NH3-Induced In Situ Etching Strategy Derived 3D-Interconnected Porous MXene/Carbon Dots Films for High Performance Flexible Supercapacitors
Corresponding Author: Weiqing Yang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 231
Abstract
2D MXene (Ti3CNTx) has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity, ultra-high capacitance, and excellent flexibility. However, it suffers from a severe restacking problem during the electrode fabrication process, limiting the ion transport kinetics and the accessibility of ions in the electrodes, especially in the direction normal to the electrode surface. Herein, we report a NH3-induced in situ etching strategy to fabricate 3D-interconnected porous MXene/carbon dots (p-MC) films for high-performance flexible supercapacitor. The pre-intercalated carbon dots (CDs) first prevent the restacking of MXene to expose more inner electrochemical active sites. The partially decomposed CDs generate NH3 for in situ etching of MXene nanosheets toward 3D-interconnected p-MC films. Benefiting from the structural merits and the 3D-interconnected ionic transmission channels, p-MC film electrodes achieve excellent gravimetric capacitance (688.9 F g−1 at 2 A g−1) and superior rate capability. Moreover, the optimized p-MC electrode is assembled into an asymmetric solid-state flexible supercapacitor with high energy density and superior cycling stability, demonstrating the great promise of p-MC electrode for practical applications.
Highlights:
1 Porous MXene (p-MC) films with 3D-interconnected ion transmission paths are constructed by NH3-induced in situ etching strategy.
2 The flexible p-MC film electrodes exhibit a superior capacitance of 688.9 F g−1 with a good rate capability.
3 The as-assembled p-MC solid-state flexible supercapacitors reveal superior electrochemical performance (99.7 F g−1 at 1 A g−1) and excellent flexibility.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.T. Zhang, W.C. Wang, Y.W. Jiang, Y.X. Wang, Y.L. Wu et al., High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624–630 (2022). https://doi.org/10.1038/s41586-022-04400-1
- X.J. Meng, C.C. Cai, B. Luo, T. Liu, Y.Z. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15, 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
- C.W. Zhi, S. Shi, S. Zhang, Y.F. Si, J.Q. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- Y.F. Cheng, Y.M. Xie, Z.Y. Liu, S.W. Yan, Y.N. Ma et al., Maximizing electron channels enabled by MXene aerogel for high-performance self-healable flexible electronic skin. ACS Nano 17, 1393–1042 (2023). https://doi.org/10.1021/acsnano.2c09933
- X. Zhao, Z. Zhang, Q.L. Liao, X.C. Xun, F.F. Gao et al., Self-powered user-interactive electronic skin for programmable touch operation platform. Sci. Adv. 6, eaba294 (2020). https://doi.org/10.1126/sciadv.aba4294
- Y.F. Zhang, Z.S. Xu, Y. Yuan, C.Y. Liu, M. Zhang et al., Flexible antiswelling hotothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing. Adv. Funct. Mater. 33, 2300299 (2023). https://doi.org/10.1002/adfm.202300299
- D.D. Zhang, J.H. Du, W.M. Zhang, B. Tong, Y. Sun et al., Carrier transport regulation of pixel graphene transparent electrodes for active-matrix organic light-emitting diode display. Small (2023). https://doi.org/10.1002/smll.202302920
- S.K. Kim, G.H. Lee, C. Jeon, H.H. Han, S.J. Kim et al., Bimetallic nanocatalysts immobilized in nanoporous hydrogels for long-term robust continuous glucose monitoring of smart contact lens. Adv. Mater. 34, e2110536 (2022). https://doi.org/10.1002/adma.202110536
- K.K. Meng, X.H. Xiao, Z.H. Liu, S.H. Shen, T.J. Tat et al., Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv. Mater. 34, e2202478 (2022). https://doi.org/10.1002/adma.202202478
- H.T. Yang, J.L. Li, X. Xiao, J.H. Wang, Y.F. Li et al., Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 13, 5311 (2022). https://doi.org/10.1038/s41467-022-33021-5
