A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO2–CNTs Cathode and MXene Anode
Corresponding Author: Yanan Ma
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 70
Abstract
Restricted by their energy storage mechanism, current energy storage devices have certain drawbacks, such as low power density for batteries and low energy density for supercapacitors. Fortunately, the nearest ion capacitors, such as lithium-ion and sodium-ion capacitors containing battery-type and capacitor-type electrodes, may allow achieving both high energy and power densities. For the inspiration, a new zinc-ion capacitor (ZIC) has been designed and realized by assembling the free-standing manganese dioxide–carbon nanotubes (MnO2–CNTs) battery-type cathode and MXene (Ti3C2Tx) capacitor-type anode in an aqueous electrolyte. The ZIC can avoid the insecurity issues that frequently occurred in lithium-ion and sodium-ion capacitors in organic electrolytes. As expected, the ZIC in an aqueous liquid electrolyte exhibits excellent electrochemical performance (based on the total weight of cathode and anode), such as a high specific capacitance of 115.1 F g−1 (1 mV s−1), high energy density of 98.6 Wh kg−1 (77.5 W kg−1), high power density of 2480.6 W kg−1 (29.7 Wh kg−1), and high capacitance retention of ~ 83.6% of its initial capacitance (15,000 cycles). Even in an aqueous gel electrolyte, the ZIC also exhibits excellent performance. This work provides an essential strategy for designing next-generation high-performance energy storage devices.
Highlights:
1 A new zinc-ion capacitor (ZIC) was realized by assembling the free-standing manganese dioxide–carbon nanotubes (MnO2–CNTs) battery-type cathode and MXene (Ti3C2Tx) capacitor-type anode in an aqueous electrolyte.
2 The large specific capacitance of the MXene anode avoids the mismatch in capacitance between the cathode and anode of the ZIC.
3 The superior performance of the proposed ZIC makes it a promising candidate for the next-generation energy storage devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies. Nature 414(6861), 332–337 (2001). https://doi.org/10.1038/35104599
- D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang et al., Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15(1), 565–573 (2015). https://doi.org/10.1021/nl504038s
- M. Chen, D. Chao, J. Liu, J. Yan, B. Zhang, Y. Huang, J. Lin, Z.X. Shen, Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin tin monoxide nanoarrays. Adv. Funct. Mater. 27(12), 1606232 (2017). https://doi.org/10.1002/adfm.201606232
- Z. Liu, H. Li, M. Zhu, Y. Huang, Z. Tang et al., Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018). https://doi.org/10.1016/j.nanoen.2017.12.006
- J. Duay, M. Keny, T.N. Lambert, Evaluation of a ceramic separator for use in rechargeable alkaline Zn/MnO2 batteries. J. Power Sources 395, 430–438 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.072
- D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and supercapacitors based on prospective 1-D nanomaterials. Nano-Micro Lett. 3(1), 62–71 (2011). https://doi.org/10.1007/bf03353653
- J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, J. Xu, A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14(51), 1803786 (2018). https://doi.org/10.1002/smll.201803786
- A. Elmouwahidi, E. Bailon-Garcia, A.F. Perez-Cadenas, N. Fernandez-Saez, F. Carrasco-Marin, Development of vanadium-coated carbon microspheres: electrochemical behavior as electrodes for supercapacitors. Adv. Funct. Mater. 28(35), 1802337 (2018). https://doi.org/10.1002/adfm.201802337
- X. Liu, D. Li, X. Chen, W.-Y. Lai, W. Huang, Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks. ACS Appl. Mater. Interfaces 10(38), 32536–32542 (2018). https://doi.org/10.1021/acsami.8b10138
- Q. Zhang, J. Zhang, Z. Zhou, L. Wei, Y. Yao, Flexible quasi-solid-state 2.4 V aqueous asymmetric microsupercapacitors with ultrahigh energy density. J. Mater. Chem. A 6(41), 20145–20151 (2018). https://doi.org/10.1039/c8ta07727d
- H. Huang, D. Kundu, R. Yan, E. Tervoort, X. Chen, L. Pan, M. Oschatz, M. Antonietti, M. Niederberger, Fast Na-ion intercalation in zinc vanadate for high-performance Na-ion hybrid capacitor. Adv. Energy Mater. 8(35), 1802800 (2018). https://doi.org/10.1002/aenm.201802800
