Design of Ultra-Stable Solid Amine Adsorbents and Mechanisms of Hydroxyl Group-Dependent Deactivation for Reversible CO2 Capture from Flue Gas
Corresponding Author: Dermot O’Hare
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 170
Abstract
Although supported solid amine adsorbents have attracted great attention for CO2 capture, critical chemical deactivation problems including oxidative degradation and urea formation have severely restricted their practical applications for flue gas CO2 capture. In this work, we reveal that the nature of surface hydroxyl groups (metal hydroxyl Al–OH and nonmetal hydroxyl Si–OH) plays a key role in the deactivation mechanisms. The polyethyleneimine (PEI) supported on Al–OH-containing substrates suffers from severe oxidative degradation during the CO2 capture step due to the breakage of amine-support hydrogen bonding networks, but exhibits an excellent anti-urea formation feature by preventing dehydration of carbamate products under a pure CO2 regeneration atmosphere. In contrast, PEI supported on Si–OH-containing substrates exhibits excellent anti-oxidative stability under simulated flue gas conditions by forming a robust hydrogen bonding protective network with Si–OH, but suffers from obvious urea formation during the pure CO2 regeneration step. We also reveal that the urea formation problem for PEI-SBA-15 can be avoided by the incorporation of an OH-containing PEG additive. Based on the intrinsic understanding of degradation mechanisms, we successfully synthesized an adsorbent 40PEI-20PEG-SBA-15 that demonstrates outstanding stability and retention of a high CO2 capacity of 2.45 mmol g−1 over 1000 adsorption–desorption cycles, together with negligible capacity loss during aging in simulated flue gas (10% CO2 + 5% O2 + 3% H2O) for one month at 60–70 °C. We believe this work makes great contribution to the advancement in the field of ultra-stable solid amine-based CO2 capture materials.
Highlights:
1 We reveal that the nature of the hydrogen bonding networks formed by surface hydroxyl groups plays a key role in the deactivation mechanisms of supported polyethylenimine (PEI), which exhibits contrasting oxidative and anti-urea properties when supported on Al–OH- and Si–OH-containing substrates.
2 PEG modification helps reduce urea formation for PEI supported on Si–OH-containing substrates, but does not prevent oxidation of the Al–OH-containing support. The resulted ultra-stable 40PEI-20PEG-SBA-15 showing outstanding stability over 1000 adsorption–desorption cycles (2.45 mmol g−1) and negligible capacity loss after one month in simulated flue gas.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang et al., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49, 8584–8686 (2020). https://doi.org/10.1039/D0CS00025F
- Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011). https://doi.org/10.1039/C0EE00064G
- J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu et al., Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014). https://doi.org/10.1039/C4EE01647E
- S. Iniyan, J. Ren, S. Deshmukh, K. Rajeswaran, G. Jegan et al., An overview of metal-organic framework based electrocatalysts: design and synthesis for electrochemical hydrogen evolution, oxygen evolution, and carbon dioxide reduction reactions. Chem. Rec. 23, e202300317 (2023). https://doi.org/10.1002/tcr.202300317
- R. Jyoti, M. Chauhan, B.C. Choudhary, R.K. Sharma, Density functional theory study of manganese doped armchair graphene nanoribbon for effective carbon dioxide gas sensing. ES Energy Environ. 18, 47–55 (2022). https://doi.org/10.30919/esee8c701
- X. Zhu, W. Xie, J. Wu, Y. Miao, C. Xiang et al., Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 51, 6574–6651 (2022). https://doi.org/10.1039/d1cs00970b