- Y. Lin, Q. Kang, Y.J. Liu, Y.K. Zhu, P.K. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- T. Cheng, X.L. Yang, S. Yang, L. Li, Z.T. Liu et al., Flexible transparent bifunctional capacitive sensors with superior areal capacitance and sensing capability based on PEDOT:PSS/MXene/Ag grid hybrid electrodes. Adv. Funct. Mater. 33, 2210997 (2022). https://doi.org/10.1002/adfm.202210997
- J. Liang, B. Tian, S.Q. Li, C.Z. Jiang, W. Wu, All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 10, 2000022 (2020). https://doi.org/10.1002/aenm.202000022
- J.H. Wang, D.G. Jiang, Y.Q. Du, M.Z. Zhang, Y.S. Sun et al., Strong Ti3C2Tx MXene-based composite films fabricated through bioinspired bridging for flexible Energy storage devices. Small (2023). https://doi.org/10.1002/smll.202303043
- T. Xu, Q. Song, K. Liu, H.Y. Liu, J.J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- D. Wang, C.K. Zhou, A.S. Filatov, W.J. Cho, F. Lagunas et al., Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 379, 1242–1247 (2023). https://doi.org/10.1126/science.add9204
- S.-U. Chae, S.H. Yi, J. Yoon, J.C. Hyun, S. Doo et al., Highly defective Ti3CNT -MXene-based fiber membrane anode for lithium metal batteries. Energy Stor. Mater. 52, 76–84 (2022). https://doi.org/10.1016/j.ensm.2022.07.025
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eavf1581 (2021). https://doi.org/10.1126/science.abf1581
- S. Seenivasan, K.I. Shim, C. Lim, T. Kavinkumar, A.T. Sivagurunathan et al., Boosting pseudocapacitive behavior of supercapattery electrodes by incorporating a schottky junction for ultrahigh energy density. Nano-Micro Lett. 15, 62 (2023). https://doi.org/10.1007/s40820-023-01016-6
- X.Y. Xu, Z.N. Zhang, R. Xiong, G.D. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice:"nano-hourglass"-induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15, 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
- M. Boota, Y. Gogotsi, MXene—conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9, 1802917 (2018). https://doi.org/10.1002/aenm.201802917
- B. Shi, L. Li, A.B. Chen, T.C. Jen, X.Y. Liu et al., Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with Improved Performance. Nano-Micro Lett. 14, 34 (2021). https://doi.org/10.1007/s40820-021-00757-6
- Y.M. Wang, X. Wang, X.L. Li, Y. Bai, H.H. Xiao et al., Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29, 1900326 (2019). https://doi.org/10.1002/adfm.201900326
- H.H. Huang, X. Chu, Y.T. Xie, B.B. Zhang, Z.X. Wang et al., Ti3C2Tx MXene-based micro-supercapacitors with ultrahigh volumetric energy density for all-in-one Si-electronics. ACS Nano 16, 3776–3784 (2022). https://doi.org/10.1021/acsnano.1c08172
- L. Wang, Z.L. Ma, H. Qiu, Y.L. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14, 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
- Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, e1707334 (2018). https://doi.org/10.1002/adma.201707334
- L. Jiao, C. Zhang, C.N. Geng, S.C. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9, 1900319 (2019). https://doi.org/10.1002/aenm.201900219
- C. Chen, X.Q. Xie, B. Anasori, A. Sarycheva, T. Makaryan et al., MoS2 -on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 1846–1850 (2018). https://doi.org/10.1002/anie.201710616
- C.Y. Cai, W.B. Zhou, Y. Fu, Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem. Eng. J. 418, 129275 (2021). https://doi.org/10.1016/j.cej.2021.129275
- M.S. Zhu, Y. Huang, Q.H. Deng, J. Zhou, Z.G. Pei et al., Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969 (2016). https://doi.org/10.1002/aenm.201600969
- S.H. Wei, J.L. Ma, D.L. Wu, B. Chen, C.Y. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
- P. Zhang, J.P. Li, D.Y. Yang, R.A. Soomro, B. Xu, Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv. Funct. Mater. 33, 2209918 (2022). https://doi.org/10.1002/adfm.202209918
