Amorphous Iridium Oxide-Integrated Anode Electrodes with Ultrahigh Material Utilization for Hydrogen Production at Industrial Current Densities
Corresponding Author: Feng‑Yuan Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 203
Abstract
Herein, ionomer-free amorphous iridium oxide (IrOx) thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells (PEMECs) via low-cost, environmentally friendly, and easily scalable electrodeposition at room temperature. Combined with a Nafion 117 membrane, the IrOx-integrated electrode with an ultralow loading of 0.075 mg cm−2 delivers a high cell efficiency of about 90%, achieving more than 96% catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane (2 mg cm−2). Additionally, the IrOx electrode demonstrates superior performance, higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes. Notably, the remarkable performance could be mainly due to the amorphous phase property, sufficient Ir3+ content, and rich surface hydroxide groups in catalysts. Overall, due to the high activity, high cell efficiency, an economical, greatly simplified and easily scalable fabrication process, and ultrahigh material utilization, the IrOx electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
Highlights:
1 Electrodeposited amorphous IrOx thin electrodes are first developed for proton exchange membrane electrolyzer cells.
2 An ultralow loading of 0.075 mg cm−2 archives superior performance to catalyst-coated membrane (2 mg cm−2).
3 > 96% of catalyst savings and > 42-fold higher catalyst utilization are demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhang, X. Hu, Y. Zhou, Z. Luo, G. Nam et al., A solid oxide fuel cell runs on hydrocarbon fuels with exceptional durability and power output. Adv. Energy Mater. 12, 2202928 (2022). https://doi.org/10.1002/aenm.202202928
- G. Meng, Z. Chang, L. Zhu, C. Chen, Y. Chen et al., Adsorption site regulations of [W-O]-doped CoP boosting the hydrazine oxidation-coupled hydrogen evolution at elevated current density. Nanomicro Lett. 15, 212 (2023). https://doi.org/10.1007/s40820-023-01185-4
- F. Zhang, B. Wang, Z. Gong, Z. Qin, Y. Yin et al., Short-term performance degradation prediction of proton exchange membrane fuel cell based on discrete wavelet transform and Gaussian process regression. Next Energy 1, 100052 (2023). https://doi.org/10.1016/j.nxener.2023.100052
- L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nanomicro Lett. 15, 144 (2023). https://doi.org/10.1007/s40820-023-01117-2
- W. Wang, L. Ding, Z. Xie, S. Yu, B. Canfield et al., Discovering reactant supply pathways at electrode/PEM reaction interfaces via a tailored interface-visible characterization cell. Small 19, e2207809 (2023). https://doi.org/10.1002/smll.202207809
- W. Wang, L. Ding, Z. Xie, S. Yu, C.B. Capuano et al., 3D structured liquid/gas diffusion layers with flow enhanced microchannels for proton exchange membrane electrolyzers. Energy Convers. Manag. 296, 117665 (2023). https://doi.org/10.1016/j.enconman.2023.117665
- B. Pivovar, N. Rustagi, S. Satyapal, Hydrogen at scale (H2 @Scale): key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27, 47–52 (2018). https://doi.org/10.1149/2.f04181if
- G. Yang, S. Yu, Z. Kang, Y. Li, G. Bender et al., Electrocatalysts: building electron/proton nanohighways for full utilization of water splitting catalysts. Adv. Energy Mater. 10, 2070075 (2020). https://doi.org/10.1002/aenm.202070075
- Z. Xie, S. Yu, X. Ma, K. Li, L. Ding et al., MoS2 nanosheet integrated electrodes with engineered 1T–2H phases and defects for efficient hydrogen production in practical PEM electrolysis. Appl. Catal. B Environ. 313, 121458 (2022). https://doi.org/10.1016/j.apcatb.2022.121458