- J. Qu, X. Cao, L. Gao, J. Li, L. Li et al., Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Lett. 15, 178 (2023). https://doi.org/10.1007/s40820-023-01146-x
- M.J. Lashaki, S. Khiavi, A. Sayari, Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. Chem. Soc. Rev. 48, 3320–3405 (2019). https://doi.org/10.1039/c8cs00877a
- X. Shi, H. Xiao, H. Azarabadi, J. Song, X. Wu et al., Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 59, 6984–7006 (2020). https://doi.org/10.1002/anie.201906756
- J. Sun, M. Zhao, L. Huang, T. Zhang, Q. Wang, Recent progress on direct air capture of carbon dioxide. Curr. Opin. Green Sustain. Chem. 40, 100752 (2023). https://doi.org/10.1016/j.cogsc.2023.100752
- M. Zhao, J. Xiao, W. Gao, Q. Wang, Defect-rich Mg-Al MMOs supported TEPA with enhanced charge transfer for highly efficient and stable direct air capture. J. Energy Chem. 68, 401–410 (2022). https://doi.org/10.1016/j.jechem.2021.12.031
- X. Zhu, T. Ge, F. Yang, M. Lyu, C. Chen et al., Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides. J. Mater. Chem. A 8, 16421–16428 (2020). https://doi.org/10.1039/d0ta05079b
- A. Goeppert, S. Meth, G.K. Surya Prakash, G.A. Olah, Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ. Sci. 3, 1949–1960 (2010). https://doi.org/10.1039/C0EE00136H
- W. Choi, K. Min, C. Kim, Y.S. Ko, J.W. Jeon et al., Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat. Commun. 7, 12640 (2016). https://doi.org/10.1038/ncomms12640
- K. Min, W. Choi, C. Kim, M. Choi, Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nat. Commun. 9, 726 (2018). https://doi.org/10.1038/s41467-018-03123-0
- A. Heydari-Gorji, A. Sayari, Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind. Eng. Chem. Res. 51, 6887–6894 (2012). https://doi.org/10.1021/ie3003446
- X. Shen, F. Yan, C. Li, F. Qu, Y. Wang et al., Biogas upgrading via cyclic CO2 adsorption: application of highly regenerable PEI@nano-Al2O3 adsorbents with anti-urea properties. Environ. Sci. Technol. 55, 5236–5247 (2021). https://doi.org/10.1021/acs.est.0c07973
- X. Shen, F. Yan, Z. Zeng, P. Wang, F. Xie et al., Efficient and stable CO2 capture using a scalable and spontaneous cross-linking amine-functionalized nano-Al2O3 adsorbent. J. Mater. Chem. A 12, 2697–2707 (2024). https://doi.org/10.1039/d3ta06456e
- Y.A. Guta, J. Carneiro, S. Li, G. Innocenti, S.H. Pang et al., Contributions of CO2, O2, and H2O to the oxidative stability of solid amine direct air capture sorbents at intermediate temperature. ACS Appl. Mater. Interfaces 15, 46790–46802 (2023). https://doi.org/10.1021/acsami.3c08140
- M.A. Sakwa-Novak, S. Tan, C.W. Jones, Role of additives in composite PEI/oxide CO2 adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air. ACS Appl. Mater. Interfaces 7, 24748–24759 (2015). https://doi.org/10.1021/acsami.5b07545
- C.S. Srikanth, S.S.C. Chuang, Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO2 capture. ChemSusChem 5, 1435–1442 (2012). https://doi.org/10.1002/cssc.201100662
- J. Tanthana, S.S.C. Chuang, In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3, 957–964 (2010). https://doi.org/10.1002/cssc.201000090
- C.S. Srikanth, S.S.C. Chuang, Infrared study of strongly and weakly adsorbed CO2 on fresh and oxidatively degraded amine sorbents. J. Phys. Chem. C 117, 9196–9205 (2013). https://doi.org/10.1021/jp311232f
- Y. Wang, Y. Miao, B. Ge, Z. He, X. Zhu et al., Additives enhancing supported amines performance in CO2 capture from air. SusMat 3, 416–430 (2023). https://doi.org/10.1002/sus2.141
- H.J. Moon, J.Y. Carrillo, M. Song, G. Rim, W.T. Heller et al., Underlying roles of polyol additives in promoting CO2 capture in PEI/silica adsorbents. ChemSusChem 17, e202400967 (2024). https://doi.org/10.1002/cssc.202400967
