Dual Structure Reinforces Interfacial Polarized MXene/PVDF-TrFE Piezoelectric Nanocomposite for Pressure Monitoring
Corresponding Author: Weiqing Yang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 320
Abstract
The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement. However, there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena and stochastic interface disorder that plague the improvement of piezoelectric performance. Here, we report a dual structure reinforced MXene/PVDF-TrFE piezoelectric composite, whose piezoelectricity is enhanced under the coupling effect of interfacial polarization and structural design. Synergistically, molecular dynamics simulations, density functional theory calculations and experimental validation revealed the details of interfacial interactions, which promotes the net spontaneous polarization of PVDF-TrFE from the 0.56 to 31.41 Debye. The oriented MXene distribution and porous structure not only tripled the piezoelectric response but also achieved an eightfold increase in sensitivity within the low-pressure region, along with demonstrating cyclic stability exceeding 20,000 cycles. The properties reinforcement originating from dual structure is elucidated through the finite element simulation and experimental validation. Attributed to the excellent piezoelectric response and deep learning algorithm, the sensor can effectively recognize the signals of artery pulse and finger flexion. Finally, a 3 × 3 sensor array is fabricated to monitor the pressure distribution wirelessly. This study provides an innovative methodology for reinforcing interfacial polarized piezoelectric materials and insight into structural designs.
Highlights:
1 The underlying mechanism improving piezoelectricity via interfacial polarization is elucidated through combining the experimental results, molecular dynamics simulations and density functional theory calculations.
2 The piezoelectric performance of the nanocomposite is improved based on the successful construction of dual-structure.
3 The piezoelectric sensor and array are capable of identifying human physiological signals and monitoring the distribution of pressure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Qian, X. Chen, L. Zhu, Q.M. Zhang, Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science 380(6645), eadg0902 (2023). https://doi.org/10.1126/science.adg0902
- H. Hu, H. Huang, M. Li, X. Gao, L. Yin et al., A wearable cardiac ultrasound imager. Nature 613(7945), 667–675 (2023). https://doi.org/10.1038/s41586-022-05498-z
- L. Gao, B.-L. Hu, L. Wang, J. Cao, R. He et al., Intrinsically elastic polymer ferroelectric by precise slight cross-linking. Science 381(6657), 540–544 (2023). https://doi.org/10.1126/science.adh2509
- X. Chen, H. Qin, X. Qian, W. Zhu, B. Li et al., Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 375(6587), 1418–1422 (2022). https://doi.org/10.1126/science.abn0936
- B. Stadlober, M. Zirkl, M. Irimia-Vladu, Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem. Soc. Rev. 48(6), 1787–1825 (2019). https://doi.org/10.1039/C8CS00928G
- Q. Pan, Z.-X. Gu, R.-J. Zhou, Z.-J. Feng, Y.-A. Xiong et al., The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem. Soc. Rev. 53(11), 5781–5861 (2024). https://doi.org/10.1039/D3CS00262D
- W. Deng, Y. Zhou, A. Libanori, G. Chen, W. Yang et al., Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 51(9), 3380–3435 (2022). https://doi.org/10.1039/D1CS00858G
- C.M. Costa, V.F. Cardoso, P. Martins, D.M. Correia, R. Gonçalves et al., Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications. Chem. Rev. 123(19), 11392–11487 (2023). https://doi.org/10.1021/acs.chemrev.3c00196
- P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
- Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, Y.M. Lee, Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 51, 94–126 (2015). https://doi.org/10.1016/j.progpolymsci.2015.07.007
- N. Meng, X. Ren, G. Santagiuliana, L. Ventura, H. Zhang et al., Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 10, 4535 (2019). https://doi.org/10.1038/s41467-019-12391-3
