A Broad Range Triboelectric Stiffness Sensor for Variable Inclusions Recognition
Corresponding Author: Wenbo Ding
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 233
Abstract
With the development of artificial intelligence, stiffness sensors are extensively utilized in various fields, and their integration with robots for automated palpation has gained significant attention. This study presents a broad range self-powered stiffness sensor based on the triboelectric nanogenerator (Stiff-TENG) for variable inclusions in soft objects detection. The Stiff-TENG employs a stacked structure comprising an indium tin oxide film, an elastic sponge, a fluorinated ethylene propylene film with a conductive ink electrode, and two acrylic pieces with a shielding layer. Through the decoupling method, the Stiff-TENG achieves stiffness detection of objects within 1.0 s. The output performance and characteristics of the TENG for different stiffness objects under 4 mm displacement are analyzed. The Stiff-TENG is successfully used to detect the heterogeneous stiffness structures, enabling effective recognition of variable inclusions in soft object, reaching a recognition accuracy of 99.7%. Furthermore, its adaptability makes it well-suited for the detection of pathological conditions within the human body, as pathological tissues often exhibit changes in the stiffness of internal organs. This research highlights the innovative applications of TENG and thereby showcases its immense potential in healthcare applications such as palpation which assesses pathological conditions based on organ stiffness.
Highlights:
1 We propose a broad range triboelectric sensor system employing elastic sponge and shielding layers, which can realize fast stiffness recognition within 1.0 s at a low cost.
2 A novel algorithm is proposed for rapid stiffness identification by extracting signal characteristics, effectively reducing demand of computing resources.
3 The proposed sensor system can identify the multi-layer stiffness structure of objects, enabling effective recognition of variable inclusions in soft objects with an accuracy of 99.7%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Guo, J. Chen, Y. Meng, M. Yeh, G. Liu et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3, eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
- T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
- K. Li, R. Yuasa, R. Utaki, M. Sun, Y. Tokumoto et al., Robot-assisted, source-camera-coupled multi-view broadband imagers for ubiquitous sensing platform. Nat. Commun. 12, 3009 (2021). https://doi.org/10.1038/s41467-021-23089-w
- S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa et al., Autonomous robotic searching and assembly of two-dimensional crystals to build van der waals superlattices. Nat. Commun. 9, 1413 (2018). https://doi.org/10.1038/s41467-018-03723-w
- Q. Shi, Z. Sun, X. Le, J. Xie, C. Lee, Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence. ACS Nano 17, 4985–4998 (2023). https://doi.org/10.1021/acsnano.2c12592
- Z. Sun, M. Zhu, Z. Zhang, Z. Chen, Q. Shi et al., Artificial intelligence of things (aiot) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 8, 2100230 (2021). https://doi.org/10.1002/advs.202100230
- C. Zhou, Y. Yang, J. Wang, Q. Wu, Z. Gu et al., Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021). https://doi.org/10.1038/s41467-021-25386-w
- K.A. Nichols, A.M. Okamura, Autonomous robotic palpation machine learning techniques to identify hard inclusions in soft tissues (ICRA, Karlsruhe, 2013)
- M. Beccani, C.D. Natali, M.E. Rentschler, P. Valdastri, Wireless tissue palpation proof of concept for a single degree of freedom (ICRA, Karlsruhe, 2013)
- S.M.H. Sadati, A. Shiva, N. Herzig, C.D. Rucker, H. Hauser et al., Stiffness imaging with a continuum appendage: real-time shape and tip force estimation from base load readings. IEEE Robot. Autom. Lett. 5, 2824–2831 (2020). https://doi.org/10.1109/lra.2020.2972790
- P. Chalasani, L. Wang, R. Roy, N. Simaan, R.H. Taylor et al., Concurrent nonparametric estimation of organ geometry and tissue stiffness using continuous adaptive palpation (ICRA, Stockholm, 2016)
- H. Hertz, The Contact of Elastic Solids (J Reine Angew, Math, 1881), pp. 156–171.
