Correction to: Green Vertical-Cavity Surface-Emitting Lasers Based on InGaN Quantum Dots and Short Cavity
Corresponding Author: Bao‑Ping Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 61
Abstract
Room temperature low threshold lasing of green GaN-based vertical cavity surface emitting laser (VCSEL) was demonstrated under continuous wave (CW) operation. By using self-formed InGaN quantum dots (QDs) as the active region, the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm−2, the lowest ever reported. The QD epitaxial wafer featured with a high IQE of 69.94% and the δ-function-like density of states plays an important role in achieving low threshold current. Besides, a short cavity of the device (~ 4.0 λ) is vital to enhance the spontaneous emission coupling factor to 0.094, increase the gain coefficient factor, and decrease the optical loss. To improve heat dissipation, AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding. The results provide important guidance to achieving high performance GaN-based VCSELs.
Highlights:
1 Continuous-wave green vertical-cavity surface-emitting lasers based on self-formed quantum dots were realized with the lowest threshold current density of 51.97 A cm−2.
2 A short cavity (~4.0 λ, where λ is the wavelength in the media) was adopted to enhance the interaction between spontaneous emission and lasing mode, with a big coupling factor up to 0.094.
3 AlN current confinement layer and the electroplated supporting copper plate were utilized to improve heat dissipation, with a low thermal resistance of 842 K W−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Iga, Vertical-cavity surface-emitting laser: Its conception and evolution. Jpn. J. Appl. Phys. 47(1), 1–10 (2008). https://doi.org/10.1143/jjap.47.1
- F. Koyama, Recent advances of vcsel photonics. J. Lightwave Technol. 24(12), 4502–4513 (2006). https://doi.org/10.1109/jlt.2006.886064
- D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contact for low-threshold vertical-cavity lasers. Appl. Phys. Lett. 65(1), 97–99 (1994). https://doi.org/10.1063/1.113087
- D. Bimberg, N.N. Ledentsov, J.A. Lott, Quantum-dot vertical-cavity surface-emitting lasers. MRS Bull. 27(7), 531–537 (2002). https://doi.org/10.1557/mrs2002.172
- K. Iga, VCSEL: born small and grown big. Proc. SPIE 11263, 1126302 (2020). https://doi.org/10.1117/12.2554953
- Y. Motegi, H. Soda, K. Iga, Surface-emitting GaInAsP/InP injection-laser with short cavity length. Electron. Lett. 18(11), 461–463 (1982). https://doi.org/10.1049/el:19820314
- G.M. Yang, M.H. Macdougal, P.D. Dapkus, Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31(11), 886–888 (1995). https://doi.org/10.1049/el:19950610
- T. Numai, T. Kawakami, T. Yoshikawa, M. Sugimoto, Y. Sugimoto et al., Record low-threshold current in microcavity surface-emitting laser. Jpn. J. Appl. Phys. 32(10B), L1533–L1534 (1993). https://doi.org/10.1143/jjap.32.L1533
- J.L. Jewell, A. Scherer, S.L. McCall, Y.H. Lee, S. Walker et al., Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett. 25(17), 1123–1124 (1989). https://doi.org/10.1049/el:19890754
- H.C. Yu, Z.W. Zheng, Y. Mei, R.B. Xu, J.P. Liu et al., Progress and prospects of GaN-based VCSEL from near UV to green emission. Prog. Quantum Electron. 57, 1–19 (2018). https://doi.org/10.1016/j.pquantelec.2018.02.001
- T.C. Lu, S.W. Chen, T.T. Wu, P.M. Tu, C.K. Chen et al., Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature. Appl. Phys. Lett. 97(7), 3 (2010). https://doi.org/10.1063/1.3483133