- M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
- Y. Yue, N.H. Liu, Y.N. Ma, S.L. Wang, W.J. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12, 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
- Y.S. Wang, Y.P. Cui, D.Q. Kong, X.N. Wang, B. Li et al., Stimulation of surface terminating group by carbon quantum dots for improving pseudocapacitance of Ti3C2Tx MXene based electrode. Carbon 180, 118–126 (2021). https://doi.org/10.1016/j.carbon.2021.04.089
- M.R. Lukatskaya, S. Kota, Z.F. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- W.Z. Bao, X. Tang, X. Guo, S.H. Choi, C.Y. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2, 1–10 (2018). https://doi.org/10.1016/j.joule.2018.02.018
- F.X. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803
- T.Y. Liu, F. Zhang, Y. Song, Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017). https://doi.org/10.1039/c7ta05646j
- N.J. Chen, Y.H. Zhou, S.L. Zhang, H.C. Huang, C.F. Zhang et al., Tailoring Ti3CNTx MXene via an acid molecular scissor. Nano Energy 85, 106007 (2021). https://doi.org/10.1016/j.nanoen.2021.106007
- M.Y. Sun, S.N. Qu, Z.D. Hao, W.Y. Ji, P.T. Jing et al., Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites. Nanoscale 6, 13076–13081 (2014). https://doi.org/10.1039/c4nr04034a
- Y.C. Zhai, Y. Wang, D. Li, D. Zhou, P.T. Jing et al., Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92. J. Colloid Interface Sci. 528, 281–288 (2018). https://doi.org/10.1016/j.jcis.2018.05.101
- X. Chu, Y.H. Wang, L.C. Cai, H.C. Huang, Z. Xu et al., Boosting the energy density of aqueous MXene-based supercapacitor by integrating 3D conducting polymer hydrogel cathode. SusMat 2, 379–390 (2022). https://doi.org/10.1002/sus2.61
- Y.B. Wang, N.J. Chen, Y. Liu, X.F. Zhou, B. Pu et al., MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor. Chem. Eng. J. 450, 138398 (2022). https://doi.org/10.1016/j.cej.2022.138398
- D. Wang, C.K. Zhou, A.S. Filatov, W. Cho, F. Lagunas et al., Direct synthesis and chemical vapor deposition of 2Dcarbide and nitride MXenes. Science 379, 1242–1247 (2023). https://doi.org/10.1126/science.add9204
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- Q.Y. Yang, Z. Xu, B. Fang, T.Q. Huang, S.Y. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017). https://doi.org/10.1039/c7ta07999k
- N.J. Chen, H.C. Huang, Z. Xu, Y.T. Xie, D. Xiong et al., From high-yield Ti3AlCN ceramics to high-quality Ti3CNTx MXenes through eliminating Al segregation. Chin. Chem. Lett. 31, 1044–1048 (2020). https://doi.org/10.1016/j.cclet.2019.10.004
- H. Luo, Y.S. Yang, L.W. Lu, G.X. Li, X.H. Wang et al., Highly-dispersed nano-TiB2 derived from the two-dimensional Ti3CN MXene for tailoring the kinetics and reversibility of the Li-Mg-B-H hydrogen storage material. Appl. Surf. Sci. 610, 155581 (2023). https://doi.org/10.1016/j.apsusc.2022.155581
- J.W. Zhu, M. Wang, M.Q. Lyu, Y.L. Jiao, A.J. Du et al., Two-Dimensional titanium carbonitride MXene for High-Performance sodium ion Batteries. ACS Appl. Nano Mater. 1, 6854–6863 (2018). https://doi.org/10.1021/acsanm.8b01330
- Y. Song, Y.B. Wang, Y.X. Zhao, L.L. Cheng, G.F. Han et al., Lattice distorted rhodium nanocrystals in porous nanofiber toward aqueous zinc-CO2 system. ACS Mater. Lett. 5, 1271–1280 (2023). https://doi.org/10.1021/acsmaterialslett.3c00132
- K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori et al., Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31, 2941–2951 (2019). https://doi.org/10.1021/acs.chemmater.9b00401
- W. Jindata, K. Hantanasirisakul, T. Eknapakul, J.D. Denlinger, S. Sangphet et al., Spectroscopic signature of negative electronic compressibility from the Ti core-level of titanium carbonitride MXene. Appl. Phys. Rev. 8, 021401 (2021). https://doi.org/10.1063/5.0039918