- J.M. Kolle, M. Fayaz, A. Sayari, Understanding the effect of water on CO2 adsorption. Chem. Rev. 121, 7280–7345 (2021). https://doi.org/10.1021/acs.chemrev.0c00762
- R.L. Siegelman, P.J. Milner, A.C. Forse, J.-H. Lee, K.A. Colwell et al., Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal-organic framework. J. Am. Chem. Soc. 141, 13171–13186 (2019). https://doi.org/10.1021/jacs.9b05567
- J. Yu, Y. Zhai, S.S.C. Chuang, Water enhancement in CO2 capture by amines: an insight into CO2–H2O interactions on amine films and sorbents. Ind. Eng. Chem. Res. 57, 4052–4062 (2018). https://doi.org/10.1021/acs.iecr.7b05114
- O.I. Chen, C.H. Liu, K. Wang, E. Borrego-Marin, H. Li et al., Water-enhanced direct air capture of carbon dioxide in metal-organic frameworks. J. Am. Chem. Soc. 146, 2835–2844 (2024). https://doi.org/10.1021/jacs.3c14125
- K. Min, W. Choi, P.M. Choi, Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent. ChemSusChem 10, 2518–2526 (2017). https://doi.org/10.1002/cssc.201700398
- A.K. Voice, G.T. Rochelle, Oxidation of amines at absorber conditions for CO2 capture from flue gas. Energy Procedia 4, 171–178 (2011). https://doi.org/10.1016/j.egypro.2011.01.038
- Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012). https://doi.org/10.1021/cr200434v
- Q. Wang, H.H. Tay, Z. Zhong, J. Luo, A. Borgna, Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity. Energy Environ. Sci. 5, 7526–7530 (2012). https://doi.org/10.1039/C2EE21409A
- X. Zhu, C. Chen, H. Suo, Q. Wang, Y. Shi et al., Synthesis of elevated temperature CO2 adsorbents from aqueous miscible organic-layered double hydroxides. Energy 167, 960–969 (2019). https://doi.org/10.1016/j.energy.2018.11.009
- N. Gargiulo, A. Peluso, P. Aprea, F. Pepe, D. Caputo, CO2 adsorption on polyethylenimine-functionalized SBA-15 mesoporous silica: isotherms and modeling. J. Chem. Eng. Data 59, 896–902 (2014). https://doi.org/10.1021/je401075p
- J.S.A. Carneiro, G. Innocenti, H.J. Moon, Y. Guta, L. Proaño et al., Insights into the oxidative degradation mechanism of solid amine sorbents for CO2 capture from air: roles of atmospheric water. Angew. Chem. Int. Ed. 62, e202302887 (2023). https://doi.org/10.1002/anie.202302887
- Z. Liu, Z. Yin, Z. Zhang, C. Gao, Z. Yang et al., Removal of aliphatic amines by NiLa-layered double hydroxide nanostructures. ACS Appl. Nano Mater. 5, 8120–8130 (2022). https://doi.org/10.1021/acsanm.2c01246
- Z. Li, J. Xiao, Y. Gao, R. Gui, Q. Wang, Design of bifunctional Cu-SSZ-13@Mn2Cu1Al1Ox core-shell catalyst with superior activity for the simultaneous removal of VOCs and NOx. Environ. Sci. Technol. 57, 20326–20338 (2023). https://doi.org/10.1021/acs.est.3c04421
- Y. Meng, J. Jiang, A. Aihemaiti, T. Ju, Y. Gao et al., Feasibility of CO2 capture from O2-containing flue gas using a poly(ethylenimine)-functionalized sorbent: oxidative stability in long-term operation. ACS Appl. Mater. Interfaces 11, 33781–33791 (2019). https://doi.org/10.1021/acsami.9b08048
- G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako et al., High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4, 444–452 (2011). https://doi.org/10.1039/C0EE00213E
- S. Moumen, I. Raible, A. Krauß, J. Wöllenstein, Infrared investigation of CO2 sorption by amine based materials for the development of a NDIR CO2 sensor. Sens. Actuat. B Chem. 236, 1083–1090 (2016). https://doi.org/10.1016/j.snb.2016.06.014
- Y. Zhai, S.S. Chuang, The nature of adsorbed carbon dioxide on immobilized amines during carbon dioxide capture from air and simulated flue gas. Energy Technol. 5, 510–519 (2017). https://doi.org/10.1002/ente.201600685