- R.T. Elafandy, J.H. Kang, C. Mi, T.K. Kim, J.S. Kwak et al., Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers. ACS Photonics 8(4), 1041–1047 (2021). https://doi.org/10.1021/acsphotonics.1c00211
- G. Cosendey, A. Castiglia, G. Rossbach, J.F. Carlin, N. Grandjean, Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Appl. Phys. Lett. 101(15), 4 (2012). https://doi.org/10.1063/1.4757873
- R.T. ElAfandy, J.H. Kang, B. Li, T.K. Kim, J.S. Kwak et al., Room-temperature operation of c-plane GaN vertical cavity surface emitting laser on conductive nanoporous distributed bragg reflector. Appl. Phys. Lett. 117(1), 011101 (2020). https://doi.org/10.1063/5.0012281
- T.-C. Chang, S.-Y. Kuo, J.-T. Lian, K.-B. Hong, S.-C. Wang et al., High-temperature operation of GaN-based vertical-cavity surface-emitting lasers. Appl. Phys. Express 10(11), 112101 (2017). https://doi.org/10.7567/apex.10.112101
- M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka et al., Enhancement of slope efficiency and output power in GaN -based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide. Appl. Phys. Lett. 112(11), 111104 (2018). https://doi.org/10.1063/1.5020229
- J.T. Leonard, D.A. Cohen, B.P. Yonkee, R.M. Farrell, T. Margalith et al., Nonpolar III-Nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Appl. Phys. Lett. 107(1), 011102 (2015). https://doi.org/10.1063/1.4926365
- Y. Higuchi, K. Omae, H. Matsumura, T. Mukai, Room-temperature CW lasing of a gan-based vertical-cavity surface-emitting laser by current injection. Appl. Phys. Express 1(12), 3 (2008). https://doi.org/10.1143/apex.1.121102
- T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara et al., Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror. Appl. Phys. Express 12(4), 044004 (2019). https://doi.org/10.7567/1882-0786/ab03eb
- T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka et al., Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature. IEEE J. Quantum Electron. 48(9), 1107–1112 (2012). https://doi.org/10.1109/JQE.2012.2203586
- M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka et al., Watt-class blue vertical-cavity surface-emitting laser arrays. Appl. Phys. Express 12(9), 091004 (2019). https://doi.org/10.7567/1882-0786/ab3aa6
- D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata et al., Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl. Phys. Express 4(7), 3 (2011). https://doi.org/10.1143/apex.4.072103
- G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying et al., Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Opt. Express 24(14), 15546–15553 (2016). https://doi.org/10.1364/OE.24.015546
- Y. Mei, G.E. Weng, B.P. Zhang, J.P. Liu, W. Hofmann et al., Quantum dot vertical-cavity surface-emitting lasers covering the “green gap.” Light-Sci. Appl. 6(1), e16199 (2017). https://doi.org/10.1038/lsa.2016.199
- R. Xu, Y. Mei, H. Xu, L.Y. Ying, Z. Zheng et al., Green vertical-cavity surface-emitting lasers based on combination of blue-emitting quantum wells and cavity-enhanced recombination. IEEE Trans. Electron. Dev. 65(10), 4401–4406 (2018). https://doi.org/10.1109/ted.2018.2866406
- T. Hamaguchi, Y. Hoshina, K. Hayashi, M. Tanaka, M. Ito et al., Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on (20–21) semi-polar GaN. Appl. Phys. Express 13(4), 5 (2020). https://doi.org/10.35848/1882-0786/ab7bc8
- K. Terao, H. Nagai, D. Morita, S. Masui, T. Yanamoto et al., Blue and green GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN DBR. Proc. SPIE 11686, 116860E (2021). https://doi.org/10.1117/12.2574623
