202101025
A.D. Taylor, E.Y. Kim, V.P. Humes, J. Kizuka, L.T. Thompson, Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J. Power. Sources 171(1), 101–106 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.024
C.A. Gomes Bezerra, L.J. Deiner, G. Tremiliosi-Filho, Unexpected performance of inkjet-printed membrane electrode assemblies for proton exchange membrane fuel cells. Adv. Eng. Mater. 21(11), 1900703 (2019). https://doi.org/10.1002/adem.201900703
A. Willert, F.Z. Tabary, T. Zubkova, P.E. Santangelo, M. Romagnoli et al., Multilayer additive manufacturing of catalyst-coated membranes for polymer electrolyte membrane fuel cells by inkjet printing. Int. J. Hydrogen Energy 47(48), 20973–20986 (2022). https://doi.org/10.1016/j.ijhydene.2022.04.197
M.T.Y. Paul, D. Kim, M.S. Saha, J. Stumper, B.D. Gates, Patterning catalyst layers with microscale features by soft lithography techniques for proton exchange membrane fuel cells. ACS Appl. Energy Mater. 3(1), 478–486 (2020). https://doi.org/10.1021/acsaem.9b01754
D.-H. Lee, W. Jo, S. Yuk, J. Choi, S. Choi et al., In-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells. ACS Appl. Mater. Interfaces 10(5), 4682–4688 (2018). https://doi.org/10.1021/acsami.7b16433
J.M. Kim, A. Jo, K.A. Lee, H.J. Han, Y.J. Kim et al., Conformation-modulated three-dimensional electrocatalysts for high-performance fuel cell electrodes. Sci. Adv. 7(30), eabe9083 (2021). https://doi.org/10.1126/sciadv.abe9083
C. Zhu, Z. Qi, V.A. Beck, M. Luneau, J. Lattimer et al., Toward digitally controlled catalyst architectures: hierarchical nanoporous gold via 3D printing. Sci. Adv. 4(8), eaas9459 (2018). https://doi.org/10.1126/sciadv.aas9459
S. Chang, X. Huang, C.Y.A. Ong, L. Zhao, L. Li et al., High loading accessible active sites via designable 3D-printed metal architecture towards promoting electrocatalytic performance. J. Mater. Chem. A 7(31), 18338–18347 (2019). https://doi.org/10.1039/C9TA05161A
T.M. Benedetti, A. Nattestad, A.C. Taylor, S. Beirne, G.G. Wallace, 3D printed electrodes for improved gas reactant transport for electrochemical reactions. 3D Print. Addit. Manuf. 5(3), 215–219 (2018). https://doi.org/10.1089/3dp.2017.0108
F. Yu, K. Wang, L. Cui, S. Wang, M. Hou et al., Vertical-graphene-reinforced titanium alloy bipolar plates in fuel cells. Adv. Mater. 34(21), e2110565 (2022). https://doi.org/10.1002/adma.202110565
B.D. Gould, J.A. Rodgers, M. Schuette, K. Bethune, S. Louis et al., Performance and limitations of 3D-printed bipolar plates in fuel cells. ECS J. Solid State Sci. Technol. 4(4), P3063–P3068 (2015). https://doi.org/10.1149/2.0091504jss
D.L. Bourell, M.C. Leu, K. Chakravarthy, N. Guo, K. Alayavalli, Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions. CIRP Ann. 60(1), 275–278 (2011). https://doi.org/10.1016/j.cirp.2011.03.105
U.-G. Lee, C.-K. Jin, A study on manufacturing of microchannel bipolar plate in fuel cell by fdm 3d printer. J. Korean Soc. Industry Convergence. 24(2_1), 103–110 (2021). https://doi.org/10.21289/KSIC.2021.24.2.103
G.-E. Jang, G.-Y. Cho, Effects of Ag current collecting layer fabricated by sputter for 3D-printed polymer bipolar plate of ultra-light polymer electrolyte membrane fuel cells. Sustainability 14(5), 2997 (2022). https://doi.org/10.3390/su14052997
C. Hoon, K. Gyun, L. Seop, L. Sung, C. Park et al., Experimental study on non-uniform arrangement of 3D printed structure for cathodic flow channel in PEMFC. Int. J. Hydrog. Energy 47(2), 1192–1201 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.059
H. Yang, Y.-Y. Zhao, M.-L. Zheng, F. Jin, X.-Z. Dong et al., Stepwise optimized 3D printing of arbitrary 3D structures at millimeter scale with high precision surface. Macromol. Mater. Eng. 304(11), 1900400 (2019). https://doi.org/10.1002/mame.201900400