- S. Chanthee, C. Asavatesanupap, D. Sertphon, T. Nakkhong et al., Surface transformation of carbon nanofibers via co-electrospinning with natural rubber and Ni doping for carbon dioxide adsorption and supercapacitor applications. Eng. Sci. 27, 975 (2023). https://doi.org/10.30919/es975
- X. Sun, X. Shen, H. Wang, F. Yan, J. Hua et al., Atom-level interaction design between amines and support for achieving efficient and stable CO2 capture. Nat. Commun. 15, 5068 (2024). https://doi.org/10.1038/s41467-024-48994-8
- A. Sayari, A. Heydari-Gorji, Y. Yang, CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J. Am. Chem. Soc. 134, 13834–13842 (2012). https://doi.org/10.1021/ja304888a
- A. Sayari, Y. Belmabkhout, Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc. 132, 6312–6314 (2010). https://doi.org/10.1021/ja1013773
- H. Lepaumier, D. Picq, P.-L. Carrette, New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2. Ind. Eng. Chem. Res. 48, 9061–9067 (2009). https://doi.org/10.1021/ie900472x
- Q. Wang, Z. Wu, H.H. Tay, L. Chen, Y. Liu et al., High temperature adsorption of CO2 on Mg–Al hydrotalcite: effect of the charge compensating anions and the synthesis pH. Catal. Today 164, 198–203 (2011). https://doi.org/10.1016/j.cattod.2010.10.042
- D.D. Miller, J. Yu, S.S.C. Chuang, Unraveling the structure and binding energy of adsorbed CO2/H2O on amine sorbents. J. Phys. Chem. C 124, 24677–24689 (2020). https://doi.org/10.1021/acs.jpcc.0c04942
- T.C. Drage, A. Arenillas, K.M. Smith, C.E. Snape, Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater. 116, 504–512 (2008). https://doi.org/10.1016/j.micromeso.2008.05.009
- D.D. Miller, S.S.C. Chuang, Control of CO2 adsorption and desorption using polyethylene glycol in a tetraethylenepentamine thin film: an in situ ATR and theoretical study. J. Phys. Chem. C 120, 25489–25504 (2016). https://doi.org/10.1021/acs.jpcc.6b09506
- Z.-W. Huang, Z.-J. Li, Q.-Y. Wu, L.-R. Zheng, L.-M. Zhou et al., Simultaneous elimination of cationic uranium(VI) and anionic rhenium(VII) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study. Environ. Sci. Nano 5, 2077–2087 (2018). https://doi.org/10.1039/C8EN00677F
- X. Shen, F. Yan, C. Li, Z. Zhang, Z. Zhang, A green synthesis of PEI@nano-SiO2 adsorbent from coal fly ash: selective and efficient CO2 adsorption from biogas. Sustain. Energy Fuels 5, 1014–1025 (2021). https://doi.org/10.1039/d0se01780a
- D. Ping, F. Yi, G. Zhang, S. Wu, S. Fang et al., NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J. Mater. Sci. Technol. 142, 1–9 (2023). https://doi.org/10.1016/j.jmst.2022.10.006
- T. Chen, F. Liu, C. Ling, J. Gao, C. Xu et al., Insight into highly efficient coremoval of copper and p-nitrophenol by a newly synthesized polyamine chelating resin from aqueous media: competition and enhancement effect upon site recognition. Environ. Sci. Technol. 47, 13652–13660 (2013). https://doi.org/10.1021/es4028875
- K. Min, W. Choi, C. Kim, M. Choi, Rational design of the polymeric amines in solid adsorbents for postcombustion carbon dioxide capture. ACS Appl. Mater. Interfaces 10, 23825–23833 (2018). https://doi.org/10.1021/acsami.8b05988
- J. Yu, S.S.C. Chuang, The role of water in CO2 capture by amine. Ind. Eng. Chem. Res. 56, 6337–6347 (2017). https://doi.org/10.1021/acs.iecr.7b00715
References
W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang et al., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49, 8584–8686 (2020). https://doi.org/10.1039/D0CS00025F
Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011). https://doi.org/10.1039/C0EE00064G
J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu et al., Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014). https://doi.org/10.1039/C4EE01647E