- Y. Mei, R.B. Xu, L.Y. Ying, J.P. Liu, Z.W. Zheng et al., Room temperature continuous wave lasing of GaN-based green vertical-cavity surface-emitting lasers. Proc. SPIE 10918, 109181 (2019). https://doi.org/10.1117/12.2511293
- H. Xu, Y. Mei, R.B. Xu, L.Y. Ying, X.L. Su et al., Green VCSELs based on nitride semiconductors. Jpn. J. Appl. Phys. 59, SO0803-SO816 (2020). https://doi.org/10.35848/1347-4065/ab9488
- C.A. Forman, S. Lee, E.C. Young, J.A. Kearns, D.A. Cohen et al., Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact. Appl. Phys. Lett. 112(11), 5 (2018). https://doi.org/10.1063/1.5007746
- S. Yamamoto, Y.J. Zhao, C.C. Pan, R.B. Chung, K. Fujito et al., High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20–21) GaN substrates. Appl. Phys. Express 3(12), 3 (2010). https://doi.org/10.1143/apex.3.122102
- S. Schulz, E.P. O’Reilly, Theory of reduced built-in polarization field in nitride-based quantum dots. Phys. Rev. B 82(3), 033411 (2010). https://doi.org/10.1103/PhysRevB.82.033411
- Y. Arakawa, Progress in GaN-based quantum dots for optoelectronics applications. IEEE J. Sel. Top. Quantum Electron. 8(4), 823–832 (2002). https://doi.org/10.1109/jstqe.2002.801675
- N.N. Ledentsov, D. Bimberg, Z.I. Alferov, Progress in epitaxial growth and performance of quantum dot and quantum wire lasers. J. Lightwave Technol. 26(9–12), 1540–1555 (2008). https://doi.org/10.1109/jlt.2008.923645
- R.C. Tao, Y. Arakawa, Impact of quantum dots on III-Nitride lasers: a theoretical calculation of threshold current densities. Jpn. J. Appl. Phys. 58, SCCC31 (2019). https://doi.org/10.7567/1347-4065/ab1068
- C. Adelmann, J. Simon, G. Feuillet, N.T. Pelekanos, B. Daudin et al., Self-assembled InGaN quantum dots grown by molecular-beam epitaxy. Appl. Phys. Lett. 76(12), 1570–1572 (2000). https://doi.org/10.1063/1.126098
- S.M. Lee, D.G. Cahill, Heat transport in thin dielectric films. J. Appl. Phys. 81(6), 2590–2595 (1997). https://doi.org/10.1063/1.363923
- Y. Mei, R.B. Xu, H. Xu, L.Y. Ying, Z.W. Zheng et al., A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures. Semicond. Sci. Technol. 33(1), 10 (2018). https://doi.org/10.1088/1361-6641/aa90aa
- Y.H. Chen, Y. Mei, H. Xu, R.B. Xu, L.Y. Ying et al., Improvement of thermal dissipation of GaN-based micro cavity light-emitting devices. IEEE Photonics Technol. Lett. 33(1), 19–22 (2021). https://doi.org/10.1109/lpt.2020.3040550
- J.A. Kearns, J. Back, D.A. Cohen, S.P. Denbaars, S. Nakamura, Demonstration of blue semipolar (20–2—1) GaN-based vertical-cavity surface-emitting lasers. Opt. Express 27(17), 23707–23713 (2019). https://doi.org/10.1364/oe.27.023707
- O. Mokhtari, A review: formation of voids in solder joint during the transient liquid phase bonding process-causes and solutions. Microelectron. Reliab. 98, 95–105 (2019). https://doi.org/10.1016/j.microrel.2019.04.024
- R. Xu, Y. Mei, H. Xu, T. Yang, L. Ying et al., Effects of lateral optical confinement in GaN VCSELs with double dielectric DBRs. IEEE Photonics J. 12(2), 1–8 (2020). https://doi.org/10.1109/jphot.2020.2979564
- Z.C. Li, J.P. Liu, M.X. Feng, K. Zhou, S.M. Zhang et al., Effects of matrix layer composition on the structural and optical properties of self-organized InGaN quantum dots. J. Appl. Phys. 114(9), 093105 (2013). https://doi.org/10.1063/1.4820935
- Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller et al., “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 73(10), 1370–1372 (1998). https://doi.org/10.1063/1.122164
