Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution
Corresponding Author: Feng‑Yuan Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 144
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm−2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm−2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Highlights:
1 4-nm-thick Pt nanosheets (Pt-NSs) are electrochemically grown on Ti substrates for hydrogen evolution reactions.
2 Highly uniform Pt-NS surface coverage with an ultralow loading of 0.015 mgPt cm−2 is achieved.
3 99.5% catalyst savings and about 237-fold higher catalyst utilization are demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen et al., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564–1596 (2014). https://doi.org/10.1039/C3EE43385D
- L. Cao, F. Scheiba, C. Roth, F. Schweiger, C. Cremers et al., Novel nanocomposite Pt/RuO2xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew. Chem. Int. Ed. 45(32), 5315–5319 (2006). https://doi.org/10.1002/ange.200601301
- W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6(5), 1509–1512 (2013). https://doi.org/10.1039/C3EE00045A
- X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
- X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan et al., Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
- A. Hossain, K. Sakthipandi, A.K.M. Atique Ullah, S. Roy, Recent progress and approaches on carbon-free energy from water splitting. Nano-Micro Lett. 11(1), 103 (2019). https://doi.org/10.1007/s40820-019-0335-4
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- Z. Xie, S. Yu, X. Ma, K. Li, L. Ding et al., MoS2 nanosheet integrated electrodes with engineered 1T–2H phases and defects for efficient hydrogen production in practical PEM electrolysis. Appl. Catal. B: Environ. 313(15), 121458 (2022). https://doi.org/10.1016/j.apcatb.2022.121458
- B. Pivovar, N. Rustagi, S. Satyapal, Hydrogen at scale (H2@scale): Key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27(1), 47–52 (2018). https://doi.org/10.1149/2.F04181if
- Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and fure perspectives. Nano-Micro Lett. 12(1), 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
- Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15(1), 4 (2023). https://doi.org/10.1007/s40820-022-00974-7
- G. Yang, Z. Xie, S. Yu, K. Li, Y. Li et al., All-in-one bipolar electrode: A new concept for compact and efficient water electrolyzers. Nano Energy 90, 106551 (2021). https://doi.org/10.1016/j.nanoen.2021.106551
- G. Yang, W. Wang, Z. Xie, S. Yu, Y. Li et al., Favorable morphology and electronic conductivity of functional sublayers for highly efficient water splitting electrodes. J. Energy Storage 36, 102342 (2021). https://doi.org/10.1016/j.est.2021.102342
- Z. Xie, S. Yu, G. Yang, K. Li, L. Ding et al., Optimization of catalyst-coated membranes for enhancing performance in proton exchange membrane electrolyzer cells. Int. J. Hydrog. Energy 46(1), 1155–1162 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.239
- L. Ding, K. Li, Z. Xie, G. Yang, S. Yu et al., W-induced morphological modification of NiFe layered double hydroxides as efficient electrocatalysts for overall water splitting. Electrochim. Acta 395, 139199 (2021). https://doi.org/10.1016/j.electacta.2021.139199
- G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous nicomoo nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- J. Cao, K. Wang, J. Chen, C. Lei, B. Yang et al., Ostrikov, Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11(1), 67 (2019). https://doi.org/10.1007/s40820-019-0299-4
- C.-F. Du, Q. Liang, R. Dangol, J. Zhao, H. Ren et al., Layered trichalcogenidophosphate: a new catalyst family for water splitting. Nano-Micro Lett. 10(4), 67 (2018). https://doi.org/10.1007/s40820-018-0220-6
- J. Mo, Z. Kang, S.T. Retterer, D.A. Cullen, T.J. Toops et al., Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci. Adv. 2(11), e1600690 (2016). https://doi.org/10.1126/sciadv.1600690
- Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu et al., Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy 47, 434–441 (2018). https://doi.org/10.1016/j.nanoen.2018.03.015
- A. Laube, A. Hofer, S. Ressel, A. Chica, J. Bachmann et al., PEM water electrolysis cells with catalyst coating by atomic layer deposition. Int. J. Hydrog. Energy 46(79), 38972–38982 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.153
- D. Wang, Z. Zhu, B. Yang, W. Yin, J. Drelich, Nano-scaled roughness effect on air bubble-hydrophilic surface adhesive strength. Colloids Surf. A Physicochem. Eng. Asp. 603, 125228 (2020). https://doi.org/10.1016/j.colsurfa.2020.125228
- Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu et al., Under-water superaerophobic pine-shaped pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct, Mater. 25(11), 1737–1744 (2015). https://doi.org/10.1002/adfm.201404250
- Z. Xie, S. Yu, G. Yang, K. Li, L. Ding et al., Ultrathin platinum nanowire based electrodes for high-efficiency hydrogen generation in practical electrolyzer cells. Chem. Eng. J. 410, 128333 (2021). https://doi.org/10.1016/j.cej.2020.128333
- H. Park, S. Choe, H. Kim, D.-K. Kim, G. Cho et al., Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis. Appl. Surf. Sci. 444, 303–311 (2018). https://doi.org/10.1016/j.apsusc.2018.03.071
- W. Wang, S. Yu, K. Li, L. Ding, Z. Xie et al., Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J. Power Sources 516, 230641 (2021). https://doi.org/10.1016/j.jpowsour.2021.230641
- Y. Li, G. Yang, S. Yu, J. Mo, K. Li et al., High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production. Electrochim. Acta 370, 137751 (2021). https://doi.org/10.1016/j.electacta.2021.137751
- Y. Li, G. Yang, S. Yu, Z. Kang, J. Mo et al., In-situ investigation and modeling of electrochemical reactions with simultaneous oxygen and hydrogen microbubble evolutions in water electrolysis. Int. J. Hydrog. Energy 44(52), 28283–28293 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.044
- W. Wang, K. Li, L. Ding, S. Yu, Z. Xie et al., Exploring the impacts of conditioning on proton exchange membrane electrolyzers by in situ visualization and electrochemistry characterization. ACS Appl. Mater. Interfaces 14(7), 9002–9012 (2022). https://doi.org/10.1021/acsami.1c21849
- Y. Li, Z. Kang, X. Deng, G. Yang, S. Yu et al., Wettability effects of thin titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells. Electrochim. Acta 298, 704–708 (2019). https://doi.org/10.1016/j.electacta.2018.12.162
- L. Wei, Y.-J. Fan, H.-H. Wang, N. Tian, Z.-Y. Zhou et al., Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation. Electrochim. Acta 76, 468–474 (2012). https://doi.org/10.1016/j.electacta.2012.05.063
- M. Guo, H. Hong, X. Tang, H. Fang, X. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim. Acta 63, 1–8 (2012). https://doi.org/10.1016/j.electacta.2011.11.114
- H. Zhang, W. Zhou, Y. Du, P. Yang, C. Wang, One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochem. Commun. 12(7), 882–885 (2010). https://doi.org/10.1016/j.elecom.2010.04.011
- X. Liu, K. Wang, L. Zhou, H. Pu, T. Zhang et al., Shape-controlled synthesis of concave Pt and willow-like Pt nanocatalysts via electrodeposition with hydrogen adsorption/desorption and investigation of their electrocatalytic performances toward ethanol oxidation reaction. ACS Sustain. Chem. Eng. 8(16), 6449–6457 (2020). https://doi.org/10.1021/acssuschemeng.0c00967
- Z. Xie, S. Yu, C. Cui, H. Yu, K. Li et al., Unveiling mechanism of surface-guided platinum nanowire growth. J. Mater. Sci. 57(27), 12875–12885 (2022). https://doi.org/10.1007/s10853-022-07449-5
- C. Li, N.C.S. Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15(1), 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