P. Huang, Z. Chen, J. Zhang, M. Wu, Y. Liu et al., Stainless steel bipolar plate fuel cell with different flow field structures prepared by laser additive manufacturing. Int. J. Heat Mass Transf. 183, 122186 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122186
Z. Wang, K. Hu, J. Zhang, H. Ding, D. Xin et al., Gas-liquid mass transfer characteristics of a novel three-dimensional flow field bipolar plate for laser additive manufacturing of proton exchange membrane fuel cell. Renew. Energy 212, 308–319 (2023). https://doi.org/10.1016/j.renene.2023.05.015
X. Yan, C. Guan, Y. Zhang, K. Jiang, G. Wei et al., Flow field design with 3D geometry for proton exchange membrane fuel cells. Appl. Therm. Eng. 147, 1107–1114 (2019). https://doi.org/10.1016/j.applthermaleng.2018.09.110
Y. Yang, X. Zhu, Q. Wang, D. Ye, R. Chen et al., Towards flexible fuel cells: development, challenge and prospect. Appl. Therm. Eng. 203, 117937 (2022). https://doi.org/10.1016/j.applthermaleng.2021.117937
H. Yoo, O. Kwon, J. Kim, H. Cha, H. Kim et al., 3D-printed flexible flow-field plates for bendable polymer electrolyte membrane fuel cells. J. Power. Sources 532, 231273 (2022). https://doi.org/10.1016/j.jpowsour.2022.231273
G. Zhang, Z. Qu, W.-Q. Tao, X. Wang, L. Wu et al., Porous flow field for next-generation proton exchange membrane fuel cells: materials, characterization, design, and challenges. Chem. Rev. 123(3), 989–1039 (2023). https://doi.org/10.1021/acs.chemrev.2c00539
X. Chen, Y. Chen, Q. Liu, J. Xu, Q. Liu et al., Performance study on a stepped flow field design for bipolar plate in PEMFC. Energy Rep. 7, 336–347 (2021). https://doi.org/10.1016/j.egyr.2021.01.003
W. Li, Q. Zhang, C. Wang, X. Yan, S. Shen et al., Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Appl. Energy 195, 278–288 (2017). https://doi.org/10.1016/j.apenergy.2017.03.008
X. Cheng, C. He, Q. Wen, Y. Jiang, W. Li et al., Easily accessible 3D flow fields through 3D-patterned GDL to enhance PEMFC performance via excellent water–gas separation transport. J. Mater. Chem. A (2025). https://doi.org/10.1039/d5ta02041g
S.R. Badduri, G.N. Srinivasulu, S.S. Rao, V. Venkateswarlu, C. Karunakar et al., Effect of interdigitated leaf channel design bipolar plate on the performance of proton exchange membrane fuel cell. Chem. Pap. 77(2), 1095–1106 (2023). https://doi.org/10.1007/s11696-022-02517-1
S. Zhang, S. Liu, H. Xu, G. Liu, K. Wang, Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design. Energy 239, 122102 (2022). https://doi.org/10.1016/j.energy.2021.122102
A. Ozden, S. Shahgaldi, X. Li, F. Hamdullahpur, A review of gas diffusion layers for proton exchange membrane fuel cells: with a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci. 74, 50–102 (2019). https://doi.org/10.1016/j.pecs.2019.05.002
M. Wang, S. Medina, J.R. Pfeilsticker, S. Pylypenko, M. Ulsh et al., Impact of microporous layer roughness on gas-diffusion-electrode-based polymer electrolyte membrane fuel cell performance. ACS Appl. Energy Mater. 2(11), 7757–7761 (2019). https://doi.org/10.1021/acsaem.9b01871
M. Wang, W. Zhao, S. Kong, J. Chen, Y. Li et al., Elucidating the mass transportation behavior of gas diffusion layers via a H(2) limiting current test. Materials 16(16), 5670 (2023). https://doi.org/10.3390/ma16165670
Y. Nagai, J. Eller, T. Hatanaka, S. Yamaguchi, S. Kato et al., Improving water management in fuel cells through microporous layer modifications: fast operando tomographic imaging of liquid water. J. Power. Sources 435, 226809 (2019). https://doi.org/10.1016/j.jpowsour.2019.226809