- Y. Liu, B. Zhang, W. Xu, A. Haibibu, Z. Han et al., Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19(11), 1169–1174 (2020). https://doi.org/10.1038/s41563-020-0724-6
- J.-Y. Ren, Q.-F. Ouyang, G.-Q. Ma, Y. Li, J. Lei et al., Enhanced dielectric and ferroelectric properties of poly(vinylidene fluoride) through annealing oriented crystallites under high pressure. Macromolecules 55(6), 2014–2027 (2022). https://doi.org/10.1021/acs.macromol.1c02436
- Y. Liu, H. Aziguli, B. Zhang, W. Xu, W. Lu et al., Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562(7725), 96–100 (2018). https://doi.org/10.1038/s41586-018-0550-z
- R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36(24), e2312761 (2024). https://doi.org/10.1002/adma.202312761
- K. Shi, B. Chai, H. Zou, P. Shen, B. Sun et al., Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 80, 105515 (2021). https://doi.org/10.1016/j.nanoen.2020.105515
- N.A. Shepelin, P.C. Sherrell, E.N. Skountzos, E. Goudeli, J. Zhang et al., Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nat. Commun. 12(1), 3171 (2021). https://doi.org/10.1038/s41467-021-23341-3
- Z. Zhu, G. Rui, Q. Li, E. Allahyarov, R. Li et al., Electrostriction-enhanced giant piezoelectricity via relaxor-like secondary crystals in extended-chain ferroelectric polymers. Matter 4(11), 3696–3709 (2021). https://doi.org/10.1016/j.matt.2021.09.008
- X. Yuan, Z. Mai, Z. Li, Z. Yu, P. Ci et al., A 3D-printing approach toward flexible piezoelectronics with function diversity. Mater. Today 69, 160–192 (2023). https://doi.org/10.1016/j.mattod.2023.08.023
- X. Qian, D. Han, L. Zheng, J. Chen, M. Tyagi et al., High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600(7890), 664–669 (2021). https://doi.org/10.1038/s41586-021-04189-5
- Q.M. Zhang, V. Bharti, X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372), 2101–2104 (1998). https://doi.org/10.1126/science.280.5372.2101
- Y. Su, W. Li, X. Cheng, Y. Zhou, S. Yang et al., High-performance piezoelectric composites via β phase programming. Nat. Commun. 13, 4867 (2022). https://doi.org/10.1038/s41467-022-32518-3
- S. Zheng, F. Du, L. Zheng, D. Han, Q. Li et al., Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 382(6674), 1020–1026 (2023). https://doi.org/10.1126/science.adi7812
- X. Li, S. He, Y. Jiang, J. Wang, Y. Yu et al., Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites. Nat. Commun. 14(1), 5707 (2023). https://doi.org/10.1038/s41467-023-41479-0
- S. Peng, X. Yang, Y. Yang, S. Wang, Y. Zhou et al., Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 31(21), 1807722 (2019). https://doi.org/10.1002/adma.201807722
- H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen et al., Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48(16), 4424–4465 (2019). https://doi.org/10.1039/c9cs00043g
- Y. Liu, T. Yang, B. Zhang, T. Williams, Y.-T. Lin et al., Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Adv. Mater. 32(49), 2005431 (2020). https://doi.org/10.1002/adma.202005431
- X. Yuan, A. Yan, Z. Lai, Z. Liu, Z. Yu et al., A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. Nano Energy 98, 107340 (2022). https://doi.org/10.1016/j.nanoen.2022.107340
- Y. Liu, W. Tong, L. Wang, P. Zhang, J. Zhang et al., Phase separation of a PVDF–HFP film on an ice substrate to achieve self-polarisation alignment. Nano Energy 106, 108082 (2023). https://doi.org/10.1016/j.nanoen.2022.108082
- D. Han, F. Du, Y. Zhang, L. Zheng, J. Chen et al., Molecular interface regulation enables order-disorder synergy in electrocaloric nanocomposites. Joule 7(9), 2174–2190 (2023). https://doi.org/10.1016/j.joule.2023.07.015
- T. Li, M. Qu, C. Carlos, L. Gu, F. Jin et al., High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 33(3), 2006093 (2021). https://doi.org/10.1002/adma.202006093
- E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials. Science 366(6468), 8285 (2019). https://doi.org/10.1126/science.aan8285
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- J. Zou, J. Wu, Y. Wang, F. Deng, J. Jiang et al., Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 51(8), 2972–2990 (2022). https://doi.org/10.1039/d0cs01487g