- B.L. Zhang, Z.J. Ju, Q.F. Xie, J.M. Luo, L. Du et al., Ti3CNTx MXene/rGO scaffolds directing the formation of a robust, layered SEI toward high-rate and long-cycle lithium metal batteries. Energy Stor. Mater. 58, 322–331 (2023). https://doi.org/10.1016/j.ensm.2023.03.030
- M. Ma, Y.H. Bai, X.D. Song, J.F. Wang, W.G. Su et al., Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG-MS. Sci. Total. Environ. 728, 138828 (2020). https://doi.org/10.1016/j.scitotenv.2020.138828
- S. Paulose, D. Thomas, T. Jayalatha, R. Rajeev, B.K. George, TG–MS study on the kinetics and mechanism of thermal decomposition of copper ethylamine chromate, a new precursor for copper chromite catalyst. J. Therm. Anal. Calorim. 124, 1099–1108 (2016). https://doi.org/10.1007/s10973-015-5207-7
- V. Strauss, H.Z. Wang, S. Delacroix, M. Ledendecker, P. Wessig, Carbon nanodots revised: the thermal citric acid/urea reaction. Chem. Sci. 11, 8256–8266 (2020). https://doi.org/10.1039/d0sc01605e
- L. Tian, T.T. Liu, J.Z. Yang, H.Y. Yang, Z.W. Liu et al., Pyrolytic kinetics, reaction mechanisms and gas emissions of waste automotive paint sludge via TG-FTIR and Py-GC/MS. J. Environ. Manage. 328, 116962 (2023). https://doi.org/10.1016/j.jenvman.2022.116962
- V. Volli, R. Varma, D. Pradhan, A.K. Panda, R.K. Singh et al., Thermal degradation behaviour, kinetics, and thermodynamics of Bombax Malabarica seeds through TG-FTIR and Py-GC/MS analysis. Sustain. Energy Tech. 57, 103150 (2023). https://doi.org/10.1016/j.seta.2023.103150
- Y. Wang, Q. Lu, F. Li, D. Guan, Y. Bu, Atomic-scale configuration enables fast hydrogen migration for electrocatalysis of acidic hydrogen evolution. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202213523
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3-x with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010). https://doi.org/10.1038/nmat2612
- H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16, 454–460 (2017). https://doi.org/10.1038/nmat4810
- K. Ghosh, M. Pumera, MXene and MoS3-x coated 3D-Printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods 5, e2100451 (2021). https://doi.org/10.1002/smtd.202100451
- Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043
- W.H. Liu, Z.Q. Wang, Y.L. Su, Q.W. Li, Z.G. Zhao et al., Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 7, 1602834 (2017). https://doi.org/10.1002/aenm.201602834
- Z.H. Pan, X.H. Ji, Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors. J. Power. Sour. 439, 227068 (2019). https://doi.org/10.1016/j.jpowsour.2019.227068
- X. Wang, H. Li, H. Li, S. Lin, W. Ding et al., 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30, 1910302 (2020). https://doi.org/10.1002/adfm.201910302
- Y.M. Wang, X. Wang, X.F. Li, X.L. Li, Y. Liu et al., A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv. Funct. Mater. 31, 2008185 (2020). https://doi.org/10.1002/adfm.202008185
- L. Yang, W. Zheng, P. Zhang, J. Chen, W. Zhang et al., Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochim. Acta 300, 349–356 (2019). https://doi.org/10.1016/j.electacta.2019.01.122
References
Z.T. Zhang, W.C. Wang, Y.W. Jiang, Y.X. Wang, Y.L. Wu et al., High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624–630 (2022). https://doi.org/10.1038/s41586-022-04400-1
X.J. Meng, C.C. Cai, B. Luo, T. Liu, Y.Z. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15, 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
C.W. Zhi, S. Shi, S. Zhang, Y.F. Si, J.Q. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
Y.F. Cheng, Y.M. Xie, Z.Y. Liu, S.W. Yan, Y.N. Ma et al., Maximizing electron channels enabled by MXene aerogel for high-performance self-healable flexible electronic skin. ACS Nano 17, 1393–1042 (2023). https://doi.org/10.1021/acsnano.2c09933
X. Zhao, Z. Zhang, Q.L. Liao, X.C. Xun, F.F. Gao et al., Self-powered user-interactive electronic skin for programmable touch operation platform. Sci. Adv. 6, eaba294 (2020). https://doi.org/10.1126/sciadv.aba4294