- P. Li, H. Li, Z. Li, J. Kang, X. Yi et al., Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light-emitting diodes. J. Appl. Phys. 117(7), 073101 (2015). https://doi.org/10.1063/1.4906960
- X. Hou, T. Yang, S.S. Fan, H. Xu, D. Iida et al., Improvement of optical properties of InGaN-based red multiple quantum wells. Opt. Express 31(11), 18567–18575 (2023). https://doi.org/10.1364/oe.488681
- S. SaeidNahaei, J.D. Ha, J.S. Kim, J.S. Kim, G.H. Kim et al., Radiative emission mechanism analysis of green InGaN/GaN light-emitting diodes with the Si-doped graded short-period superlattice. J. Lumines 253, 119440 (2023). https://doi.org/10.1016/j.jlumin.2022.119440
- G.E. Weng, W.R. Zhao, S.Q. Chen, H. Akiyama, Z.C. Li et al., Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res. Lett. 10, 31 (2015). https://doi.org/10.1186/s11671-015-0772-z
- M. Zhang, A. Banerjee, C.S. Lee, J.M. Hinckley, P. Bhattacharya, A InGaN/GaN quantum dot green (λ=524 nm) laser. Appl. Phys. Lett. 98(22), 3 (2011). https://doi.org/10.1063/1.3596436
- H.C. Casey, M.B. Panish, Heterostructure Lasers, 1st edn. (Academic Press, New York, 1978), pp.110–186
- T. Frost, A. Banerjee, K. Sun, S.L. Chuang, P. Bhattacharya, InGaN/GaN quantum dot red (λ=630 nm) laser. IEEE J. Quantum Electron. 49(11), 923–931 (2013). https://doi.org/10.1109/jqe.2013.2281062
- A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J.X. Chen et al., Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots. Phys. Rev. B 70(20), 12 (2004). https://doi.org/10.1103/PhysRevB.70.205311
- Y.R. Wu, Y.Y. Lin, H.H. Huang, J. Singh, Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. J. Appl. Phys. 105(1), 7 (2009). https://doi.org/10.1063/1.3065274
- M. Zhang, P. Bhattacharya, W. Guo, InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 97(1), 3 (2010). https://doi.org/10.1063/1.3460921
- C.X. Xia, S.Y. Wei, Built-in electric field effect in wurtzite InGaN/GaN coupled quantum dots. Phys. Lett. A 346(1–3), 227–231 (2005). https://doi.org/10.1016/j.physleta.2005.07.078
- J.Z. Wu, H. Long, X.L. Shi, L.Y. Ying, Z.W. Zheng et al., Reduction of lasing threshold of GaN-based vertical-cavity surface-emitting lasers by using short cavity lengths. IEEE Trans. Electron Devices 65(6), 2504–2508 (2018). https://doi.org/10.1109/ted.2018.2825992
- H. Yokoyama, S.D. Brorson, Rate equation analysis of microcavity lasers. J. Appl. Phys. 66(10), 4801–4805 (1989). https://doi.org/10.1063/1.343793
- W.J. Liu, X.L. Hu, L.Y. Ying, S.Q. Chen, J.Y. Zhang et al., On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers. Sci. Rep. 5, 9600 (2015). https://doi.org/10.1038/srep09600
- L. Tien-Chang, W. Tzeng-Tsong, C. Shih-Wei, T. Po-Min, L. Zhen-Yu et al., Characteristics of current-injected GaN-based vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 17(6), 1594–1602 (2011). https://doi.org/10.1109/jstqe.2011.2116771
- T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani et al., Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science 285(5435), 1905–1906 (1999). https://doi.org/10.1126/science.285.5435.1905
- T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi, T. Saitoh, Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors. Appl. Phys. Lett. 83(5), 830–832 (2003). https://doi.org/10.1063/1.1596728
- S. Kako, T. Someya, Y. Arakawa, Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser. Appl. Phys. Lett. 80(5), 722–724 (2002). https://doi.org/10.1063/1.1430855
- Y. Yamamoto, S. Machida, G. Björk, Micro-cavity semiconductor lasers with controlled spontaneous emission. Opt. Quantum Electron. 24(2), S215–S243 (1992). https://doi.org/10.1007/BF00625826