- L. Ding, W. Wang, Z. Xie, K. Li, S. Yu et al., Highly porous iridium thin electrodes with low loading and improved reaction kinetics for hydrogen generation in PEM electrolyzer cells. ACS Appl. Mater. Interfaces 15, 24284–24295 (2023). https://doi.org/10.1021/acsami.2c23304
- K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar et al., Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 10, 219–239 (2019). https://doi.org/10.1146/annurev-chembioeng-060718-030241
- Z. Xie, L. Ding, S. Yu, W. Wang, C.B. Capuano et al., Ionomer-free nanoporous iridium nanosheet electrodes with boosted performance and catalyst utilization for high-efficiency water electrolyzers. Appl. Catal. B Environ. 341, 123298 (2024). https://doi.org/10.1016/j.apcatb.2023.123298
- X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nanomicro Lett. 15, 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
- S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nanomicro Lett. 15, 189 (2023). https://doi.org/10.1007/s40820-023-01150-1
- K.E. Ayers, E.B. Anderson, C. Capuano, B. Carter, L. Dalton et al., Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 33, 3–15 (2010). https://doi.org/10.1149/1.3484496
- Z. Xie, S. Yu, G. Yang, K. Li, L. Ding et al., Optimization of catalyst-coated membranes for enhancing performance in proton exchange membrane electrolyzer cells. Int. J. Hydrog. Energy 46, 1155–1162 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.239
- W. Wang, S. Yu, K. Li, L. Ding, Z. Xie et al., Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J. Power. Sources 516, 230641 (2021). https://doi.org/10.1016/j.jpowsour.2021.230641
- J. Mo, Z. Kang, S.T. Retterer, D.A. Cullen, T.J. Toops et al., Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci. Adv. 2, e1600690 (2016). https://doi.org/10.1126/sciadv.1600690
- S.F. Zaccarine, M. Shviro, J.N. Weker, M.J. Dzara, J. Foster et al., Multi-scale multi-technique characterization approach for analysis of PEM electrolyzer catalyst layer degradation. J. Electrochem. Soc. 169, 064502 (2022). https://doi.org/10.1149/1945-7111/ac7258
- Y. Honsho, M. Nagayama, J. Matsuda, K. Ito, K. Sasaki et al., Durability of PEM water electrolyzer against wind power voltage fluctuation. J. Power Sources 564, 232826 (2023). https://doi.org/10.1016/j.jpowsour.2023.232826
- Z. Xie, S. Yu, G. Yang, K. Li, L. Ding et al., Ultrathin platinum nanowire based electrodes for high-efficiency hydrogen generation in practical electrolyzer cells. Chem. Eng. J. 410, 128333 (2021). https://doi.org/10.1016/j.cej.2020.128333
- E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev et al., Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim. Acta 52, 3889–3894 (2007). https://doi.org/10.1016/j.electacta.2006.11.005
- J.H. Oh, G.H. Han, H. Kim, H.W. Jang, H.S. Park et al., Activity and stability of Ir-based gas diffusion electrode for proton exchange membrane water electrolyzer. Chem. Eng. J. 420, 127696 (2021). https://doi.org/10.1016/j.cej.2020.127696
- S. Yu, K. Li, W. Wang, Z. Xie, L. Ding et al., Tuning catalyst activation and utilization via controlled electrode patterning for low-loading and high-efficiency water electrolyzers. Small 18, e2107745 (2022). https://doi.org/10.1002/smll.202107745
- Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu et al., Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy 47, 434–441 (2018). https://doi.org/10.1016/j.nanoen.2018.03.015
- W. Wang, K. Li, L. Ding, S. Yu, Z. Xie et al., Exploring the impacts of conditioning on proton exchange membrane electrolyzers by in situ visualization and electrochemistry characterization. ACS Appl. Mater. Interfaces 14, 9002–9012 (2022). https://doi.org/10.1021/acsami.1c21849
- C. Xia, Y. Li, M. Je, J. Kim, S.M. Cho et al., Nanocrystalline iron pyrophosphate-regulated amorphous phosphate overlayer for enhancing solar water oxidation. Nanomicro Lett. 14, 209 (2022). https://doi.org/10.1007/s40820-022-00955-w