S. Iniyan, J. Ren, S. Deshmukh, K. Rajeswaran, G. Jegan et al., An overview of metal-organic framework based electrocatalysts: design and synthesis for electrochemical hydrogen evolution, oxygen evolution, and carbon dioxide reduction reactions. Chem. Rec. 23, e202300317 (2023). https://doi.org/10.1002/tcr.202300317
R. Jyoti, M. Chauhan, B.C. Choudhary, R.K. Sharma, Density functional theory study of manganese doped armchair graphene nanoribbon for effective carbon dioxide gas sensing. ES Energy Environ. 18, 47–55 (2022). https://doi.org/10.30919/esee8c701
X. Zhu, W. Xie, J. Wu, Y. Miao, C. Xiang et al., Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 51, 6574–6651 (2022). https://doi.org/10.1039/d1cs00970b
J. Qu, X. Cao, L. Gao, J. Li, L. Li et al., Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Lett. 15, 178 (2023). https://doi.org/10.1007/s40820-023-01146-x
M.J. Lashaki, S. Khiavi, A. Sayari, Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. Chem. Soc. Rev. 48, 3320–3405 (2019). https://doi.org/10.1039/c8cs00877a
X. Shi, H. Xiao, H. Azarabadi, J. Song, X. Wu et al., Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 59, 6984–7006 (2020). https://doi.org/10.1002/anie.201906756
J. Sun, M. Zhao, L. Huang, T. Zhang, Q. Wang, Recent progress on direct air capture of carbon dioxide. Curr. Opin. Green Sustain. Chem. 40, 100752 (2023). https://doi.org/10.1016/j.cogsc.2023.100752
M. Zhao, J. Xiao, W. Gao, Q. Wang, Defect-rich Mg-Al MMOs supported TEPA with enhanced charge transfer for highly efficient and stable direct air capture. J. Energy Chem. 68, 401–410 (2022). https://doi.org/10.1016/j.jechem.2021.12.031
X. Zhu, T. Ge, F. Yang, M. Lyu, C. Chen et al., Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides. J. Mater. Chem. A 8, 16421–16428 (2020). https://doi.org/10.1039/d0ta05079b
A. Goeppert, S. Meth, G.K. Surya Prakash, G.A. Olah, Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ. Sci. 3, 1949–1960 (2010). https://doi.org/10.1039/C0EE00136H
W. Choi, K. Min, C. Kim, Y.S. Ko, J.W. Jeon et al., Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat. Commun. 7, 12640 (2016). https://doi.org/10.1038/ncomms12640
K. Min, W. Choi, C. Kim, M. Choi, Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nat. Commun. 9, 726 (2018). https://doi.org/10.1038/s41467-018-03123-0
A. Heydari-Gorji, A. Sayari, Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind. Eng. Chem. Res. 51, 6887–6894 (2012). https://doi.org/10.1021/ie3003446
X. Shen, F. Yan, C. Li, F. Qu, Y. Wang et al., Biogas upgrading via cyclic CO2 adsorption: application of highly regenerable PEI@nano-Al2O3 adsorbents with anti-urea properties. Environ. Sci. Technol. 55, 5236–5247 (2021). https://doi.org/10.1021/acs.est.0c07973
X. Shen, F. Yan, Z. Zeng, P. Wang, F. Xie et al., Efficient and stable CO2 capture using a scalable and spontaneous cross-linking amine-functionalized nano-Al2O3 adsorbent. J. Mater. Chem. A 12, 2697–2707 (2024). https://doi.org/10.1039/d3ta06456e
Y.A. Guta, J. Carneiro, S. Li, G. Innocenti, S.H. Pang et al., Contributions of CO2, O2, and H2O to the oxidative stability of solid amine direct air capture sorbents at intermediate temperature. ACS Appl. Mater. Interfaces 15, 46790–46802 (2023). https://doi.org/10.1021/acsami.3c08140
M.A. Sakwa-Novak, S. Tan, C.W. Jones, Role of additives in composite PEI/oxide CO2 adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air. ACS Appl. Mater. Interfaces 7, 24748–24759 (2015). https://doi.org/10.1021/acsami.5b07545
C.S. Srikanth, S.S.C. Chuang, Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO2 capture. ChemSusChem 5, 1435–1442 (2012). https://doi.org/10.1002/cssc.201100662
J. Tanthana, S.S.C. Chuang, In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3, 957–964 (2010). https://doi.org/10.1002/cssc.201000090