- H.D. Zhao, X.G. Zhu, N. Li, T.C. Gao, Spontaneous emission coupling factors in planar micro-cavity lasers with distributed Bragg reflectors. Opt. Quantum Electron. 35(13), 1165–1173 (2003). https://doi.org/10.1023/a:1027336030145
- G. Chen, A comparative-study on the thermal-characteristics of vertical-cavity surface-emitting lasers. J. Appl. Phys. 77(9), 4251–4258 (1995). https://doi.org/10.1063/1.359481
- M. Osinski, W. Nakwaski, Thermal-analysis of closely-packed 2-dimensional etched-well surface-emitting laser arrays. IEEE J. Sel. Top. Quantum Electron. 1(2), 681–696 (1995). https://doi.org/10.1109/2944.401258
- A.F. Charles, L. SeungGeun, C.Y. Erin, A.K. Jared, A.C. Daniel et al., Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers. Proc. SPIE 10532, 105321C (2018). https://doi.org/10.1117/12.2314885
References
K. Iga, Vertical-cavity surface-emitting laser: Its conception and evolution. Jpn. J. Appl. Phys. 47(1), 1–10 (2008). https://doi.org/10.1143/jjap.47.1
F. Koyama, Recent advances of vcsel photonics. J. Lightwave Technol. 24(12), 4502–4513 (2006). https://doi.org/10.1109/jlt.2006.886064
D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contact for low-threshold vertical-cavity lasers. Appl. Phys. Lett. 65(1), 97–99 (1994). https://doi.org/10.1063/1.113087
D. Bimberg, N.N. Ledentsov, J.A. Lott, Quantum-dot vertical-cavity surface-emitting lasers. MRS Bull. 27(7), 531–537 (2002). https://doi.org/10.1557/mrs2002.172
K. Iga, VCSEL: born small and grown big. Proc. SPIE 11263, 1126302 (2020). https://doi.org/10.1117/12.2554953
Y. Motegi, H. Soda, K. Iga, Surface-emitting GaInAsP/InP injection-laser with short cavity length. Electron. Lett. 18(11), 461–463 (1982). https://doi.org/10.1049/el:19820314
G.M. Yang, M.H. Macdougal, P.D. Dapkus, Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31(11), 886–888 (1995). https://doi.org/10.1049/el:19950610
T. Numai, T. Kawakami, T. Yoshikawa, M. Sugimoto, Y. Sugimoto et al., Record low-threshold current in microcavity surface-emitting laser. Jpn. J. Appl. Phys. 32(10B), L1533–L1534 (1993). https://doi.org/10.1143/jjap.32.L1533
J.L. Jewell, A. Scherer, S.L. McCall, Y.H. Lee, S. Walker et al., Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett. 25(17), 1123–1124 (1989). https://doi.org/10.1049/el:19890754
H.C. Yu, Z.W. Zheng, Y. Mei, R.B. Xu, J.P. Liu et al., Progress and prospects of GaN-based VCSEL from near UV to green emission. Prog. Quantum Electron. 57, 1–19 (2018). https://doi.org/10.1016/j.pquantelec.2018.02.001
T.C. Lu, S.W. Chen, T.T. Wu, P.M. Tu, C.K. Chen et al., Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature. Appl. Phys. Lett. 97(7), 3 (2010). https://doi.org/10.1063/1.3483133
R.T. Elafandy, J.H. Kang, C. Mi, T.K. Kim, J.S. Kwak et al., Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers. ACS Photonics 8(4), 1041–1047 (2021). https://doi.org/10.1021/acsphotonics.1c00211
G. Cosendey, A. Castiglia, G. Rossbach, J.F. Carlin, N. Grandjean, Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Appl. Phys. Lett. 101(15), 4 (2012). https://doi.org/10.1063/1.4757873
R.T. ElAfandy, J.H. Kang, B. Li, T.K. Kim, J.S. Kwak et al., Room-temperature operation of c-plane GaN vertical cavity surface emitting laser on conductive nanoporous distributed bragg reflector. Appl. Phys. Lett. 117(1), 011101 (2020). https://doi.org/10.1063/5.0012281
T.-C. Chang, S.-Y. Kuo, J.-T. Lian, K.-B. Hong, S.-C. Wang et al., High-temperature operation of GaN-based vertical-cavity surface-emitting lasers. Appl. Phys. Express 10(11), 112101 (2017). https://doi.org/10.7567/apex.10.112101