- G. Wu, Y. Liu, Y. He, J. Feng, D. Li, Reaction pathway investigation using in situ Fourier transform infrared technique over Pt/CuO and Pt/TiO2 for selective glycerol oxidation. Appl. Catal. B Environ. 291, 120061 (2021). https://doi.org/10.1016/j.apcatb.2021.120061
- X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
- L. Ding, K. Li, Z. Xie, G. Yang, S. Yu et al., Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting. ACS Appl. Mater. Interfaces 13, 20070–20080 (2021). https://doi.org/10.1021/acsami.1c01815
- J. Zhu, R. Lu, F. Xia, P. Wang, D. Chen et al., Crystalline-amorphous heterostructures with assortative strong-weak adsorption pairs enable extremely high water oxidation capability toward multi-scenario water electrolysis. Nano Energy 110, 108349 (2023). https://doi.org/10.1016/j.nanoen.2023.108349
- D. Feng, P. Wang, R. Qin, W. Shi, L. Gong et al., Flower-like amorphous MoO3-x stabilized Ru single atoms for efficient overall water/seawater splitting. Adv. Sci. 10, e2300342 (2023). https://doi.org/10.1002/advs.202300342
- Z. Tao, H. Zhao, N. Lv, X. Luo, J. Yu et al., Crystalline/amorphous-Ru/VOx phase engineering expedites the alkaline hydrogen evolution kinetics. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202312987
- V. Pfeifer, T.E. Jones, J.J. Velasco, R.A. Vélez, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlögl, In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 8(3), 2143–2149 (2017). https://doi.org/10.1039/C6SC04622C
- N. Sivasankar, W.W. Weare, H. Frei, Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 133, 12976–12979 (2011). https://doi.org/10.1021/ja205300a
- D. Chen, R. Lu, R. Yu, H. Zhao, D. Wu et al., Tuning active metal atomic spacing by filling of light atoms and resulting reversed hydrogen adsorption-distance relationship for efficient catalysis. Nano-Micro Lett. 15, 168 (2023). https://doi.org/10.1007/s40820-023-01142-1
- A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006). https://doi.org/10.1016/j.susc.2006.01.041
- M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051
- N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang, et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15, 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
- Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol co-electrocatalysis. Nano-Micro Lett. 14, 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
- Z. Kang, G. Yang, J. Mo, S. Yu, D.A. Cullen et al., Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production. Int. J. Hydrog. Energy 43, 14618–14628 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.139
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- Z. Kang, Y. Chen, H. Wang, S.M. Alia, B.S. Pivovar et al., Discovering and demonstrating a novel high-performing 2D-patterned electrode for proton-exchange membrane water electrolysis devices. ACS Appl. Mater. Interfaces 14, 2335–2342 (2022). https://doi.org/10.1021/acsami.1c20525
- H. Lv, S. Wang, J. Li, C. Shao, W. Zhou et al., Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer. Appl. Surf. Sci. 514, 145943 (2020). https://doi.org/10.1016/j.apsusc.2020.145943
- M. Faustini, M. Giraud, D. Jones, J. Rozière, M. Dupont et al., Hierarchically structured ultraporous iridium-based materials: a novel catalyst architecture for proton exchange membrane water electrolyzers. Adv. Energy Mater. 9, 1802136 (2019). https://doi.org/10.1002/aenm.201802136
- J. Lim, D. Park, S.S. Jeon, C.-W. Roh, J. Choi et al., Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Adv. Funct. Mater. 28, 1704796 (2018). https://doi.org/10.1002/adfm.201704796