- X.-L. Cai, C.-H. Liu, J. Liu, Y. Lu, Y.-N. Zhong et al., Synergistic effects in CNTs-PdAu/Pt trimetallic nanops with high electrocatalytic activity and stability. Nano-Micro Lett. 9(4), 48 (2017). https://doi.org/10.1007/s40820-017-0149-1
- J. Liu, C. Zhong, X. Du, Y. Wu, P. Xu et al., Pulsed electrodeposition of Pt ps on indium tin oxide substrates and their electrocatalytic properties for methanol oxidation. Electrochim. Acta 100, 164–170 (2013). https://doi.org/10.1016/j.electacta.2013.03.152
- X.T. Du, Y. Yang, J. Liu, B. Liu, J.B. Liu et al., Surfactant-free and template-free electrochemical approach to prepare well-dispersed Pt nanosheets and their high electrocatalytic activities for ammonia oxidation. Electrochim. Acta 111, 562–566 (2013). https://doi.org/10.1016/j.electacta.2013.08.042
- L. Zhang, T. Liu, R. Ren, J. Zhang, D. He et al., In situ synthesis of hierarchical platinum nanosheets-polyaniline array on carbon cloth for electrochemical detection of ammonia. J. Hazard. Mater. 392, 122342 (2020). https://doi.org/10.1016/j.jhazmat.2020.122342
- S. Siracusano, S. Trocino, N. Briguglio, V. Baglio, A. Aricò, Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis. Materials 11(8), 1368 (2018). https://doi.org/10.3390/ma11081368
- B. Li, Y. Si, Q. Fang, Y. Shi, W.Q. Huang et al., Hierarchical self-assembly of well-defined Louver-like P-doped carbon nitride nanowire arrays with highly efficient hydrogen evolution. Nano-Micro Lett. 12(1), 52 (2020). https://doi.org/10.1007/s40820-020-0399-1
- L. Ding, K. Li, Z. Xie, G. Yang, S. Yu et al., Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting. ACS Appl. Mater. Interfaces 13(17), 20070–20080 (2021). https://doi.org/10.1021/acsami.1c01815
- H. Wu, Q. Lu, J. Zhang, J. Wang, X. Han et al., Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett. 12(1), 162 (2020). https://doi.org/10.1007/s40820-020-00505-2
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped nicop nanosheet arrays for overall water splitting. Nano-Micro Lett. 11(1), 55 (2019). https://doi.org/10.1007/s40820-019-0289-6
- J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022). https://doi.org/10.1007/s40820-022-00933-2
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@ MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14(1), 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- C. Rakousky, U. Reimer, K. Wippermann, M. Carmo, W. Lueke et al., An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. J. Power Sources 326, 120–128 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.082
- C. Rakousky, G.P. Keeley, K. Wippermann, M. Carmo, D. Stolten, The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers. Electrochim. Acta 278, 324–331 (2018). https://doi.org/10.1016/j.electacta.2018.04.154
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14(1), 20 (2022). https://doi.org/10.1007/s40820-021-00744-x
- Y. Honsho, M. Nagayama, J. Matsuda, K. Ito, K. Sasaki et al., Durability of PEM water electrolyzer against wind power voltage fluctuation. J. Power Sources 564, 232826 (2023). https://doi.org/10.1016/j.jpowsour.2023.232826
- B. Sánchez Batalla, A. Laube, A. Hofer, T. Struckmann, J. Bachmann et al., Degradation studies of proton exchange membrane water electrolysis cells with low platinum group metals–Catalyst coating achieved by atomic layer deposition. Int. J. Hydrog. Energy 47(94), 39719–39730 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.159
- T. Rajala, R. Kronberg, R. Backhouse, M.E.M. Buan, M. Tripathi et al., A platinum nanowire electrocatalyst on single-walled carbon nanotubes to drive hydrogen evolution. Appl. Catal. B 265, 118582 (2020). https://doi.org/10.1016/j.apcatb.2019.118582
- G. Jiang, H. Yu, Y. Li, D. Yao, J. Chi et al., Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis. ACS Appl. Mater. Interfaces 13(13), 15073–15082 (2021). https://doi.org/10.1021/acsami.0c20791
- Z. Kang, M. Wang, Y. Yang, H. Wang, Y. Liu et al., Performance improvement induced by membrane treatment in proton exchange membrane water electrolysis cells. Int. J. Hydrog. Energy. 47(9), 5807–5816 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.227