M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka et al., Enhancement of slope efficiency and output power in GaN -based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide. Appl. Phys. Lett. 112(11), 111104 (2018). https://doi.org/10.1063/1.5020229
J.T. Leonard, D.A. Cohen, B.P. Yonkee, R.M. Farrell, T. Margalith et al., Nonpolar III-Nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Appl. Phys. Lett. 107(1), 011102 (2015). https://doi.org/10.1063/1.4926365
Y. Higuchi, K. Omae, H. Matsumura, T. Mukai, Room-temperature CW lasing of a gan-based vertical-cavity surface-emitting laser by current injection. Appl. Phys. Express 1(12), 3 (2008). https://doi.org/10.1143/apex.1.121102
T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara et al., Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror. Appl. Phys. Express 12(4), 044004 (2019). https://doi.org/10.7567/1882-0786/ab03eb
T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka et al., Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature. IEEE J. Quantum Electron. 48(9), 1107–1112 (2012). https://doi.org/10.1109/JQE.2012.2203586
M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka et al., Watt-class blue vertical-cavity surface-emitting laser arrays. Appl. Phys. Express 12(9), 091004 (2019). https://doi.org/10.7567/1882-0786/ab3aa6
D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata et al., Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl. Phys. Express 4(7), 3 (2011). https://doi.org/10.1143/apex.4.072103
G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying et al., Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Opt. Express 24(14), 15546–15553 (2016). https://doi.org/10.1364/OE.24.015546
Y. Mei, G.E. Weng, B.P. Zhang, J.P. Liu, W. Hofmann et al., Quantum dot vertical-cavity surface-emitting lasers covering the “green gap.” Light-Sci. Appl. 6(1), e16199 (2017). https://doi.org/10.1038/lsa.2016.199
R. Xu, Y. Mei, H. Xu, L.Y. Ying, Z. Zheng et al., Green vertical-cavity surface-emitting lasers based on combination of blue-emitting quantum wells and cavity-enhanced recombination. IEEE Trans. Electron. Dev. 65(10), 4401–4406 (2018). https://doi.org/10.1109/ted.2018.2866406
T. Hamaguchi, Y. Hoshina, K. Hayashi, M. Tanaka, M. Ito et al., Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on (20–21) semi-polar GaN. Appl. Phys. Express 13(4), 5 (2020). https://doi.org/10.35848/1882-0786/ab7bc8
K. Terao, H. Nagai, D. Morita, S. Masui, T. Yanamoto et al., Blue and green GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN DBR. Proc. SPIE 11686, 116860E (2021). https://doi.org/10.1117/12.2574623
Y. Mei, R.B. Xu, L.Y. Ying, J.P. Liu, Z.W. Zheng et al., Room temperature continuous wave lasing of GaN-based green vertical-cavity surface-emitting lasers. Proc. SPIE 10918, 109181 (2019). https://doi.org/10.1117/12.2511293
H. Xu, Y. Mei, R.B. Xu, L.Y. Ying, X.L. Su et al., Green VCSELs based on nitride semiconductors. Jpn. J. Appl. Phys. 59, SO0803-SO816 (2020). https://doi.org/10.35848/1347-4065/ab9488
C.A. Forman, S. Lee, E.C. Young, J.A. Kearns, D.A. Cohen et al., Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact. Appl. Phys. Lett. 112(11), 5 (2018). https://doi.org/10.1063/1.5007746
S. Yamamoto, Y.J. Zhao, C.C. Pan, R.B. Chung, K. Fujito et al., High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20–21) GaN substrates. Appl. Phys. Express 3(12), 3 (2010). https://doi.org/10.1143/apex.3.122102