- N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef, Y. Gogotsi, Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1002/aenm.201802800
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- P. Han, G. Xu, X. Han, J. Zhao, X. Zhou, G. Cui, Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Adv. Energy Mater. 8(26), 1801243 (2018). https://doi.org/10.1002/aenm.201801243
- W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
- J. Xu, Z. Liao, J. Zhang, B. Gao, P.K. Chu, K. Huo, Heterogeneous phosphorus-doped WO3−x/nitrogen-doped carbon nanowires with high rate and long life for advanced lithium-ion capacitors. J. Mater. Chem. A 6(16), 6916–6921 (2018). https://doi.org/10.1039/c8ta00639c
- J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ASC Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
- Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018). https://doi.org/10.1016/j.nanoen.2018.06.017
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5 nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
- Z. Wang, F. Mo, L. Ma, Q. Yang, G. Liang et al., Highly compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery-sensor system. ACS Appl. Mater. Interfaces 10(51), 44527–44534 (2018). https://doi.org/10.1021/acsami.8b17607
- B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5 nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
- A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- J.-G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647–653 (2017). https://doi.org/10.1016/j.nanoen.2017.07.055
- B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9(1), 102–106 (2016). https://doi.org/10.1039/c5ee03149d
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, J. Xu, A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14(51), 1803786 (2018). https://doi.org/10.1002/smll.201803786
- C. Yang, Y. Tang, Y. Tian, Y. Luo, M.F.U. Din, X. Yin, W. Que, Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 8(31), 1802087 (2018). https://doi.org/10.1002/aenm.201802087
- J. Tao, N. Liu, J. Rao, L. Ding, M.R. Al Bahrani, L. Li, J. Su, Y. Gao, Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage. Nanoscale 6(24), 15073–15079 (2014). https://doi.org/10.1039/c4nr04819a
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
- S. Wang, N. Liu, C. Yang, W. Liu, J. Su et al., Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors. RSC Adv. 5(104), 85799–85805 (2015). https://doi.org/10.1039/c5ra16724h
- Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ASC Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
- B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho et al., Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries. Chem. Commun. 51(45), 9265–9268 (2015). https://doi.org/10.1039/c5cc02585k
- D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- N. Liu, W. Ma, J. Tao, X. Zhang, J. Su et al., Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. Adv. Mater. 25(35), 4925–4931 (2013). https://doi.org/10.1002/adma.201301311
- W. Guo, X. Yan, F. Hou, L. Wen, Y. Dai et al., Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 152, 888–897 (2019). https://doi.org/10.1016/j.carbon.2019.06.088
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- S. Wang, N. Liu, J. Tao, C. Yang, W. Liu et al., Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A 3(5), 2407–2413 (2015). https://doi.org/10.1039/c4ta05625f
- S. Wang, N. Liu, J. Rao, Y. Yue, K. Gao et al., Vertical finger-like asymmetric supercapacitors for enhanced performance at high mass loading and inner integrated photodetecting systems. J. Mater. Chem. A 5(42), 22199–22207 (2017). https://doi.org/10.1039/c7ta06306g
- L. Li, S. Peng, H.B. Wu, L. Yu, S. Madhavi, X.W. Lou, A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv. Energy Mater. 5(17), 1500753 (2015). https://doi.org/10.1002/aenm.201500753
- N. Arun, A. Jain, V. Aravindan, S. Jayaraman, W.C. Ling, M.P. Srinivasan, S. Madhavi, Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy 12, 69–75 (2015). https://doi.org/10.1016/j.nanoen.2014.12.006
- F. Wang, C. Wang, Y. Zhao, Z. Liu, Z. Chang, L. Fu, Y. Zhu, Y. Wu, D. Zhao, A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small 12(45), 6207–6213 (2016). https://doi.org/10.1002/smll.201602331
- H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