Y.F. Zhang, Z.S. Xu, Y. Yuan, C.Y. Liu, M. Zhang et al., Flexible antiswelling hotothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing. Adv. Funct. Mater. 33, 2300299 (2023). https://doi.org/10.1002/adfm.202300299
D.D. Zhang, J.H. Du, W.M. Zhang, B. Tong, Y. Sun et al., Carrier transport regulation of pixel graphene transparent electrodes for active-matrix organic light-emitting diode display. Small (2023). https://doi.org/10.1002/smll.202302920
S.K. Kim, G.H. Lee, C. Jeon, H.H. Han, S.J. Kim et al., Bimetallic nanocatalysts immobilized in nanoporous hydrogels for long-term robust continuous glucose monitoring of smart contact lens. Adv. Mater. 34, e2110536 (2022). https://doi.org/10.1002/adma.202110536
K.K. Meng, X.H. Xiao, Z.H. Liu, S.H. Shen, T.J. Tat et al., Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv. Mater. 34, e2202478 (2022). https://doi.org/10.1002/adma.202202478
H.T. Yang, J.L. Li, X. Xiao, J.H. Wang, Y.F. Li et al., Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 13, 5311 (2022). https://doi.org/10.1038/s41467-022-33021-5
Y. Lin, Q. Kang, Y.J. Liu, Y.K. Zhu, P.K. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
T. Cheng, X.L. Yang, S. Yang, L. Li, Z.T. Liu et al., Flexible transparent bifunctional capacitive sensors with superior areal capacitance and sensing capability based on PEDOT:PSS/MXene/Ag grid hybrid electrodes. Adv. Funct. Mater. 33, 2210997 (2022). https://doi.org/10.1002/adfm.202210997
J. Liang, B. Tian, S.Q. Li, C.Z. Jiang, W. Wu, All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 10, 2000022 (2020). https://doi.org/10.1002/aenm.202000022
J.H. Wang, D.G. Jiang, Y.Q. Du, M.Z. Zhang, Y.S. Sun et al., Strong Ti3C2Tx MXene-based composite films fabricated through bioinspired bridging for flexible Energy storage devices. Small (2023). https://doi.org/10.1002/smll.202303043
T. Xu, Q. Song, K. Liu, H.Y. Liu, J.J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
D. Wang, C.K. Zhou, A.S. Filatov, W.J. Cho, F. Lagunas et al., Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 379, 1242–1247 (2023). https://doi.org/10.1126/science.add9204
S.-U. Chae, S.H. Yi, J. Yoon, J.C. Hyun, S. Doo et al., Highly defective Ti3CNT -MXene-based fiber membrane anode for lithium metal batteries. Energy Stor. Mater. 52, 76–84 (2022). https://doi.org/10.1016/j.ensm.2022.07.025
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eavf1581 (2021). https://doi.org/10.1126/science.abf1581
S. Seenivasan, K.I. Shim, C. Lim, T. Kavinkumar, A.T. Sivagurunathan et al., Boosting pseudocapacitive behavior of supercapattery electrodes by incorporating a schottky junction for ultrahigh energy density. Nano-Micro Lett. 15, 62 (2023). https://doi.org/10.1007/s40820-023-01016-6
X.Y. Xu, Z.N. Zhang, R. Xiong, G.D. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice:"nano-hourglass"-induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15, 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
M. Boota, Y. Gogotsi, MXene—conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9, 1802917 (2018). https://doi.org/10.1002/aenm.201802917
B. Shi, L. Li, A.B. Chen, T.C. Jen, X.Y. Liu et al., Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with Improved Performance. Nano-Micro Lett. 14, 34 (2021). https://doi.org/10.1007/s40820-021-00757-6
Y.M. Wang, X. Wang, X.L. Li, Y. Bai, H.H. Xiao et al., Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29, 1900326 (2019). https://doi.org/10.1002/adfm.201900326
H.H. Huang, X. Chu, Y.T. Xie, B.B. Zhang, Z.X. Wang et al., Ti3C2Tx MXene-based micro-supercapacitors with ultrahigh volumetric energy density for all-in-one Si-electronics. ACS Nano 16, 3776–3784 (2022). https://doi.org/10.1021/acsnano.1c08172
L. Wang, Z.L. Ma, H. Qiu, Y.L. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14, 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, e1707334 (2018). https://doi.org/10.1002/adma.201707334