C.S. Srikanth, S.S.C. Chuang, Infrared study of strongly and weakly adsorbed CO2 on fresh and oxidatively degraded amine sorbents. J. Phys. Chem. C 117, 9196–9205 (2013). https://doi.org/10.1021/jp311232f
Y. Wang, Y. Miao, B. Ge, Z. He, X. Zhu et al., Additives enhancing supported amines performance in CO2 capture from air. SusMat 3, 416–430 (2023). https://doi.org/10.1002/sus2.141
H.J. Moon, J.Y. Carrillo, M. Song, G. Rim, W.T. Heller et al., Underlying roles of polyol additives in promoting CO2 capture in PEI/silica adsorbents. ChemSusChem 17, e202400967 (2024). https://doi.org/10.1002/cssc.202400967
J.M. Kolle, M. Fayaz, A. Sayari, Understanding the effect of water on CO2 adsorption. Chem. Rev. 121, 7280–7345 (2021). https://doi.org/10.1021/acs.chemrev.0c00762
R.L. Siegelman, P.J. Milner, A.C. Forse, J.-H. Lee, K.A. Colwell et al., Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal-organic framework. J. Am. Chem. Soc. 141, 13171–13186 (2019). https://doi.org/10.1021/jacs.9b05567
J. Yu, Y. Zhai, S.S.C. Chuang, Water enhancement in CO2 capture by amines: an insight into CO2–H2O interactions on amine films and sorbents. Ind. Eng. Chem. Res. 57, 4052–4062 (2018). https://doi.org/10.1021/acs.iecr.7b05114
O.I. Chen, C.H. Liu, K. Wang, E. Borrego-Marin, H. Li et al., Water-enhanced direct air capture of carbon dioxide in metal-organic frameworks. J. Am. Chem. Soc. 146, 2835–2844 (2024). https://doi.org/10.1021/jacs.3c14125
K. Min, W. Choi, P.M. Choi, Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent. ChemSusChem 10, 2518–2526 (2017). https://doi.org/10.1002/cssc.201700398
A.K. Voice, G.T. Rochelle, Oxidation of amines at absorber conditions for CO2 capture from flue gas. Energy Procedia 4, 171–178 (2011). https://doi.org/10.1016/j.egypro.2011.01.038
Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012). https://doi.org/10.1021/cr200434v
Q. Wang, H.H. Tay, Z. Zhong, J. Luo, A. Borgna, Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity. Energy Environ. Sci. 5, 7526–7530 (2012). https://doi.org/10.1039/C2EE21409A
X. Zhu, C. Chen, H. Suo, Q. Wang, Y. Shi et al., Synthesis of elevated temperature CO2 adsorbents from aqueous miscible organic-layered double hydroxides. Energy 167, 960–969 (2019). https://doi.org/10.1016/j.energy.2018.11.009
N. Gargiulo, A. Peluso, P. Aprea, F. Pepe, D. Caputo, CO2 adsorption on polyethylenimine-functionalized SBA-15 mesoporous silica: isotherms and modeling. J. Chem. Eng. Data 59, 896–902 (2014). https://doi.org/10.1021/je401075p
J.S.A. Carneiro, G. Innocenti, H.J. Moon, Y. Guta, L. Proaño et al., Insights into the oxidative degradation mechanism of solid amine sorbents for CO2 capture from air: roles of atmospheric water. Angew. Chem. Int. Ed. 62, e202302887 (2023). https://doi.org/10.1002/anie.202302887
Z. Liu, Z. Yin, Z. Zhang, C. Gao, Z. Yang et al., Removal of aliphatic amines by NiLa-layered double hydroxide nanostructures. ACS Appl. Nano Mater. 5, 8120–8130 (2022). https://doi.org/10.1021/acsanm.2c01246
Z. Li, J. Xiao, Y. Gao, R. Gui, Q. Wang, Design of bifunctional Cu-SSZ-13@Mn2Cu1Al1Ox core-shell catalyst with superior activity for the simultaneous removal of VOCs and NOx. Environ. Sci. Technol. 57, 20326–20338 (2023). https://doi.org/10.1021/acs.est.3c04421
Y. Meng, J. Jiang, A. Aihemaiti, T. Ju, Y. Gao et al., Feasibility of CO2 capture from O2-containing flue gas using a poly(ethylenimine)-functionalized sorbent: oxidative stability in long-term operation. ACS Appl. Mater. Interfaces 11, 33781–33791 (2019). https://doi.org/10.1021/acsami.9b08048
G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako et al., High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4, 444–452 (2011). https://doi.org/10.1039/C0EE00213E