- S. Dong, L. Shen, H. Li, G. Pang, H. Dou et al., Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv. Funct. Mater. 26(21), 3703–3710 (2016). https://doi.org/10.1002/adfm.201600264
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H.B. Wu, Y. Lu, Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
- Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv. Energy Mater. 7(22), 1701336 (2017). https://doi.org/10.1002/aenm.201701336
- F. Sun, X. Liu, H.B. Wu, L. Wang, J. Gao, H. Li, Y. Lu, In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18(6), 3368–3376 (2018). https://doi.org/10.1021/acs.nanolett.8b00134
- S. Liu, J. Zhou, Z. Cai, G. Fang, Y. Cai, A. Pan, S. Liang, Nb2O5 quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. J. Mater. Chem. A 4(45), 17838–17847 (2016). https://doi.org/10.1039/c6ta07856g
- M. Ulaganathan, V. Aravindan, W.C. Ling, Q. Yan, S. Madhavi, High energy Li-ion capacitors with conversion type Mn3O4 particulates anchored to few layer graphene as the negative electrode. J. Mater. Chem. A 4(39), 15134–15139 (2016). https://doi.org/10.1039/c6ta05944a
- R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12(5), 2559–2567 (2012). https://doi.org/10.1021/nl300779a
References
M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies. Nature 414(6861), 332–337 (2001). https://doi.org/10.1038/35104599
D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang et al., Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15(1), 565–573 (2015). https://doi.org/10.1021/nl504038s
M. Chen, D. Chao, J. Liu, J. Yan, B. Zhang, Y. Huang, J. Lin, Z.X. Shen, Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin tin monoxide nanoarrays. Adv. Funct. Mater. 27(12), 1606232 (2017). https://doi.org/10.1002/adfm.201606232
Z. Liu, H. Li, M. Zhu, Y. Huang, Z. Tang et al., Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018). https://doi.org/10.1016/j.nanoen.2017.12.006
J. Duay, M. Keny, T.N. Lambert, Evaluation of a ceramic separator for use in rechargeable alkaline Zn/MnO2 batteries. J. Power Sources 395, 430–438 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.072
D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and supercapacitors based on prospective 1-D nanomaterials. Nano-Micro Lett. 3(1), 62–71 (2011). https://doi.org/10.1007/bf03353653
J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, J. Xu, A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14(51), 1803786 (2018). https://doi.org/10.1002/smll.201803786
A. Elmouwahidi, E. Bailon-Garcia, A.F. Perez-Cadenas, N. Fernandez-Saez, F. Carrasco-Marin, Development of vanadium-coated carbon microspheres: electrochemical behavior as electrodes for supercapacitors. Adv. Funct. Mater. 28(35), 1802337 (2018). https://doi.org/10.1002/adfm.201802337
X. Liu, D. Li, X. Chen, W.-Y. Lai, W. Huang, Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks. ACS Appl. Mater. Interfaces 10(38), 32536–32542 (2018). https://doi.org/10.1021/acsami.8b10138
Q. Zhang, J. Zhang, Z. Zhou, L. Wei, Y. Yao, Flexible quasi-solid-state 2.4 V aqueous asymmetric microsupercapacitors with ultrahigh energy density. J. Mater. Chem. A 6(41), 20145–20151 (2018). https://doi.org/10.1039/c8ta07727d
H. Huang, D. Kundu, R. Yan, E. Tervoort, X. Chen, L. Pan, M. Oschatz, M. Antonietti, M. Niederberger, Fast Na-ion intercalation in zinc vanadate for high-performance Na-ion hybrid capacitor. Adv. Energy Mater. 8(35), 1802800 (2018). https://doi.org/10.1002/aenm.201802800
N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef, Y. Gogotsi, Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1002/aenm.201802800
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
P. Han, G. Xu, X. Han, J. Zhao, X. Zhou, G. Cui, Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Adv. Energy Mater. 8(26), 1801243 (2018). https://doi.org/10.1002/aenm.201801243
W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
J. Xu, Z. Liao, J. Zhang, B. Gao, P.K. Chu, K. Huo, Heterogeneous phosphorus-doped WO3−x/nitrogen-doped carbon nanowires with high rate and long life for advanced lithium-ion capacitors. J. Mater. Chem. A 6(16), 6916–6921 (2018). https://doi.org/10.1039/c8ta00639c
J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ASC Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018). https://doi.org/10.1016/j.nanoen.2018.06.017
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5 nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