K. Xu, Q. Di, F. Sun, M. Chen, H. Wang, Degradation mechanism analysis of substrate and microporous layer of gas diffusion layer in proton exchange membrane fuel cell. Fuel 358, 130198 (2024). https://doi.org/10.1016/j.fuel.2023.130198
P. Yang, X. Wu, Z. Xie, P. Wang, C. Liu et al., Durability improving and corrosion-resistance mechanism of graphene oxide modified ultra-thin carbon paper used in PEM fuel cell. Corros. Sci. 130, 95–102 (2018). https://doi.org/10.1016/j.corsci.2017.10.025
A. Jayakumar, M. Ramos, A. Al-Jumaily, A novel 3D printing technique to synthesise gas diffusion layer for PEM fuel cell application. ASME 2016 International Mechanical Engineering Congress and Exposition (2017). https://doi.org/10.1115/IMECE2016-65554
D. Niblett, Z. Guo, S. Holmes, V. Niasar, R. Prosser, Utilization of 3D printed carbon gas diffusion layers in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 47(55), 23393–23410 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.134
T. Dörenkamp, A. Zaccarelli, E. Zürich, F.N. Büchi, T.J. Schmidt et al., Guided water percolation in 3D-printed gas diffusion layers for polymer electrolyte fuel cells. ACS Appl. Mater. Interfaces 17(16), 23959–23971 (2025). https://doi.org/10.1021/acsami.5c00770
Y. Li, F. Yuan, R. Weng, F. Xi, W. Liu, Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells. Energy 235, 121350 (2021). https://doi.org/10.1016/j.energy.2021.121350
G. Zhang, L. Wu, C. Tongsh, Z. Qu, S. Wu et al., Structure design for ultrahigh power density proton exchange membrane fuel cell. Small Methods 7(3), e2201537 (2023). https://doi.org/10.1002/smtd.202201537
X. Wang, J. Zou, Z. Zhang, C. Zhao, M. Wang et al., Optimization of anode porous transport layer’s coating for enhanced proton exchange membrane electrolyzer cells. Fuel 381, 133559 (2025). https://doi.org/10.1016/j.fuel.2024.133559
A. Ambrosi, M. Pumera, Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts. ACS Sustain. Chem. Eng. 6(12), 16968–16975 (2018). https://doi.org/10.1021/acssuschemeng.8b04327
A. Ambrosi, M. Pumera, Self-contained polymer/metal 3D printed electrochemical platform for tailored water splitting. Adv. Funct. Mater. 28(27), 1700655 (2018). https://doi.org/10.1002/adfm.201700655
R. Ciriminna, M. Pagliaro, Enhanced nickel catalysts for producing electrolytic hydrogen. RSC Sustain. 1(6), 1386–1393 (2023). https://doi.org/10.1039/d3su00177f
J.C. Bui, J.T. Davis, D.V. Esposito, 3D-printed electrodes for membraneless water electrolysis. Sustain. Energy Fuels 4(1), 213–225 (2020). https://doi.org/10.1039/c9se00710e
J. Tourneur, L. Joanny, L. Perrin, S. Paul, B. Fabre, Efficient and highly stable 3D-printed NiFe and NiCo bifunctional electrodes for practical HER and OER. ACS Appl. Eng. Mater. 1(10), 2676–2684 (2023). https://doi.org/10.1021/acsaenm.3c00417
T. Kou, S. Wang, R. Shi, T. Zhang, S. Chiovoloni et al., Periodic porous 3D electrodes mitigate gas bubble traffic during alkaline water electrolysis at high current densities. Adv. Energy Mater. 10(46), 2002955 (2020). https://doi.org/10.1002/aenm.202002955
X. Xu, G. Fu, Y. Wang, Q. Cao, Y. Xun et al., Highly efficient all-3D-printed electrolyzer toward ultrastable water electrolysis. Nano Lett. 23(2), 629–636 (2023). https://doi.org/10.1021/acs.nanolett.2c04380
G. Fu, X. Sun, Z. Zheng, Y. Wang, J. Qiu et al., Stereolithgraphy of metallic electrode with Janus porosity toward controllable bubble behavior and ultra-stable water electrolysis. Small Struct. 4(12), 2300176 (2023). https://doi.org/10.1002/sstr.202300176