S. Schulz, E.P. O’Reilly, Theory of reduced built-in polarization field in nitride-based quantum dots. Phys. Rev. B 82(3), 033411 (2010). https://doi.org/10.1103/PhysRevB.82.033411
Y. Arakawa, Progress in GaN-based quantum dots for optoelectronics applications. IEEE J. Sel. Top. Quantum Electron. 8(4), 823–832 (2002). https://doi.org/10.1109/jstqe.2002.801675
N.N. Ledentsov, D. Bimberg, Z.I. Alferov, Progress in epitaxial growth and performance of quantum dot and quantum wire lasers. J. Lightwave Technol. 26(9–12), 1540–1555 (2008). https://doi.org/10.1109/jlt.2008.923645
R.C. Tao, Y. Arakawa, Impact of quantum dots on III-Nitride lasers: a theoretical calculation of threshold current densities. Jpn. J. Appl. Phys. 58, SCCC31 (2019). https://doi.org/10.7567/1347-4065/ab1068
C. Adelmann, J. Simon, G. Feuillet, N.T. Pelekanos, B. Daudin et al., Self-assembled InGaN quantum dots grown by molecular-beam epitaxy. Appl. Phys. Lett. 76(12), 1570–1572 (2000). https://doi.org/10.1063/1.126098
S.M. Lee, D.G. Cahill, Heat transport in thin dielectric films. J. Appl. Phys. 81(6), 2590–2595 (1997). https://doi.org/10.1063/1.363923
Y. Mei, R.B. Xu, H. Xu, L.Y. Ying, Z.W. Zheng et al., A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures. Semicond. Sci. Technol. 33(1), 10 (2018). https://doi.org/10.1088/1361-6641/aa90aa
Y.H. Chen, Y. Mei, H. Xu, R.B. Xu, L.Y. Ying et al., Improvement of thermal dissipation of GaN-based micro cavity light-emitting devices. IEEE Photonics Technol. Lett. 33(1), 19–22 (2021). https://doi.org/10.1109/lpt.2020.3040550
J.A. Kearns, J. Back, D.A. Cohen, S.P. Denbaars, S. Nakamura, Demonstration of blue semipolar (20–2—1) GaN-based vertical-cavity surface-emitting lasers. Opt. Express 27(17), 23707–23713 (2019). https://doi.org/10.1364/oe.27.023707
O. Mokhtari, A review: formation of voids in solder joint during the transient liquid phase bonding process-causes and solutions. Microelectron. Reliab. 98, 95–105 (2019). https://doi.org/10.1016/j.microrel.2019.04.024
R. Xu, Y. Mei, H. Xu, T. Yang, L. Ying et al., Effects of lateral optical confinement in GaN VCSELs with double dielectric DBRs. IEEE Photonics J. 12(2), 1–8 (2020). https://doi.org/10.1109/jphot.2020.2979564
Z.C. Li, J.P. Liu, M.X. Feng, K. Zhou, S.M. Zhang et al., Effects of matrix layer composition on the structural and optical properties of self-organized InGaN quantum dots. J. Appl. Phys. 114(9), 093105 (2013). https://doi.org/10.1063/1.4820935
Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller et al., “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 73(10), 1370–1372 (1998). https://doi.org/10.1063/1.122164
P. Li, H. Li, Z. Li, J. Kang, X. Yi et al., Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light-emitting diodes. J. Appl. Phys. 117(7), 073101 (2015). https://doi.org/10.1063/1.4906960
X. Hou, T. Yang, S.S. Fan, H. Xu, D. Iida et al., Improvement of optical properties of InGaN-based red multiple quantum wells. Opt. Express 31(11), 18567–18575 (2023). https://doi.org/10.1364/oe.488681
S. SaeidNahaei, J.D. Ha, J.S. Kim, J.S. Kim, G.H. Kim et al., Radiative emission mechanism analysis of green InGaN/GaN light-emitting diodes with the Si-doped graded short-period superlattice. J. Lumines 253, 119440 (2023). https://doi.org/10.1016/j.jlumin.2022.119440
G.E. Weng, W.R. Zhao, S.Q. Chen, H. Akiyama, Z.C. Li et al., Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res. Lett. 10, 31 (2015). https://doi.org/10.1186/s11671-015-0772-z