- S. Shiva Kumar, S.U.B. Ramakrishna, D. Bhagawan, V. Himabindu, Preparation of RuxPd1-xO2 electrocatalysts for the oxygen evolution reaction (OER) in PEM water electrolysis. Ionics 24(8), 2411–2419 (2018). https://doi.org/10.1007/s11581-017-2359-4
References
V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen et al., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564–1596 (2014). https://doi.org/10.1039/C3EE43385D
L. Cao, F. Scheiba, C. Roth, F. Schweiger, C. Cremers et al., Novel nanocomposite Pt/RuO2xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew. Chem. Int. Ed. 45(32), 5315–5319 (2006). https://doi.org/10.1002/ange.200601301
W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6(5), 1509–1512 (2013). https://doi.org/10.1039/C3EE00045A
X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan et al., Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
A. Hossain, K. Sakthipandi, A.K.M. Atique Ullah, S. Roy, Recent progress and approaches on carbon-free energy from water splitting. Nano-Micro Lett. 11(1), 103 (2019). https://doi.org/10.1007/s40820-019-0335-4
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
Z. Xie, S. Yu, X. Ma, K. Li, L. Ding et al., MoS2 nanosheet integrated electrodes with engineered 1T–2H phases and defects for efficient hydrogen production in practical PEM electrolysis. Appl. Catal. B: Environ. 313(15), 121458 (2022). https://doi.org/10.1016/j.apcatb.2022.121458
B. Pivovar, N. Rustagi, S. Satyapal, Hydrogen at scale (H2@scale): Key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27(1), 47–52 (2018). https://doi.org/10.1149/2.F04181if
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and fure perspectives. Nano-Micro Lett. 12(1), 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15(1), 4 (2023). https://doi.org/10.1007/s40820-022-00974-7
G. Yang, Z. Xie, S. Yu, K. Li, Y. Li et al., All-in-one bipolar electrode: A new concept for compact and efficient water electrolyzers. Nano Energy 90, 106551 (2021). https://doi.org/10.1016/j.nanoen.2021.106551
G. Yang, W. Wang, Z. Xie, S. Yu, Y. Li et al., Favorable morphology and electronic conductivity of functional sublayers for highly efficient water splitting electrodes. J. Energy Storage 36, 102342 (2021). https://doi.org/10.1016/j.est.2021.102342
Z. Xie, S. Yu, G. Yang, K. Li, L. Ding et al., Optimization of catalyst-coated membranes for enhancing performance in proton exchange membrane electrolyzer cells. Int. J. Hydrog. Energy 46(1), 1155–1162 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.239
L. Ding, K. Li, Z. Xie, G. Yang, S. Yu et al., W-induced morphological modification of NiFe layered double hydroxides as efficient electrocatalysts for overall water splitting. Electrochim. Acta 395, 139199 (2021). https://doi.org/10.1016/j.electacta.2021.139199
G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous nicomoo nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
J. Cao, K. Wang, J. Chen, C. Lei, B. Yang et al., Ostrikov, Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11(1), 67 (2019). https://doi.org/10.1007/s40820-019-0299-4
C.-F. Du, Q. Liang, R. Dangol, J. Zhao, H. Ren et al., Layered trichalcogenidophosphate: a new catalyst family for water splitting. Nano-Micro Lett. 10(4), 67 (2018). https://doi.org/10.1007/s40820-018-0220-6
J. Mo, Z. Kang, S.T. Retterer, D.A. Cullen, T.J. Toops et al., Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci. Adv. 2(11), e1600690 (2016). https://doi.org/10.1126/sciadv.1600690
Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu et al., Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy 47, 434–441 (2018). https://doi.org/10.1016/j.nanoen.2018.03.015
A. Laube, A. Hofer, S. Ressel, A. Chica, J. Bachmann et al., PEM water electrolysis cells with catalyst coating by atomic layer deposition. Int. J. Hydrog. Energy 46(79), 38972–38982 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.153