F. Rocha, R. Delmelle, C. Georgiadis, J. Proost, Electrochemical performance enhancement of 3D printed electrodes tailored for enhanced gas evacuation during alkaline water electrolysis. Adv. Energy Mater. 13(1), 2203087 (2023). https://doi.org/10.1002/aenm.202203087
M. Peng, D. Shi, Y. Sun, J. Cheng, B. Zhao et al., 3D printed mechanically robust graphene/CNT electrodes for highly efficient overall water splitting. Adv. Mater. 32(23), e1908201 (2020). https://doi.org/10.1002/adma.201908201
S. Liu, R. Liu, D. Gao, I. Trentin, C. Streb, A 3d-printed composite electrode for sustained electrocatalytic oxygen evolution. Chem. Commun. 56(60), 8476–8479 (2020). https://doi.org/10.1039/d0cc03579c
R.A. Márquez, K. Kawashima, Y.J. Son, R. Rose, L.A. Smith et al., Tailoring 3D-printed electrodes for enhanced water splitting. ACS Appl. Mater. Interfaces 14(37), 42153–42170 (2022). https://doi.org/10.1021/acsami.2c12579
A. Hofer, S. Wachter, D. Döhler, A. Laube, B. Sánchez Batalla et al., Practically applicable water oxidation electrodes from 3D-printed Ti6Al4V scaffolds with surface nanostructuration and iridium catalyst coating. Electrochim. Acta 417, 140308 (2022). https://doi.org/10.1016/j.electacta.2022.140308
X. Sun, R. Zhong, C. Wu, S. Ye, H. Yuan et al., 3D printed titanium scaffolds with bi-directional gradient QK-functionalized surface. Adv. Mater. 37(8), e2406421 (2025). https://doi.org/10.1002/adma.202406421
J. Mo, R.R. Dehoff, W.H. Peter, T.J. Toops, J.B. Green et al., Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production. Int. J. Hydrogen Energy 41(4), 3128–3135 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.111
B. Huang, C. Lei, X. Sun, L. Luo, G. Wang et al., Improving mass transfer in anion exchange membrane water electrolysis by ordered gas diffusion layer. Int. J. Hydrogen Energy 48(91), 35453–35462 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.331
T. Husaini, R. Kishida, N. Affiqah Arzaee, Digital light processing 3-dimensional printer to manufacture electrolyzer bipolar plate. IOP Conf. Ser. Earth Environ. Sci. 268(1), 012039 (2019). https://doi.org/10.1088/1755-1315/268/1/012039
M. Sánchez-Molina, E. Amores, N. Rojas, M. Kunowsky, Additive manufacturing of bipolar plates for hydrogen production in proton exchange membrane water electrolysis cells. Int. J. Hydrog. Energy 46(79), 38983–38991 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.152
G. Yang, J. Mo, Z. Kang, F.A. List, J.B. Green et al., Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells. Int. J. Hydrog. Energy 42(21), 14734–14740 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.100
G. Yang, S. Yu, J. Mo, Z. Kang, Y. Dohrmann et al., Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. J. Power. Sources 396, 590–598 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.078
G. Chisholm, P.J. Kitson, N.D. Kirkaldy, L.G. Bloor, L. Cronin, 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy Environ. Sci. 7(9), 3026–3032 (2014). https://doi.org/10.1039/c4ee01426j
G. Yang, S. Yu, Z. Kang, Y. Dohrmann, G. Bender et al., A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis. Energy Convers. Manage. 182, 108–116 (2019). https://doi.org/10.1016/j.enconman.2018.12.046
G. Yang, J. Mo, Z. Kang, Y. Dohrmann, F.A. List et al., Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting. Appl. Energy 215, 202–210 (2018). https://doi.org/10.1016/j.apenergy.2018.02.001
S. Toghyani, E. Afshari, E. Baniasadi, S.A. Atyabi, Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochim. Acta 267, 234–245 (2018). https://doi.org/10.1016/j.electacta.2018.02.078
A.C. Olesen, C. Rømer, S.K. Kær, A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell. Int. J. Hydrog. Energy 41(1), 52–68 (2016). https://doi.org/10.1016/j.ijhydene.2015.09.140