M. Zhang, A. Banerjee, C.S. Lee, J.M. Hinckley, P. Bhattacharya, A InGaN/GaN quantum dot green (λ=524 nm) laser. Appl. Phys. Lett. 98(22), 3 (2011). https://doi.org/10.1063/1.3596436
H.C. Casey, M.B. Panish, Heterostructure Lasers, 1st edn. (Academic Press, New York, 1978), pp.110–186
T. Frost, A. Banerjee, K. Sun, S.L. Chuang, P. Bhattacharya, InGaN/GaN quantum dot red (λ=630 nm) laser. IEEE J. Quantum Electron. 49(11), 923–931 (2013). https://doi.org/10.1109/jqe.2013.2281062
A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J.X. Chen et al., Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots. Phys. Rev. B 70(20), 12 (2004). https://doi.org/10.1103/PhysRevB.70.205311
Y.R. Wu, Y.Y. Lin, H.H. Huang, J. Singh, Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. J. Appl. Phys. 105(1), 7 (2009). https://doi.org/10.1063/1.3065274
M. Zhang, P. Bhattacharya, W. Guo, InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 97(1), 3 (2010). https://doi.org/10.1063/1.3460921
C.X. Xia, S.Y. Wei, Built-in electric field effect in wurtzite InGaN/GaN coupled quantum dots. Phys. Lett. A 346(1–3), 227–231 (2005). https://doi.org/10.1016/j.physleta.2005.07.078
J.Z. Wu, H. Long, X.L. Shi, L.Y. Ying, Z.W. Zheng et al., Reduction of lasing threshold of GaN-based vertical-cavity surface-emitting lasers by using short cavity lengths. IEEE Trans. Electron Devices 65(6), 2504–2508 (2018). https://doi.org/10.1109/ted.2018.2825992
H. Yokoyama, S.D. Brorson, Rate equation analysis of microcavity lasers. J. Appl. Phys. 66(10), 4801–4805 (1989). https://doi.org/10.1063/1.343793
W.J. Liu, X.L. Hu, L.Y. Ying, S.Q. Chen, J.Y. Zhang et al., On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers. Sci. Rep. 5, 9600 (2015). https://doi.org/10.1038/srep09600
L. Tien-Chang, W. Tzeng-Tsong, C. Shih-Wei, T. Po-Min, L. Zhen-Yu et al., Characteristics of current-injected GaN-based vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 17(6), 1594–1602 (2011). https://doi.org/10.1109/jstqe.2011.2116771
T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani et al., Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science 285(5435), 1905–1906 (1999). https://doi.org/10.1126/science.285.5435.1905
T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi, T. Saitoh, Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors. Appl. Phys. Lett. 83(5), 830–832 (2003). https://doi.org/10.1063/1.1596728
S. Kako, T. Someya, Y. Arakawa, Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser. Appl. Phys. Lett. 80(5), 722–724 (2002). https://doi.org/10.1063/1.1430855
Y. Yamamoto, S. Machida, G. Björk, Micro-cavity semiconductor lasers with controlled spontaneous emission. Opt. Quantum Electron. 24(2), S215–S243 (1992). https://doi.org/10.1007/BF00625826
H.D. Zhao, X.G. Zhu, N. Li, T.C. Gao, Spontaneous emission coupling factors in planar micro-cavity lasers with distributed Bragg reflectors. Opt. Quantum Electron. 35(13), 1165–1173 (2003). https://doi.org/10.1023/a:1027336030145
G. Chen, A comparative-study on the thermal-characteristics of vertical-cavity surface-emitting lasers. J. Appl. Phys. 77(9), 4251–4258 (1995). https://doi.org/10.1063/1.359481
M. Osinski, W. Nakwaski, Thermal-analysis of closely-packed 2-dimensional etched-well surface-emitting laser arrays. IEEE J. Sel. Top. Quantum Electron. 1(2), 681–696 (1995). https://doi.org/10.1109/2944.401258
A.F. Charles, L. SeungGeun, C.Y. Erin, A.K. Jared, A.C. Daniel et al., Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers. Proc. SPIE 10532, 105321C (2018). https://doi.org/10.1117/12.2314885