- J. Cao, J. Huang, A. Rosendo, Variable stiffness object recognition with bayesian convolutional neural network on a soft gripper (IROS, Kyoto, 2022)
- J. Huang, A. Rosendo, Variable stiffness object recognition with a cnn-bayes classifier on a soft gripper. Soft Robot. 9, 1220–1231 (2022). https://doi.org/10.1089/soro.2021.0105
- T. Nonaka, A. Abdulali, C. Sirithunge, K. Gilday, F. Iida, Soft robotic tactile perception of softer objects based on learning of spatiotemporal pressure patterns (RoboSoft, Singapore, 2023)
- Y. Qiu, S. Sun, X. Wang, K. Shi, Z. Wang et al., Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. npj Flex. Electron. 6, 45 (2022). https://doi.org/10.1038/s41528-022-00181-9
- L. Vargas, H. Shin, H.H. Huang, Y. Zhu, X. Hu, Object stiffness recognition using haptic feedback delivered through transcutaneous proximal nerve stimulation. J. Neural Eng. 17, 016002 (2019). https://doi.org/10.1088/1741-2552/ab4d99
- Q.-S. Zhang, S.-C. Zhu, Visual interpretability for deep learning: a survey. Front. Inf. Technol. Electron. Eng. 19, 27–39 (2018). https://doi.org/10.1631/fitee.1700808
- X. Li, H. Xiong, X. Li, X. Wu, X. Zhang et al., Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowl Inf. Syst. 64, 3197–3234 (2022). https://doi.org/10.1007/s10115-022-01756-8
- Z. Cui, W. Wang, L. Guo, Z. Liu, P. Cai et al., Haptically quantifying young’s modulus of soft materials using a self-locked stretchable strain sensor. Adv. Mater. 34, 2104078 (2022). https://doi.org/10.1002/adma.202104078
- Z. Cui, W. Wang, H. Xia, C. Wang, J. Tu et al., Freestanding and scalable force-softness bimodal sensor arrays for haptic body-feature identification. Adv. Mater. 34, 2207016 (2022). https://doi.org/10.1002/adma.202207016
- L. Li, S. Zhao, W. Ran, Z. Li, Y. Yan et al., Dual sensing signal decoupling based on tellurium anisotropy for vr interaction and neuro-reflex system application. Nat. Commun. 13, 5975 (2022). https://doi.org/10.1038/s41467-022-33716-9
- F.-R. Fan, Z.-Q. Tian, Z. Lin Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015). https://doi.org/10.1039/c5ee01532d
- J. Zhang, Q. Xu, H. Li, S. Zhang, A. Hong et al., Self-powered electrodeposition system for sub-10-nm silver nanops with high-efficiency antibacterial activity. J. Phys. Chem. Lett. 13, 6721–6730 (2022). https://doi.org/10.1021/acs.jpclett.2c01737
- J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully Fabric-Based Triboelectric Nanogenerators as Self-powered human–machine interactive keyboards. Nano-Micro Lett. 13, 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
- H. Gao, M. Hu, J. Ding, B. Xia, G. Yuan et al., Investigation of contact electrification between 2D MXenes and MoS2 through density functional theory and triboelectric probes. Adv. Funct. Mater. 33, 2213410 (2023). https://doi.org/10.1002/adfm.202213410
- A. Babu, I. Aazem, R. Walden, S. Bairagi, D.M. Mulvihill et al., Electrospun nanofiber based tengs for wearable electronics and self-powered sensing. Chem. Eng. J. 452, 139060 (2023). https://doi.org/10.1016/j.cej.2022.139060
- W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang et al., Self-powered wireless optical transmission of mechanical agitation signals. Nano Energy 47, 566–572 (2018). https://doi.org/10.1016/j.nanoen.2018.03.044
- Y.C. Lai, H.W. Lu, H.M. Wu, D. Zhang, J. Yang et al., Elastic multifunctional liquid–metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors. Adv. Energy Mater. 11, 2100411 (2021). https://doi.org/10.1002/aenm.202100411
- C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26, 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
- J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu et al., Remarkable merits of electric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019). https://doi.org/10.1016/j.nanoen.2019.04.047
- B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8, 1702649 (2018). https://doi.org/10.1002/aenm.201702649
- H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang et al., High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28, 1805216 (2018). https://doi.org/10.1002/adfm.201805216
- L. Zhao, Q. Zheng, H. Ouyang, H. Li, L. Yan et al., A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28, 172–178 (2016). https://doi.org/10.1016/j.nanoen.2016.08.024
- L. Zhou, D. Liu, J. Wang, Z.L. Wang, Triboelectric nanogenerators: fundamental physics and potential applications. Friction 8, 481–506 (2020). https://doi.org/10.1007/s40544-020-0390-3
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33, 2004178 (2021). https://doi.org/10.1002/adma.202004178
- Y. Liu, D. Li, Y. Hou, Z.L. Wang, Grating-structured freestanding triboelectric nanogenerator for self-powered acceleration sensing in real time. Adv. Mater. Technol. 8, 2200746 (2022). https://doi.org/10.1002/admt.202200746