D. Wang, Z. Zhu, B. Yang, W. Yin, J. Drelich, Nano-scaled roughness effect on air bubble-hydrophilic surface adhesive strength. Colloids Surf. A Physicochem. Eng. Asp. 603, 125228 (2020). https://doi.org/10.1016/j.colsurfa.2020.125228
Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu et al., Under-water superaerophobic pine-shaped pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct, Mater. 25(11), 1737–1744 (2015). https://doi.org/10.1002/adfm.201404250
Z. Xie, S. Yu, G. Yang, K. Li, L. Ding et al., Ultrathin platinum nanowire based electrodes for high-efficiency hydrogen generation in practical electrolyzer cells. Chem. Eng. J. 410, 128333 (2021). https://doi.org/10.1016/j.cej.2020.128333
H. Park, S. Choe, H. Kim, D.-K. Kim, G. Cho et al., Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis. Appl. Surf. Sci. 444, 303–311 (2018). https://doi.org/10.1016/j.apsusc.2018.03.071
W. Wang, S. Yu, K. Li, L. Ding, Z. Xie et al., Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J. Power Sources 516, 230641 (2021). https://doi.org/10.1016/j.jpowsour.2021.230641
Y. Li, G. Yang, S. Yu, J. Mo, K. Li et al., High-speed characterization of two-phase flow and bubble dynamics in titanium felt porous media for hydrogen production. Electrochim. Acta 370, 137751 (2021). https://doi.org/10.1016/j.electacta.2021.137751
Y. Li, G. Yang, S. Yu, Z. Kang, J. Mo et al., In-situ investigation and modeling of electrochemical reactions with simultaneous oxygen and hydrogen microbubble evolutions in water electrolysis. Int. J. Hydrog. Energy 44(52), 28283–28293 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.044
W. Wang, K. Li, L. Ding, S. Yu, Z. Xie et al., Exploring the impacts of conditioning on proton exchange membrane electrolyzers by in situ visualization and electrochemistry characterization. ACS Appl. Mater. Interfaces 14(7), 9002–9012 (2022). https://doi.org/10.1021/acsami.1c21849
Y. Li, Z. Kang, X. Deng, G. Yang, S. Yu et al., Wettability effects of thin titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells. Electrochim. Acta 298, 704–708 (2019). https://doi.org/10.1016/j.electacta.2018.12.162
L. Wei, Y.-J. Fan, H.-H. Wang, N. Tian, Z.-Y. Zhou et al., Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation. Electrochim. Acta 76, 468–474 (2012). https://doi.org/10.1016/j.electacta.2012.05.063
M. Guo, H. Hong, X. Tang, H. Fang, X. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim. Acta 63, 1–8 (2012). https://doi.org/10.1016/j.electacta.2011.11.114
H. Zhang, W. Zhou, Y. Du, P. Yang, C. Wang, One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochem. Commun. 12(7), 882–885 (2010). https://doi.org/10.1016/j.elecom.2010.04.011
X. Liu, K. Wang, L. Zhou, H. Pu, T. Zhang et al., Shape-controlled synthesis of concave Pt and willow-like Pt nanocatalysts via electrodeposition with hydrogen adsorption/desorption and investigation of their electrocatalytic performances toward ethanol oxidation reaction. ACS Sustain. Chem. Eng. 8(16), 6449–6457 (2020). https://doi.org/10.1021/acssuschemeng.0c00967
Z. Xie, S. Yu, C. Cui, H. Yu, K. Li et al., Unveiling mechanism of surface-guided platinum nanowire growth. J. Mater. Sci. 57(27), 12875–12885 (2022). https://doi.org/10.1007/s10853-022-07449-5
C. Li, N.C.S. Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15(1), 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
X.-L. Cai, C.-H. Liu, J. Liu, Y. Lu, Y.-N. Zhong et al., Synergistic effects in CNTs-PdAu/Pt trimetallic nanops with high electrocatalytic activity and stability. Nano-Micro Lett. 9(4), 48 (2017). https://doi.org/10.1007/s40820-017-0149-1
J. Liu, C. Zhong, X. Du, Y. Wu, P. Xu et al., Pulsed electrodeposition of Pt ps on indium tin oxide substrates and their electrocatalytic properties for methanol oxidation. Electrochim. Acta 100, 164–170 (2013). https://doi.org/10.1016/j.electacta.2013.03.152