- S. Wang, H. Lv, F. Tang, Y. Sun, W. Ji et al., Defect engineering assisted support effect: IrO2/N defective g-C3N4 composite as highly efficient anode catalyst in PEM water electrolysis. Chem. Eng. J. 419, 129455 (2021). https://doi.org/10.1016/j.cej.2021.129455
- L. Wang, V.A. Saveleva, S. Zafeiratos, E.R. Savinova, P. Lettenmeier et al., Highly active anode electrocatalysts derived from electrochemical leaching of Ru from metallic Ir0.7 Ru0.3 for proton exchange membrane electrolyzers. Nano Energy 34, 385–391 (2017). https://doi.org/10.1016/j.nanoen.2017.02.045
- C. Baik, S.W. Lee, C. Pak, Glycine-induced ultrahigh-surface-area IrO2@IrOx catalyst with balanced activity and stability for efficient water splitting. Electrochim. Acta 390, 138885 (2021). https://doi.org/10.1016/j.electacta.2021.138885
- G. Jiang, H. Yu, J. Hao, J. Chi, Z. Fan et al., An effective oxygen electrode based on Ir0.6Sn0.4O2 for PEM water electrolyzers. J. Energy Chem. 39, 23–28 (2019). https://doi.org/10.1016/j.jechem.2019.01.011
References
W. Zhang, X. Hu, Y. Zhou, Z. Luo, G. Nam et al., A solid oxide fuel cell runs on hydrocarbon fuels with exceptional durability and power output. Adv. Energy Mater. 12, 2202928 (2022). https://doi.org/10.1002/aenm.202202928
G. Meng, Z. Chang, L. Zhu, C. Chen, Y. Chen et al., Adsorption site regulations of [W-O]-doped CoP boosting the hydrazine oxidation-coupled hydrogen evolution at elevated current density. Nanomicro Lett. 15, 212 (2023). https://doi.org/10.1007/s40820-023-01185-4
F. Zhang, B. Wang, Z. Gong, Z. Qin, Y. Yin et al., Short-term performance degradation prediction of proton exchange membrane fuel cell based on discrete wavelet transform and Gaussian process regression. Next Energy 1, 100052 (2023). https://doi.org/10.1016/j.nxener.2023.100052
L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nanomicro Lett. 15, 144 (2023). https://doi.org/10.1007/s40820-023-01117-2
W. Wang, L. Ding, Z. Xie, S. Yu, B. Canfield et al., Discovering reactant supply pathways at electrode/PEM reaction interfaces via a tailored interface-visible characterization cell. Small 19, e2207809 (2023). https://doi.org/10.1002/smll.202207809
W. Wang, L. Ding, Z. Xie, S. Yu, C.B. Capuano et al., 3D structured liquid/gas diffusion layers with flow enhanced microchannels for proton exchange membrane electrolyzers. Energy Convers. Manag. 296, 117665 (2023). https://doi.org/10.1016/j.enconman.2023.117665
B. Pivovar, N. Rustagi, S. Satyapal, Hydrogen at scale (H2 @Scale): key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27, 47–52 (2018). https://doi.org/10.1149/2.f04181if
G. Yang, S. Yu, Z. Kang, Y. Li, G. Bender et al., Electrocatalysts: building electron/proton nanohighways for full utilization of water splitting catalysts. Adv. Energy Mater. 10, 2070075 (2020). https://doi.org/10.1002/aenm.202070075
Z. Xie, S. Yu, X. Ma, K. Li, L. Ding et al., MoS2 nanosheet integrated electrodes with engineered 1T–2H phases and defects for efficient hydrogen production in practical PEM electrolysis. Appl. Catal. B Environ. 313, 121458 (2022). https://doi.org/10.1016/j.apcatb.2022.121458
L. Ding, W. Wang, Z. Xie, K. Li, S. Yu et al., Highly porous iridium thin electrodes with low loading and improved reaction kinetics for hydrogen generation in PEM electrolyzer cells. ACS Appl. Mater. Interfaces 15, 24284–24295 (2023). https://doi.org/10.1021/acsami.2c23304
K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar et al., Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 10, 219–239 (2019). https://doi.org/10.1146/annurev-chembioeng-060718-030241
Z. Xie, L. Ding, S. Yu, W. Wang, C.B. Capuano et al., Ionomer-free nanoporous iridium nanosheet electrodes with boosted performance and catalyst utilization for high-efficiency water electrolyzers. Appl. Catal. B Environ. 341, 123298 (2024). https://doi.org/10.1016/j.apcatb.2023.123298
X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nanomicro Lett. 15, 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nanomicro Lett. 15, 189 (2023). https://doi.org/10.1007/s40820-023-01150-1
K.E. Ayers, E.B. Anderson, C. Capuano, B. Carter, L. Dalton et al., Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 33, 3–15 (2010). https://doi.org/10.1149/1.3484496
Z. Xie, S. Yu, G. Yang, K. Li, L. Ding et al., Optimization of catalyst-coated membranes for enhancing performance in proton exchange membrane electrolyzer cells. Int. J. Hydrog. Energy 46, 1155–1162 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.239
W. Wang, S. Yu, K. Li, L. Ding, Z. Xie et al., Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J. Power. Sources 516, 230641 (2021). https://doi.org/10.1016/j.jpowsour.2021.230641
J. Mo, Z. Kang, S.T. Retterer, D.A. Cullen, T.J. Toops et al., Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci. Adv. 2, e1600690 (2016). https://doi.org/10.1126/sciadv.1600690
S.F. Zaccarine, M. Shviro, J.N. Weker, M.J. Dzara, J. Foster et al., Multi-scale multi-technique characterization approach for analysis of PEM electrolyzer catalyst layer degradation. J. Electrochem. Soc. 169, 064502 (2022). https://doi.org/10.1149/1945-7111/ac7258
Y. Honsho, M. Nagayama, J. Matsuda, K. Ito, K. Sasaki et al., Durability of PEM water electrolyzer against wind power voltage fluctuation. J. Power Sources 564, 232826 (2023). https://doi.org/10.1016/j.jpowsour.2023.232826
Z. Xie, S. Yu, G. Yang, K. Li, L. Ding et al., Ultrathin platinum nanowire based electrodes for high-efficiency hydrogen generation in practical electrolyzer cells. Chem. Eng. J. 410, 128333 (2021). https://doi.org/10.1016/j.cej.2020.128333
E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev et al., Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim. Acta 52, 3889–3894 (2007). https://doi.org/10.1016/j.electacta.2006.11.005
J.H. Oh, G.H. Han, H. Kim, H.W. Jang, H.S. Park et al., Activity and stability of Ir-based gas diffusion electrode for proton exchange membrane water electrolyzer. Chem. Eng. J. 420, 127696 (2021). https://doi.org/10.1016/j.cej.2020.127696
S. Yu, K. Li, W. Wang, Z. Xie, L. Ding et al., Tuning catalyst activation and utilization via controlled electrode patterning for low-loading and high-efficiency water electrolyzers. Small 18, e2107745 (2022). https://doi.org/10.1002/smll.202107745
Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu et al., Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy 47, 434–441 (2018). https://doi.org/10.1016/j.nanoen.2018.03.015
W. Wang, K. Li, L. Ding, S. Yu, Z. Xie et al., Exploring the impacts of conditioning on proton exchange membrane electrolyzers by in situ visualization and electrochemistry characterization. ACS Appl. Mater. Interfaces 14, 9002–9012 (2022). https://doi.org/10.1021/acsami.1c21849
C. Xia, Y. Li, M. Je, J. Kim, S.M. Cho et al., Nanocrystalline iron pyrophosphate-regulated amorphous phosphate overlayer for enhancing solar water oxidation. Nanomicro Lett. 14, 209 (2022). https://doi.org/10.1007/s40820-022-00955-w
G. Wu, Y. Liu, Y. He, J. Feng, D. Li, Reaction pathway investigation using in situ Fourier transform infrared technique over Pt/CuO and Pt/TiO2 for selective glycerol oxidation. Appl. Catal. B Environ. 291, 120061 (2021). https://doi.org/10.1016/j.apcatb.2021.120061
X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
L. Ding, K. Li, Z. Xie, G. Yang, S. Yu et al., Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting. ACS Appl. Mater. Interfaces 13, 20070–20080 (2021). https://doi.org/10.1021/acsami.1c01815
J. Zhu, R. Lu, F. Xia, P. Wang, D. Chen et al., Crystalline-amorphous heterostructures with assortative strong-weak adsorption pairs enable extremely high water oxidation capability toward multi-scenario water electrolysis. Nano Energy 110, 108349 (2023). https://doi.org/10.1016/j.nanoen.2023.108349
D. Feng, P. Wang, R. Qin, W. Shi, L. Gong et al., Flower-like amorphous MoO3-x stabilized Ru single atoms for efficient overall water/seawater splitting. Adv. Sci. 10, e2300342 (2023). https://doi.org/10.1002/advs.202300342
Z. Tao, H. Zhao, N. Lv, X. Luo, J. Yu et al., Crystalline/amorphous-Ru/VOx phase engineering expedites the alkaline hydrogen evolution kinetics. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202312987
V. Pfeifer, T.E. Jones, J.J. Velasco, R.A. Vélez, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlögl, In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 8(3), 2143–2149 (2017). https://doi.org/10.1039/C6SC04622C
N. Sivasankar, W.W. Weare, H. Frei, Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 133, 12976–12979 (2011). https://doi.org/10.1021/ja205300a
D. Chen, R. Lu, R. Yu, H. Zhao, D. Wu et al., Tuning active metal atomic spacing by filling of light atoms and resulting reversed hydrogen adsorption-distance relationship for efficient catalysis. Nano-Micro Lett. 15, 168 (2023). https://doi.org/10.1007/s40820-023-01142-1
A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006). https://doi.org/10.1016/j.susc.2006.01.041
M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051
N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang, et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15, 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol co-electrocatalysis. Nano-Micro Lett. 14, 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
Z. Kang, G. Yang, J. Mo, S. Yu, D.A. Cullen et al., Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production. Int. J. Hydrog. Energy 43, 14618–14628 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.139
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
Z. Kang, Y. Chen, H. Wang, S.M. Alia, B.S. Pivovar et al., Discovering and demonstrating a novel high-performing 2D-patterned electrode for proton-exchange membrane water electrolysis devices. ACS Appl. Mater. Interfaces 14, 2335–2342 (2022). https://doi.org/10.1021/acsami.1c20525
H. Lv, S. Wang, J. Li, C. Shao, W. Zhou et al., Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer. Appl. Surf. Sci. 514, 145943 (2020). https://doi.org/10.1016/j.apsusc.2020.145943
M. Faustini, M. Giraud, D. Jones, J. Rozière, M. Dupont et al., Hierarchically structured ultraporous iridium-based materials: a novel catalyst architecture for proton exchange membrane water electrolyzers. Adv. Energy Mater. 9, 1802136 (2019). https://doi.org/10.1002/aenm.201802136
J. Lim, D. Park, S.S. Jeon, C.-W. Roh, J. Choi et al., Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Adv. Funct. Mater. 28, 1704796 (2018). https://doi.org/10.1002/adfm.201704796
S. Wang, H. Lv, F. Tang, Y. Sun, W. Ji et al., Defect engineering assisted support effect: IrO2/N defective g-C3N4 composite as highly efficient anode catalyst in PEM water electrolysis. Chem. Eng. J. 419, 129455 (2021). https://doi.org/10.1016/j.cej.2021.129455
L. Wang, V.A. Saveleva, S. Zafeiratos, E.R. Savinova, P. Lettenmeier et al., Highly active anode electrocatalysts derived from electrochemical leaching of Ru from metallic Ir0.7 Ru0.3 for proton exchange membrane electrolyzers. Nano Energy 34, 385–391 (2017). https://doi.org/10.1016/j.nanoen.2017.02.045
C. Baik, S.W. Lee, C. Pak, Glycine-induced ultrahigh-surface-area IrO2@IrOx catalyst with balanced activity and stability for efficient water splitting. Electrochim. Acta 390, 138885 (2021). https://doi.org/10.1016/j.electacta.2021.138885
G. Jiang, H. Yu, J. Hao, J. Chi, Z. Fan et al., An effective oxygen electrode based on Ir0.6Sn0.4O2 for PEM water electrolyzers. J. Energy Chem. 39, 23–28 (2019). https://doi.org/10.1016/j.jechem.2019.01.011