Z. Wang, F. Mo, L. Ma, Q. Yang, G. Liang et al., Highly compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery-sensor system. ACS Appl. Mater. Interfaces 10(51), 44527–44534 (2018). https://doi.org/10.1021/acsami.8b17607
B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5 nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
J.-G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647–653 (2017). https://doi.org/10.1016/j.nanoen.2017.07.055
B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9(1), 102–106 (2016). https://doi.org/10.1039/c5ee03149d
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, J. Xu, A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14(51), 1803786 (2018). https://doi.org/10.1002/smll.201803786
C. Yang, Y. Tang, Y. Tian, Y. Luo, M.F.U. Din, X. Yin, W. Que, Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 8(31), 1802087 (2018). https://doi.org/10.1002/aenm.201802087
J. Tao, N. Liu, J. Rao, L. Ding, M.R. Al Bahrani, L. Li, J. Su, Y. Gao, Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage. Nanoscale 6(24), 15073–15079 (2014). https://doi.org/10.1039/c4nr04819a
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
S. Wang, N. Liu, C. Yang, W. Liu, J. Su et al., Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors. RSC Adv. 5(104), 85799–85805 (2015). https://doi.org/10.1039/c5ra16724h
Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ASC Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho et al., Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries. Chem. Commun. 51(45), 9265–9268 (2015). https://doi.org/10.1039/c5cc02585k
D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
N. Liu, W. Ma, J. Tao, X. Zhang, J. Su et al., Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. Adv. Mater. 25(35), 4925–4931 (2013). https://doi.org/10.1002/adma.201301311
W. Guo, X. Yan, F. Hou, L. Wen, Y. Dai et al., Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 152, 888–897 (2019). https://doi.org/10.1016/j.carbon.2019.06.088
P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
S. Wang, N. Liu, J. Tao, C. Yang, W. Liu et al., Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A 3(5), 2407–2413 (2015). https://doi.org/10.1039/c4ta05625f
S. Wang, N. Liu, J. Rao, Y. Yue, K. Gao et al., Vertical finger-like asymmetric supercapacitors for enhanced performance at high mass loading and inner integrated photodetecting systems. J. Mater. Chem. A 5(42), 22199–22207 (2017). https://doi.org/10.1039/c7ta06306g
L. Li, S. Peng, H.B. Wu, L. Yu, S. Madhavi, X.W. Lou, A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv. Energy Mater. 5(17), 1500753 (2015). https://doi.org/10.1002/aenm.201500753
N. Arun, A. Jain, V. Aravindan, S. Jayaraman, W.C. Ling, M.P. Srinivasan, S. Madhavi, Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy 12, 69–75 (2015). https://doi.org/10.1016/j.nanoen.2014.12.006
F. Wang, C. Wang, Y. Zhao, Z. Liu, Z. Chang, L. Fu, Y. Zhu, Y. Wu, D. Zhao, A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small 12(45), 6207–6213 (2016). https://doi.org/10.1002/smll.201602331
H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
S. Dong, L. Shen, H. Li, G. Pang, H. Dou et al., Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv. Funct. Mater. 26(21), 3703–3710 (2016). https://doi.org/10.1002/adfm.201600264
Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H.B. Wu, Y. Lu, Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv. Energy Mater. 7(22), 1701336 (2017). https://doi.org/10.1002/aenm.201701336
F. Sun, X. Liu, H.B. Wu, L. Wang, J. Gao, H. Li, Y. Lu, In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18(6), 3368–3376 (2018). https://doi.org/10.1021/acs.nanolett.8b00134
S. Liu, J. Zhou, Z. Cai, G. Fang, Y. Cai, A. Pan, S. Liang, Nb2O5 quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. J. Mater. Chem. A 4(45), 17838–17847 (2016). https://doi.org/10.1039/c6ta07856g
M. Ulaganathan, V. Aravindan, W.C. Ling, Q. Yan, S. Madhavi, High energy Li-ion capacitors with conversion type Mn3O4 particulates anchored to few layer graphene as the negative electrode. J. Mater. Chem. A 4(39), 15134–15139 (2016). https://doi.org/10.1039/c6ta05944a
R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12(5), 2559–2567 (2012). https://doi.org/10.1021/nl300779a