L. Jiao, C. Zhang, C.N. Geng, S.C. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9, 1900319 (2019). https://doi.org/10.1002/aenm.201900219
C. Chen, X.Q. Xie, B. Anasori, A. Sarycheva, T. Makaryan et al., MoS2 -on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 1846–1850 (2018). https://doi.org/10.1002/anie.201710616
C.Y. Cai, W.B. Zhou, Y. Fu, Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem. Eng. J. 418, 129275 (2021). https://doi.org/10.1016/j.cej.2021.129275
M.S. Zhu, Y. Huang, Q.H. Deng, J. Zhou, Z.G. Pei et al., Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969 (2016). https://doi.org/10.1002/aenm.201600969
S.H. Wei, J.L. Ma, D.L. Wu, B. Chen, C.Y. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
P. Zhang, J.P. Li, D.Y. Yang, R.A. Soomro, B. Xu, Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv. Funct. Mater. 33, 2209918 (2022). https://doi.org/10.1002/adfm.202209918
M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
Y. Yue, N.H. Liu, Y.N. Ma, S.L. Wang, W.J. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12, 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
Y.S. Wang, Y.P. Cui, D.Q. Kong, X.N. Wang, B. Li et al., Stimulation of surface terminating group by carbon quantum dots for improving pseudocapacitance of Ti3C2Tx MXene based electrode. Carbon 180, 118–126 (2021). https://doi.org/10.1016/j.carbon.2021.04.089
M.R. Lukatskaya, S. Kota, Z.F. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
W.Z. Bao, X. Tang, X. Guo, S.H. Choi, C.Y. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2, 1–10 (2018). https://doi.org/10.1016/j.joule.2018.02.018
F.X. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803
T.Y. Liu, F. Zhang, Y. Song, Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017). https://doi.org/10.1039/c7ta05646j
N.J. Chen, Y.H. Zhou, S.L. Zhang, H.C. Huang, C.F. Zhang et al., Tailoring Ti3CNTx MXene via an acid molecular scissor. Nano Energy 85, 106007 (2021). https://doi.org/10.1016/j.nanoen.2021.106007
M.Y. Sun, S.N. Qu, Z.D. Hao, W.Y. Ji, P.T. Jing et al., Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites. Nanoscale 6, 13076–13081 (2014). https://doi.org/10.1039/c4nr04034a
Y.C. Zhai, Y. Wang, D. Li, D. Zhou, P.T. Jing et al., Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92. J. Colloid Interface Sci. 528, 281–288 (2018). https://doi.org/10.1016/j.jcis.2018.05.101
X. Chu, Y.H. Wang, L.C. Cai, H.C. Huang, Z. Xu et al., Boosting the energy density of aqueous MXene-based supercapacitor by integrating 3D conducting polymer hydrogel cathode. SusMat 2, 379–390 (2022). https://doi.org/10.1002/sus2.61
Y.B. Wang, N.J. Chen, Y. Liu, X.F. Zhou, B. Pu et al., MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor. Chem. Eng. J. 450, 138398 (2022). https://doi.org/10.1016/j.cej.2022.138398
D. Wang, C.K. Zhou, A.S. Filatov, W. Cho, F. Lagunas et al., Direct synthesis and chemical vapor deposition of 2Dcarbide and nitride MXenes. Science 379, 1242–1247 (2023). https://doi.org/10.1126/science.add9204
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
Q.Y. Yang, Z. Xu, B. Fang, T.Q. Huang, S.Y. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017). https://doi.org/10.1039/c7ta07999k
N.J. Chen, H.C. Huang, Z. Xu, Y.T. Xie, D. Xiong et al., From high-yield Ti3AlCN ceramics to high-quality Ti3CNTx MXenes through eliminating Al segregation. Chin. Chem. Lett. 31, 1044–1048 (2020). https://doi.org/10.1016/j.cclet.2019.10.004
H. Luo, Y.S. Yang, L.W. Lu, G.X. Li, X.H. Wang et al., Highly-dispersed nano-TiB2 derived from the two-dimensional Ti3CN MXene for tailoring the kinetics and reversibility of the Li-Mg-B-H hydrogen storage material. Appl. Surf. Sci. 610, 155581 (2023). https://doi.org/10.1016/j.apsusc.2022.155581