S. Moumen, I. Raible, A. Krauß, J. Wöllenstein, Infrared investigation of CO2 sorption by amine based materials for the development of a NDIR CO2 sensor. Sens. Actuat. B Chem. 236, 1083–1090 (2016). https://doi.org/10.1016/j.snb.2016.06.014
Y. Zhai, S.S. Chuang, The nature of adsorbed carbon dioxide on immobilized amines during carbon dioxide capture from air and simulated flue gas. Energy Technol. 5, 510–519 (2017). https://doi.org/10.1002/ente.201600685
S. Chanthee, C. Asavatesanupap, D. Sertphon, T. Nakkhong et al., Surface transformation of carbon nanofibers via co-electrospinning with natural rubber and Ni doping for carbon dioxide adsorption and supercapacitor applications. Eng. Sci. 27, 975 (2023). https://doi.org/10.30919/es975
X. Sun, X. Shen, H. Wang, F. Yan, J. Hua et al., Atom-level interaction design between amines and support for achieving efficient and stable CO2 capture. Nat. Commun. 15, 5068 (2024). https://doi.org/10.1038/s41467-024-48994-8
A. Sayari, A. Heydari-Gorji, Y. Yang, CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J. Am. Chem. Soc. 134, 13834–13842 (2012). https://doi.org/10.1021/ja304888a
A. Sayari, Y. Belmabkhout, Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc. 132, 6312–6314 (2010). https://doi.org/10.1021/ja1013773
H. Lepaumier, D. Picq, P.-L. Carrette, New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2. Ind. Eng. Chem. Res. 48, 9061–9067 (2009). https://doi.org/10.1021/ie900472x
Q. Wang, Z. Wu, H.H. Tay, L. Chen, Y. Liu et al., High temperature adsorption of CO2 on Mg–Al hydrotalcite: effect of the charge compensating anions and the synthesis pH. Catal. Today 164, 198–203 (2011). https://doi.org/10.1016/j.cattod.2010.10.042
D.D. Miller, J. Yu, S.S.C. Chuang, Unraveling the structure and binding energy of adsorbed CO2/H2O on amine sorbents. J. Phys. Chem. C 124, 24677–24689 (2020). https://doi.org/10.1021/acs.jpcc.0c04942
T.C. Drage, A. Arenillas, K.M. Smith, C.E. Snape, Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater. 116, 504–512 (2008). https://doi.org/10.1016/j.micromeso.2008.05.009
D.D. Miller, S.S.C. Chuang, Control of CO2 adsorption and desorption using polyethylene glycol in a tetraethylenepentamine thin film: an in situ ATR and theoretical study. J. Phys. Chem. C 120, 25489–25504 (2016). https://doi.org/10.1021/acs.jpcc.6b09506
Z.-W. Huang, Z.-J. Li, Q.-Y. Wu, L.-R. Zheng, L.-M. Zhou et al., Simultaneous elimination of cationic uranium(VI) and anionic rhenium(VII) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study. Environ. Sci. Nano 5, 2077–2087 (2018). https://doi.org/10.1039/C8EN00677F
X. Shen, F. Yan, C. Li, Z. Zhang, Z. Zhang, A green synthesis of PEI@nano-SiO2 adsorbent from coal fly ash: selective and efficient CO2 adsorption from biogas. Sustain. Energy Fuels 5, 1014–1025 (2021). https://doi.org/10.1039/d0se01780a
D. Ping, F. Yi, G. Zhang, S. Wu, S. Fang et al., NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J. Mater. Sci. Technol. 142, 1–9 (2023). https://doi.org/10.1016/j.jmst.2022.10.006
T. Chen, F. Liu, C. Ling, J. Gao, C. Xu et al., Insight into highly efficient coremoval of copper and p-nitrophenol by a newly synthesized polyamine chelating resin from aqueous media: competition and enhancement effect upon site recognition. Environ. Sci. Technol. 47, 13652–13660 (2013). https://doi.org/10.1021/es4028875
K. Min, W. Choi, C. Kim, M. Choi, Rational design of the polymeric amines in solid adsorbents for postcombustion carbon dioxide capture. ACS Appl. Mater. Interfaces 10, 23825–23833 (2018). https://doi.org/10.1021/acsami.8b05988
J. Yu, S.S.C. Chuang, The role of water in CO2 capture by amine. Ind. Eng. Chem. Res. 56, 6337–6347 (2017). https://doi.org/10.1021/acs.iecr.7b00715