- B. Zhang, Z. Wu, Z. Lin, H. Guo, F. Chun et al., All-in-one 3d acceleration sensor based on coded liquid–metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 43, 37–44 (2021). https://doi.org/10.1016/j.mattod.2020.10.031
- Q. Xu, Y. Lu, S. Zhao, N. Hu, Y. Jiang et al., A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy 89, 106382 (2021). https://doi.org/10.1016/j.nanoen.2021.106382
- H.-X. Zou, L.-C. Zhao, Q. Wang, Q.-H. Gao, G. Yan et al., A self-regulation strategy for triboelectric nanogenerator and self-powered wind-speed sensor. Nano Energy 95, 106990 (2022). https://doi.org/10.1016/j.nanoen.2022.106990
- X. Gao, M. Huang, G. Zou, X. Li, Y. Wang, Self-powered vibration sensor based on the coupling of dual-mode triboelectric nanogenerator and non-contact electromagnetic generator. Nano Energy 111, 108356 (2023). https://doi.org/10.1016/j.nanoen.2023.108356
- H. Zhao, M. Shu, Z. Ai, Z. Lou, K.W. Sou et al., A highly sensitive triboelectric vibration sensor for machinery condition monitoring. Adv. Energy Mater. 12, 2201132 (2022). https://doi.org/10.1002/aenm.202201132
- S. Kim, W. Cho, J. Hwang, J. Kim, Self-powered pressure sensor for detecting static and dynamic stimuli through electrochemical reactions. Nano Energy 107, 108109 (2023). https://doi.org/10.1016/j.nanoen.2022.108109
- X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi et al., Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3, e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
- P. Yang, Y. Shi, S. Li, X. Tao, Z. Liu et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16, 4654–4665 (2022). https://doi.org/10.1021/acsnano.1c11321
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- J. Liu, Z. Wen, H. Lei, Z. Gao, X. Sun, A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kP−1. Nano-Micro Lett. 14, 88 (2022). https://doi.org/10.1007/s40820-022-00831-7
- C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019). https://doi.org/10.1002/aenm.201802906
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- H. Zhao, M. Xu, M. Shu, J. An, W. Ding et al., Underwater wireless communication via teng-generated maxwell’s displacement current. Nat. Commun. 13, 3325 (2022). https://doi.org/10.1038/s41467-022-31042-8
References
H. Guo, J. Chen, Y. Meng, M. Yeh, G. Liu et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3, eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
K. Li, R. Yuasa, R. Utaki, M. Sun, Y. Tokumoto et al., Robot-assisted, source-camera-coupled multi-view broadband imagers for ubiquitous sensing platform. Nat. Commun. 12, 3009 (2021). https://doi.org/10.1038/s41467-021-23089-w
S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa et al., Autonomous robotic searching and assembly of two-dimensional crystals to build van der waals superlattices. Nat. Commun. 9, 1413 (2018). https://doi.org/10.1038/s41467-018-03723-w
Q. Shi, Z. Sun, X. Le, J. Xie, C. Lee, Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence. ACS Nano 17, 4985–4998 (2023). https://doi.org/10.1021/acsnano.2c12592
Z. Sun, M. Zhu, Z. Zhang, Z. Chen, Q. Shi et al., Artificial intelligence of things (aiot) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 8, 2100230 (2021). https://doi.org/10.1002/advs.202100230
C. Zhou, Y. Yang, J. Wang, Q. Wu, Z. Gu et al., Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021). https://doi.org/10.1038/s41467-021-25386-w
K.A. Nichols, A.M. Okamura, Autonomous robotic palpation machine learning techniques to identify hard inclusions in soft tissues (ICRA, Karlsruhe, 2013)
M. Beccani, C.D. Natali, M.E. Rentschler, P. Valdastri, Wireless tissue palpation proof of concept for a single degree of freedom (ICRA, Karlsruhe, 2013)
S.M.H. Sadati, A. Shiva, N. Herzig, C.D. Rucker, H. Hauser et al., Stiffness imaging with a continuum appendage: real-time shape and tip force estimation from base load readings. IEEE Robot. Autom. Lett. 5, 2824–2831 (2020). https://doi.org/10.1109/lra.2020.2972790
P. Chalasani, L. Wang, R. Roy, N. Simaan, R.H. Taylor et al., Concurrent nonparametric estimation of organ geometry and tissue stiffness using continuous adaptive palpation (ICRA, Stockholm, 2016)
H. Hertz, The Contact of Elastic Solids (J Reine Angew, Math, 1881), pp. 156–171.
J. Cao, J. Huang, A. Rosendo, Variable stiffness object recognition with bayesian convolutional neural network on a soft gripper (IROS, Kyoto, 2022)
J. Huang, A. Rosendo, Variable stiffness object recognition with a cnn-bayes classifier on a soft gripper. Soft Robot. 9, 1220–1231 (2022). https://doi.org/10.1089/soro.2021.0105
T. Nonaka, A. Abdulali, C. Sirithunge, K. Gilday, F. Iida, Soft robotic tactile perception of softer objects based on learning of spatiotemporal pressure patterns (RoboSoft, Singapore, 2023)
Y. Qiu, S. