Photocatalytic H2 Evolution on TiO2 Assembled with Ti3C2 MXene and Metallic 1T-WS2 as Co-catalysts
Corresponding Author: Hongzhi Cui
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 6
Abstract
The biggest challenging issue in photocatalysis is efficient separation of the photoinduced carriers and the aggregation of photoexcited electrons on photocatalyst’s surface. In this paper, we report that double metallic co-catalysts Ti3C2 MXene and metallic octahedral (1T) phase tungsten disulfide (WS2) act pathways transferring photoexcited electrons in assisting the photocatalytic H2 evolution. TiO2 nanosheets were in situ grown on highly conductive Ti3C2 MXenes and 1T-WS2 nanoparticles were then uniformly distributed on TiO2@Ti3C2 composite. Thus, a distinctive 1T-WS2@TiO2@Ti3C2 composite with double metallic co-catalysts was achieved, and the content of 1T phase reaches 73%. The photocatalytic H2 evolution performance of 1T-WS2@TiO2@Ti3C2 composite with an optimized 15 wt% WS2 ratio is nearly 50 times higher than that of TiO2 nanosheets because of conductive Ti3C2 MXene and 1T-WS2 resulting in the increase of electron transfer efficiency. Besides, the 1T-WS2 on the surface of TiO2@Ti3C2 composite enhances the Brunauer–Emmett–Teller surface area and boosts the density of active site.
Highlights
1 The 1T-WS2@TiO2@Ti3C2 photocatalyst is highly active for water splitting to produce hydrogen at 3409.8 μmol g−1 h−1.
2 The Ti3C2 MXene and octahedral (1T) phase WS2 act pathways transferring photogenerated electrons.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D.T. Evans et al., Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011). https://doi.org/10.1021/ja108801m
- J. Choi, S.Y. Ryu, W. Balcerski, T.K. Lee, M.R. Hoffmann, Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J. Mater. Chem. 18, 2371–2378 (2008). https://doi.org/10.1039/B718535A
- M.R. Gholipour, C.T. Dinh, F. Béland, T.O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7, 8187–8208 (2015). https://doi.org/10.1039/C4NR07224C
- Z. Li, B. Tian, W. Zhen, Y. Wu, G. Lu, Inhibition of hydrogen and oxygen recombination using oxygen transfer reagent hemin chloride in Pt/TiO2 dispersion for photocatalytic hydrogen generation. Appl. Catal. B-Environ. 203, 408–415 (2017). https://doi.org/10.1016/j.apcatb.2016.10.049
- Z. Liang, X. Bai, P. Hao, Y. Guo, Y. Xue, J. Tian, H. Cui, Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes. Appl. Catal. B 243, 711–720 (2019). https://doi.org/10.1016/j.apcatb.2018.11.017
- X. Zhang, Y. Wang, B. Liu, Y. Sang, L. Hong, Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts. Appl. Catal. B 202, 620–641 (2017). https://doi.org/10.1016/j.apcatb.2016.09.068
- Y. Cao, Y. Saygili, A. Ummadisingu, J.L. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.E. Moser, M. Freitag, 11% efficiency solid-state dye-sensitized solar cells with copper (II/I) hole transport materials. Nat. Commun. 8, 15390 (2017). https://doi.org/10.1038/ncomms15390
- N. Michael, Alkaline earth metal oxide nanocluster modification of rutile TiO2 (110) promotes water activation and CO2 chemisorption. J. Mater. Chem. A 6, 9451–9466 (2018). https://doi.org/10.1039/C8TA01789A
- J. Jiao, Y. Wei, Y. Zhao, Z. Zhao, A. Duan et al., AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: high efficient separation of photogenerated charge carriers. Appl. Catal. B 209, 228–239 (2017). https://doi.org/10.1016/j.apcatb.2017.02.076
- S. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen, X. Li, Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Appl. Catal. B 227, 218–228 (2018). https://doi.org/10.1016/j.apcatb.2018.01.031
- Y.J. Yuan, D. Chen, J. Zhong, L.X. Yang, J. Wang et al., Interface engineering of a noble-metal-free 2D-2D MoS2/Cu-ZnIn2S4 photocatalyst for enhanced photocatalytic H2 production. J. Mater. Chem. A 5, 15771–15779 (2017). https://doi.org/10.1039/C7TA04410K
- Y.J. Yuan, H.W. Lu, Z.T. Yu, Z.G. Zou, Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. Chemsuschem 8, 4113–4127 (2016). https://doi.org/10.1002/cssc.201501203
- Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X.F. Wang, 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11, 79 (2019). https://doi.org/10.1007/s40820-019-0309-6
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- Z. Li, F. Wu, J. Yu, Q. Deng, F. Zhang, W. Guan, Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118, 50–57 (2017). https://doi.org/10.1016/j.carbon.2017.03.023
- X. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J. Li, B.W. Byles, E. Pomerantseva, G. Wang, Y. Gogotsi, Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
- Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 13, 217–227 (2018). https://doi.org/10.1016/j.apmt.2018.09.004
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- J. Yi, X. She, Y. Song, M. Mao, K. Xia et al., Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chem. Eng. J. 335, 282–289 (2018). https://doi.org/10.1016/j.cej.2017.10.125
- J.M. Woods, Y. Jung, Y. Xie, W. Liu, Y. Liu, H. Wang, J.J. Cha, One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 10, 2004–2009 (2016). https://doi.org/10.1021/acsnano.5b06126
- X. Tong, Y. Qi, J. Chen, N. Wang, Q. Xu, Supercritical CO2-assisted reverse-micelle-induced solution-phase fabrication of two-dimensional metallic 1T-MoS2 and 1T-WS2. ChemNanoMat 3, 466–471 (2017). https://doi.org/10.1002/cnma.201700011
- M. Piao, J. Chu, X. Wang, Y. Chi, H. Zhang, C. Li, H. Shi, M.K. Joo, Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application. Nanotechnology 29, 025705 (2017). https://doi.org/10.1088/1361-6528/aa9bfe
- Q. Liu, X. Li, Z. Xiao, Y. Zhou, H. Chen et al., Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties. Adv. Mater. 27, 4837–4844 (2015). https://doi.org/10.1002/adma.201502134
- U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj, C.N. Rao, Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew. Chem. Int. Ed. 52, 13057–13061 (2013). https://doi.org/10.1002/anie.201306918
- H. Yu, P. Xiao, P. Wang, J. Yu, Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution. Appl. Catal. B 193, 217–225 (2016). https://doi.org/10.1016/j.apcatb.2016.04.028
- X.B. Li, Y.J. Gao, H.L. Wu, Y. Wang, Q. Guo et al., Assembling metallic 1T-MoS2 nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chem. Commun. 53, 5606–5609 (2017). https://doi.org/10.1039/C7CC02366A
- Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, H. Cui, 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl. Catal. B 246, 12–20 (2019). https://doi.org/10.1016/j.apcatb.2019.01.051
- M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013). https://doi.org/10.1021/ja404523s
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, H. Min, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 37, 4207 (2011). https://doi.org/10.1002/adma.201190147
- C.C.M. Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, M. Pumera, Metallic 1T-WS2 for selective impedimetric vapor sensing. Adv. Funct. Mater. 25, 5611–5616 (2015). https://doi.org/10.1002/adfm.201502223
- J. Tian, X. Hu, N. Wei, Y. Zhou, X. Xu, H. Cui, H. Liu, RuO2/TiO2 nanobelt heterostructures with enhanced photocatalytic activity and gas-phase selective oxidation of benzyl alcohol. Sol. Energ. Mat. Sol. C 151, 7–13 (2016). https://doi.org/10.1016/j.solmat.2016.02.017
- X. Hu, S. Lu, J. Tian, N. Wei, X. Song, X. Wang, H. Cui, The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl. Catal. B 241, 329–337 (2019). https://doi.org/10.1016/j.apcatb.2018.09.051
- P. Lian, Y. Dong, Z. Wu, S. Zheng, X. Wang, S. Wang, C. Sun, J. Qin, X. Shi, X. Bao, Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
- T.A.J. Loh, D.H.C. Chua, Origin of hybrid 1T- and 2H-WS2 ultrathin layers by pulsed laser deposition. J. Phys. Chem. C 49, 27496–27504 (2015). https://doi.org/10.1021/acs.jpcc.5b09277
- B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: aplications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014). https://doi.org/10.1021/ja506261t
- F. Yang, Z. Ning, H. Liu, Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin. China Fuel 115, 378–384 (2014). https://doi.org/10.1016/j.fuel.2013.07.040
- Y. Cui, G. Zhang, Z. Lin, X. Wang, Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl. Catal. B 181, 413–419 (2016). https://doi.org/10.1016/j.apcatb.2015.08.018
- H. Yang, J. Tian, Y. Bo, Y. Zhou, X. Wang, H. Cui, Visible photocatalytic and photoelectrochemical activities of TiO2 nanobelts modified by In2O3 nanoparticles. J. Colloid Interf. Sci. 487, 258–265 (2017). https://doi.org/10.1016/j.jcis.2016.10.051
- J. Ran, G. Gao, F. Li, T. Ma, A. Du, S. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
- L. Yao, N. Zhang, Y. Wang, Y. Ni, Facile formation of 2D Co2P@Co3O4 microsheets through in situ toptactic conversion and surface corrosion: bifunctional electrocatalysts towards overall water splitting. J. Power Sources 374, 142–148 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.028
- A.N. Enyashin, A.L. Ivanovskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups. J. Phys. Chem. C 117, 13637–13643 (2013). https://doi.org/10.1021/jp401820b
- T.A.J. Loh, M. Tanemura, D.H.C. Chua, Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters. Appl. Phys. Lett. 109, 133102 (2016). https://doi.org/10.1063/1.4963260
- H.E. Kim, J. Lee, H. Lee, C. Lee, Synergistic effects of TiO2 photocatalysis in combination with fenton-like reactions on oxidation of organic compounds at circumneutral pH. Appl. Catal. B 116, 219–224 (2012). https://doi.org/10.1016/j.apcatb.2011.12.027
- M. Schvartzman, V. Sidorov, D. Ritter, Y. Paz, Surface passivation of (100) InP by organic thiols and polyimide as characterized by steady-state photoluminescence. Semicond. Sci. Technol. 16, 68–71 (2001). https://doi.org/10.1088/0268-1242/16/10/103
- Y. Liu, W. Wang, Y. Wang, X. Peng, Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 7, 25–32 (2014). https://doi.org/10.1016/j.nanoen.2014.04.018
- A. Manikandan, P.R. Ilango, C.W. Chen, Y.C. Wang, Y.C. Shih et al., A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS2/α-MoO3 hybrid heterostructured nanoflowers. J. Mater. Chem. A 6, 15320 (2018). https://doi.org/10.1039/C8TA02496K
- X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018). https://doi.org/10.1039/C8CP01123K
References
S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D.T. Evans et al., Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011). https://doi.org/10.1021/ja108801m
J. Choi, S.Y. Ryu, W. Balcerski, T.K. Lee, M.R. Hoffmann, Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J. Mater. Chem. 18, 2371–2378 (2008). https://doi.org/10.1039/B718535A
M.R. Gholipour, C.T. Dinh, F. Béland, T.O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7, 8187–8208 (2015). https://doi.org/10.1039/C4NR07224C
Z. Li, B. Tian, W. Zhen, Y. Wu, G. Lu, Inhibition of hydrogen and oxygen recombination using oxygen transfer reagent hemin chloride in Pt/TiO2 dispersion for photocatalytic hydrogen generation. Appl. Catal. B-Environ. 203, 408–415 (2017). https://doi.org/10.1016/j.apcatb.2016.10.049
Z. Liang, X. Bai, P. Hao, Y. Guo, Y. Xue, J. Tian, H. Cui, Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes. Appl. Catal. B 243, 711–720 (2019). https://doi.org/10.1016/j.apcatb.2018.11.017