- S. Wang, Z. Luo, J. Liang, J. Hu, N. Jiang et al., Polymer nanocomposite dielectrics: understanding the matrix/p interface. ACS Nano 16(9), 13612–13656 (2022). https://doi.org/10.1021/acsnano.2c07404
- Y. Ao, T. Yang, G. Tian, S. Wang, T. Xu et al., Tertiary orientation structures enhance the piezoelectricity of MXene/PVDF nanocomposite. Nano Res. 17(6), 5629–5635 (2024). https://doi.org/10.1007/s12274-023-6418-7
- J. Zhang, W. Hu, Roles of specific hydrogen-bonding interactions in the crystallization kinetics of polymers. Polymer 283, 126278 (2023). https://doi.org/10.1016/j.polymer.2023.126278
- C.-W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010). https://doi.org/10.1146/annurev-matsci-070909-104529
- C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
- B. Lan, X. Xiao, A. Di Carlo, W. Deng, T. Yang et al., Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv. Funct. Mater. 32(49), 2207393 (2022). https://doi.org/10.1002/adfm.202207393
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34(21), 2109357 (2022). https://doi.org/10.1002/adma.202109357
References
X. Qian, X. Chen, L. Zhu, Q.M. Zhang, Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science 380(6645), eadg0902 (2023). https://doi.org/10.1126/science.adg0902
H. Hu, H. Huang, M. Li, X. Gao, L. Yin et al., A wearable cardiac ultrasound imager. Nature 613(7945), 667–675 (2023). https://doi.org/10.1038/s41586-022-05498-z
L. Gao, B.-L. Hu, L. Wang, J. Cao, R. He et al., Intrinsically elastic polymer ferroelectric by precise slight cross-linking. Science 381(6657), 540–544 (2023). https://doi.org/10.1126/science.adh2509
X. Chen, H. Qin, X. Qian, W. Zhu, B. Li et al., Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 375(6587), 1418–1422 (2022). https://doi.org/10.1126/science.abn0936
B. Stadlober, M. Zirkl, M. Irimia-Vladu, Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem. Soc. Rev. 48(6), 1787–1825 (2019). https://doi.org/10.1039/C8CS00928G
Q. Pan, Z.-X. Gu, R.-J. Zhou, Z.-J. Feng, Y.-A. Xiong et al., The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem. Soc. Rev. 53(11), 5781–5861 (2024). https://doi.org/10.1039/D3CS00262D
W. Deng, Y. Zhou, A. Libanori, G. Chen, W. Yang et al., Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 51(9), 3380–3435 (2022). https://doi.org/10.1039/D1CS00858G
C.M. Costa, V.F. Cardoso, P. Martins, D.M. Correia, R. Gonçalves et al., Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications. Chem. Rev. 123(19), 11392–11487 (2023). https://doi.org/10.1021/acs.chemrev.3c00196
P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, Y.M. Lee, Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 51, 94–126 (2015). https://doi.org/10.1016/j.progpolymsci.2015.07.007
N. Meng, X. Ren, G. Santagiuliana, L. Ventura, H. Zhang et al., Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 10, 4535 (2019). https://doi.org/10.1038/s41467-019-12391-3
Y. Liu, B. Zhang, W. Xu, A. Haibibu, Z. Han et al., Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19(11), 1169–1174 (2020). https://doi.org/10.1038/s41563-020-0724-6
J.-Y. Ren, Q.-F. Ouyang, G.-Q. Ma, Y. Li, J. Lei et al., Enhanced dielectric and ferroelectric properties of poly(vinylidene fluoride) through annealing oriented crystallites under high pressure. Macromolecules 55(6), 2014–2027 (2022). https://doi.org/10.1021/acs.macromol.1c02436
Y. Liu, H. Aziguli, B. Zhang, W. Xu, W. Lu et al., Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562(7725), 96–100 (2018). https://doi.org/10.1038/s41586-018-0550-z
R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36(24), e2312761 (2024). https://doi.org/10.1002/adma.202312761
K. Shi, B. Chai, H. Zou, P. Shen, B. Sun et al., Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 80, 105515 (2021). https://doi.org/10.1016/j.nanoen.2020.105515
N.A. Shepelin, P.C. Sherrell, E.N. Skountzos, E. Goudeli, J. Zhang et al., Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nat. Commun. 12(1), 3171 (2021). https://doi.org/10.1038/s41467-021-23341-3