X.T. Du, Y. Yang, J. Liu, B. Liu, J.B. Liu et al., Surfactant-free and template-free electrochemical approach to prepare well-dispersed Pt nanosheets and their high electrocatalytic activities for ammonia oxidation. Electrochim. Acta 111, 562–566 (2013). https://doi.org/10.1016/j.electacta.2013.08.042
L. Zhang, T. Liu, R. Ren, J. Zhang, D. He et al., In situ synthesis of hierarchical platinum nanosheets-polyaniline array on carbon cloth for electrochemical detection of ammonia. J. Hazard. Mater. 392, 122342 (2020). https://doi.org/10.1016/j.jhazmat.2020.122342
S. Siracusano, S. Trocino, N. Briguglio, V. Baglio, A. Aricò, Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis. Materials 11(8), 1368 (2018). https://doi.org/10.3390/ma11081368
B. Li, Y. Si, Q. Fang, Y. Shi, W.Q. Huang et al., Hierarchical self-assembly of well-defined Louver-like P-doped carbon nitride nanowire arrays with highly efficient hydrogen evolution. Nano-Micro Lett. 12(1), 52 (2020). https://doi.org/10.1007/s40820-020-0399-1
L. Ding, K. Li, Z. Xie, G. Yang, S. Yu et al., Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting. ACS Appl. Mater. Interfaces 13(17), 20070–20080 (2021). https://doi.org/10.1021/acsami.1c01815
H. Wu, Q. Lu, J. Zhang, J. Wang, X. Han et al., Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett. 12(1), 162 (2020). https://doi.org/10.1007/s40820-020-00505-2
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped nicop nanosheet arrays for overall water splitting. Nano-Micro Lett. 11(1), 55 (2019). https://doi.org/10.1007/s40820-019-0289-6
J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022). https://doi.org/10.1007/s40820-022-00933-2
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@ MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14(1), 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
C. Rakousky, U. Reimer, K. Wippermann, M. Carmo, W. Lueke et al., An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. J. Power Sources 326, 120–128 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.082
C. Rakousky, G.P. Keeley, K. Wippermann, M. Carmo, D. Stolten, The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers. Electrochim. Acta 278, 324–331 (2018). https://doi.org/10.1016/j.electacta.2018.04.154
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14(1), 20 (2022). https://doi.org/10.1007/s40820-021-00744-x
Y. Honsho, M. Nagayama, J. Matsuda, K. Ito, K. Sasaki et al., Durability of PEM water electrolyzer against wind power voltage fluctuation. J. Power Sources 564, 232826 (2023). https://doi.org/10.1016/j.jpowsour.2023.232826
B. Sánchez Batalla, A. Laube, A. Hofer, T. Struckmann, J. Bachmann et al., Degradation studies of proton exchange membrane water electrolysis cells with low platinum group metals–Catalyst coating achieved by atomic layer deposition. Int. J. Hydrog. Energy 47(94), 39719–39730 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.159
T. Rajala, R. Kronberg, R. Backhouse, M.E.M. Buan, M. Tripathi et al., A platinum nanowire electrocatalyst on single-walled carbon nanotubes to drive hydrogen evolution. Appl. Catal. B 265, 118582 (2020). https://doi.org/10.1016/j.apcatb.2019.118582
G. Jiang, H. Yu, Y. Li, D. Yao, J. Chi et al., Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis. ACS Appl. Mater. Interfaces 13(13), 15073–15082 (2021). https://doi.org/10.1021/acsami.0c20791
Z. Kang, M. Wang, Y. Yang, H. Wang, Y. Liu et al., Performance improvement induced by membrane treatment in proton exchange membrane water electrolysis cells. Int. J. Hydrog. Energy. 47(9), 5807–5816 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.227
S. Shiva Kumar, S.U.B. Ramakrishna, D. Bhagawan, V. Himabindu, Preparation of RuxPd1-xO2 electrocatalysts for the oxygen evolution reaction (OER) in PEM water electrolysis. Ionics 24(8), 2411–2419 (2018). https://doi.org/10.1007/s11581-017-2359-4