J.W. Zhu, M. Wang, M.Q. Lyu, Y.L. Jiao, A.J. Du et al., Two-Dimensional titanium carbonitride MXene for High-Performance sodium ion Batteries. ACS Appl. Nano Mater. 1, 6854–6863 (2018). https://doi.org/10.1021/acsanm.8b01330
Y. Song, Y.B. Wang, Y.X. Zhao, L.L. Cheng, G.F. Han et al., Lattice distorted rhodium nanocrystals in porous nanofiber toward aqueous zinc-CO2 system. ACS Mater. Lett. 5, 1271–1280 (2023). https://doi.org/10.1021/acsmaterialslett.3c00132
K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori et al., Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31, 2941–2951 (2019). https://doi.org/10.1021/acs.chemmater.9b00401
W. Jindata, K. Hantanasirisakul, T. Eknapakul, J.D. Denlinger, S. Sangphet et al., Spectroscopic signature of negative electronic compressibility from the Ti core-level of titanium carbonitride MXene. Appl. Phys. Rev. 8, 021401 (2021). https://doi.org/10.1063/5.0039918
B.L. Zhang, Z.J. Ju, Q.F. Xie, J.M. Luo, L. Du et al., Ti3CNTx MXene/rGO scaffolds directing the formation of a robust, layered SEI toward high-rate and long-cycle lithium metal batteries. Energy Stor. Mater. 58, 322–331 (2023). https://doi.org/10.1016/j.ensm.2023.03.030
M. Ma, Y.H. Bai, X.D. Song, J.F. Wang, W.G. Su et al., Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG-MS. Sci. Total. Environ. 728, 138828 (2020). https://doi.org/10.1016/j.scitotenv.2020.138828
S. Paulose, D. Thomas, T. Jayalatha, R. Rajeev, B.K. George, TG–MS study on the kinetics and mechanism of thermal decomposition of copper ethylamine chromate, a new precursor for copper chromite catalyst. J. Therm. Anal. Calorim. 124, 1099–1108 (2016). https://doi.org/10.1007/s10973-015-5207-7
V. Strauss, H.Z. Wang, S. Delacroix, M. Ledendecker, P. Wessig, Carbon nanodots revised: the thermal citric acid/urea reaction. Chem. Sci. 11, 8256–8266 (2020). https://doi.org/10.1039/d0sc01605e
L. Tian, T.T. Liu, J.Z. Yang, H.Y. Yang, Z.W. Liu et al., Pyrolytic kinetics, reaction mechanisms and gas emissions of waste automotive paint sludge via TG-FTIR and Py-GC/MS. J. Environ. Manage. 328, 116962 (2023). https://doi.org/10.1016/j.jenvman.2022.116962
V. Volli, R. Varma, D. Pradhan, A.K. Panda, R.K. Singh et al., Thermal degradation behaviour, kinetics, and thermodynamics of Bombax Malabarica seeds through TG-FTIR and Py-GC/MS analysis. Sustain. Energy Tech. 57, 103150 (2023). https://doi.org/10.1016/j.seta.2023.103150
Y. Wang, Q. Lu, F. Li, D. Guan, Y. Bu, Atomic-scale configuration enables fast hydrogen migration for electrocatalysis of acidic hydrogen evolution. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202213523
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3-x with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010). https://doi.org/10.1038/nmat2612
H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16, 454–460 (2017). https://doi.org/10.1038/nmat4810
K. Ghosh, M. Pumera, MXene and MoS3-x coated 3D-Printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods 5, e2100451 (2021). https://doi.org/10.1002/smtd.202100451
Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043
W.H. Liu, Z.Q. Wang, Y.L. Su, Q.W. Li, Z.G. Zhao et al., Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 7, 1602834 (2017). https://doi.org/10.1002/aenm.201602834
Z.H. Pan, X.H. Ji, Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors. J. Power. Sour. 439, 227068 (2019). https://doi.org/10.1016/j.jpowsour.2019.227068
X. Wang, H. Li, H. Li, S. Lin, W. Ding et al., 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30, 1910302 (2020). https://doi.org/10.1002/adfm.201910302
Y.M. Wang, X. Wang, X.F. Li, X.L. Li, Y. Liu et al., A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv. Funct. Mater. 31, 2008185 (2020). https://doi.org/10.1002/adfm.202008185
L. Yang, W. Zheng, P. Zhang, J. Chen, W. Zhang et al., Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochim. Acta 300, 349–356 (2019). https://doi.org/10.1016/j.electacta.2019.01.122