Z. Zhu, G. Rui, Q. Li, E. Allahyarov, R. Li et al., Electrostriction-enhanced giant piezoelectricity via relaxor-like secondary crystals in extended-chain ferroelectric polymers. Matter 4(11), 3696–3709 (2021). https://doi.org/10.1016/j.matt.2021.09.008
X. Yuan, Z. Mai, Z. Li, Z. Yu, P. Ci et al., A 3D-printing approach toward flexible piezoelectronics with function diversity. Mater. Today 69, 160–192 (2023). https://doi.org/10.1016/j.mattod.2023.08.023
X. Qian, D. Han, L. Zheng, J. Chen, M. Tyagi et al., High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600(7890), 664–669 (2021). https://doi.org/10.1038/s41586-021-04189-5
Q.M. Zhang, V. Bharti, X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372), 2101–2104 (1998). https://doi.org/10.1126/science.280.5372.2101
Y. Su, W. Li, X. Cheng, Y. Zhou, S. Yang et al., High-performance piezoelectric composites via β phase programming. Nat. Commun. 13, 4867 (2022). https://doi.org/10.1038/s41467-022-32518-3
S. Zheng, F. Du, L. Zheng, D. Han, Q. Li et al., Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 382(6674), 1020–1026 (2023). https://doi.org/10.1126/science.adi7812
X. Li, S. He, Y. Jiang, J. Wang, Y. Yu et al., Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites. Nat. Commun. 14(1), 5707 (2023). https://doi.org/10.1038/s41467-023-41479-0
S. Peng, X. Yang, Y. Yang, S. Wang, Y. Zhou et al., Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 31(21), 1807722 (2019). https://doi.org/10.1002/adma.201807722
H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen et al., Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48(16), 4424–4465 (2019). https://doi.org/10.1039/c9cs00043g
Y. Liu, T. Yang, B. Zhang, T. Williams, Y.-T. Lin et al., Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Adv. Mater. 32(49), 2005431 (2020). https://doi.org/10.1002/adma.202005431
X. Yuan, A. Yan, Z. Lai, Z. Liu, Z. Yu et al., A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. Nano Energy 98, 107340 (2022). https://doi.org/10.1016/j.nanoen.2022.107340
Y. Liu, W. Tong, L. Wang, P. Zhang, J. Zhang et al., Phase separation of a PVDF–HFP film on an ice substrate to achieve self-polarisation alignment. Nano Energy 106, 108082 (2023). https://doi.org/10.1016/j.nanoen.2022.108082
D. Han, F. Du, Y. Zhang, L. Zheng, J. Chen et al., Molecular interface regulation enables order-disorder synergy in electrocaloric nanocomposites. Joule 7(9), 2174–2190 (2023). https://doi.org/10.1016/j.joule.2023.07.015
T. Li, M. Qu, C. Carlos, L. Gu, F. Jin et al., High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 33(3), 2006093 (2021). https://doi.org/10.1002/adma.202006093
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials. Science 366(6468), 8285 (2019). https://doi.org/10.1126/science.aan8285
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
J. Zou, J. Wu, Y. Wang, F. Deng, J. Jiang et al., Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 51(8), 2972–2990 (2022). https://doi.org/10.1039/d0cs01487g
S. Wang, Z. Luo, J. Liang, J. Hu, N. Jiang et al., Polymer nanocomposite dielectrics: understanding the matrix/p interface. ACS Nano 16(9), 13612–13656 (2022). https://doi.org/10.1021/acsnano.2c07404
Y. Ao, T. Yang, G. Tian, S. Wang, T. Xu et al., Tertiary orientation structures enhance the piezoelectricity of MXene/PVDF nanocomposite. Nano Res. 17(6), 5629–5635 (2024). https://doi.org/10.1007/s12274-023-6418-7
J. Zhang, W. Hu, Roles of specific hydrogen-bonding interactions in the crystallization kinetics of polymers. Polymer 283, 126278 (2023). https://doi.org/10.1016/j.polymer.2023.126278
C.-W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010). https://doi.org/10.1146/annurev-matsci-070909-104529
C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
B. Lan, X. Xiao, A. Di Carlo, W. Deng, T. Yang et al., Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv. Funct. Mater. 32(49), 2207393 (2022). https://doi.org/10.1002/adfm.202207393
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34(21), 2109357 (2022). https://doi.org/10.1002/adma.202109357