X. Zhang, Y. Wang, B. Liu, Y. Sang, L. Hong, Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts. Appl. Catal. B 202, 620–641 (2017). https://doi.org/10.1016/j.apcatb.2016.09.068
Y. Cao, Y. Saygili, A. Ummadisingu, J.L. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.E. Moser, M. Freitag, 11% efficiency solid-state dye-sensitized solar cells with copper (II/I) hole transport materials. Nat. Commun. 8, 15390 (2017). https://doi.org/10.1038/ncomms15390
N. Michael, Alkaline earth metal oxide nanocluster modification of rutile TiO2 (110) promotes water activation and CO2 chemisorption. J. Mater. Chem. A 6, 9451–9466 (2018). https://doi.org/10.1039/C8TA01789A
J. Jiao, Y. Wei, Y. Zhao, Z. Zhao, A. Duan et al., AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: high efficient separation of photogenerated charge carriers. Appl. Catal. B 209, 228–239 (2017). https://doi.org/10.1016/j.apcatb.2017.02.076
S. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen, X. Li, Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Appl. Catal. B 227, 218–228 (2018). https://doi.org/10.1016/j.apcatb.2018.01.031
Y.J. Yuan, D. Chen, J. Zhong, L.X. Yang, J. Wang et al., Interface engineering of a noble-metal-free 2D-2D MoS2/Cu-ZnIn2S4 photocatalyst for enhanced photocatalytic H2 production. J. Mater. Chem. A 5, 15771–15779 (2017). https://doi.org/10.1039/C7TA04410K
Y.J. Yuan, H.W. Lu, Z.T. Yu, Z.G. Zou, Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. Chemsuschem 8, 4113–4127 (2016). https://doi.org/10.1002/cssc.201501203
Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X.F. Wang, 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11, 79 (2019). https://doi.org/10.1007/s40820-019-0309-6
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
Z. Li, F. Wu, J. Yu, Q. Deng, F. Zhang, W. Guan, Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118, 50–57 (2017). https://doi.org/10.1016/j.carbon.2017.03.023
X. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J. Li, B.W. Byles, E. Pomerantseva, G. Wang, Y. Gogotsi, Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 13, 217–227 (2018). https://doi.org/10.1016/j.apmt.2018.09.004
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
J. Yi, X. She, Y. Song, M. Mao, K. Xia et al., Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chem. Eng. J. 335, 282–289 (2018). https://doi.org/10.1016/j.cej.2017.10.125
J.M. Woods, Y. Jung, Y. Xie, W. Liu, Y. Liu, H. Wang, J.J. Cha, One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 10, 2004–2009 (2016). https://doi.org/10.1021/acsnano.5b06126
X. Tong, Y. Qi, J. Chen, N. Wang, Q. Xu, Supercritical CO2-assisted reverse-micelle-induced solution-phase fabrication of two-dimensional metallic 1T-MoS2 and 1T-WS2. ChemNanoMat 3, 466–471 (2017). https://doi.org/10.1002/cnma.201700011
M. Piao, J. Chu, X. Wang, Y. Chi, H. Zhang, C. Li, H. Shi, M.K. Joo, Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application. Nanotechnology 29, 025705 (2017). https://doi.org/10.1088/1361-6528/aa9bfe
Q. Liu, X. Li, Z. Xiao, Y. Zhou, H. Chen et al., Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties. Adv. Mater. 27, 4837–4844 (2015). https://doi.org/10.1002/adma.201502134
U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj, C.N. Rao, Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew. Chem. Int. Ed. 52, 13057–13061 (2013). https://doi.org/10.1002/anie.201306918
H. Yu, P. Xiao, P. Wang, J. Yu, Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution. Appl. Catal. B 193, 217–225 (2016). https://doi.org/10.1016/j.apcatb.2016.04.028
X.B. Li, Y.J. Gao, H.L. Wu, Y. Wang, Q. Guo et al., Assembling metallic 1T-MoS2 nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chem. Commun. 53, 5606–5609 (2017). https://doi.org/10.1039/C7CC02366A
Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, H. Cui, 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl. Catal. B 246, 12–20 (2019). https://doi.org/10.1016/j.apcatb.2019.01.051
M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013). https://doi.org/10.1021/ja404523s
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, H. Min, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 37, 4207 (2011). https://doi.org/10.1002/adma.201190147
C.C.M. Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, M. Pumera, Metallic 1T-WS2 for selective impedimetric vapor sensing. Adv. Funct. Mater. 25, 5611–5616 (2015). https://doi.org/10.1002/adfm.201502223
J. Tian, X. Hu, N. Wei, Y. Zhou, X. Xu, H. Cui, H. Liu, RuO2/TiO2 nanobelt heterostructures with enhanced photocatalytic activity and gas-phase selective oxidation of benzyl alcohol. Sol. Energ. Mat. Sol. C 151, 7–13 (2016). https://doi.org/10.1016/j.solmat.2016.02.017
X. Hu, S. Lu, J. Tian, N. Wei, X. Song, X. Wang, H. Cui, The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl. Catal. B 241, 329–337 (2019). https://doi.org/10.1016/j.apcatb.2018.09.051
P. Lian, Y. Dong, Z. Wu, S. Zheng, X. Wang, S. Wang, C. Sun, J. Qin, X. Shi, X. Bao, Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
T.A.J. Loh, D.H.C. Chua, Origin of hybrid 1T- and 2H-WS2 ultrathin layers by pulsed laser deposition. J. Phys. Chem. C 49, 27496–27504 (2015). https://doi.org/10.1021/acs.jpcc.5b09277
B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: aplications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014). https://doi.org/10.1021/ja506261t
F. Yang, Z. Ning, H. Liu, Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin. China Fuel 115, 378–384 (2014). https://doi.org/10.1016/j.fuel.2013.07.040
Y. Cui, G. Zhang, Z. Lin, X. Wang, Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl. Catal. B 181, 413–419 (2016). https://doi.org/10.1016/j.apcatb.2015.08.018
H. Yang, J. Tian, Y. Bo, Y. Zhou, X. Wang, H. Cui, Visible photocatalytic and photoelectrochemical activities of TiO2 nanobelts modified by In2O3 nanoparticles. J. Colloid Interf. Sci. 487, 258–265 (2017). https://doi.org/10.1016/j.jcis.2016.10.051
J. Ran, G. Gao, F. Li, T. Ma, A. Du, S. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
L. Yao, N. Zhang, Y. Wang, Y. Ni, Facile formation of 2D Co2P@Co3O4 microsheets through in situ toptactic conversion and surface corrosion: bifunctional electrocatalysts towards overall water splitting. J. Power Sources 374, 142–148 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.028
A.N. Enyashin, A.L. Ivanovskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups. J. Phys. Chem. C 117, 13637–13643 (2013). https://doi.org/10.1021/jp401820b
T.A.J. Loh, M. Tanemura, D.H.C. Chua, Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters. Appl. Phys. Lett. 109, 133102 (2016). https://doi.org/10.1063/1.4963260
H.E. Kim, J. Lee, H. Lee, C. Lee, Synergistic effects of TiO2 photocatalysis in combination with fenton-like reactions on oxidation of organic compounds at circumneutral pH. Appl. Catal. B 116, 219–224 (2012). https://doi.org/10.1016/j.apcatb.2011.12.027
M. Schvartzman, V. Sidorov, D. Ritter, Y. Paz, Surface passivation of (100) InP by organic thiols and polyimide as characterized by steady-state photoluminescence. Semicond. Sci. Technol. 16, 68–71 (2001). https://doi.org/10.1088/0268-1242/16/10/103
Y. Liu, W. Wang, Y. Wang, X. Peng, Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 7, 25–32 (2014). https://doi.org/10.1016/j.nanoen.2014.04.018
A. Manikandan, P.R. Ilango, C.W. Chen, Y.C. Wang, Y.C. Shih et al., A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS2/α-MoO3 hybrid heterostructured nanoflowers. J. Mater. Chem. A 6, 15320 (2018). https://doi.org/10.1039/C8TA02496K
X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018). https://doi.org/10.1039/C8CP01123K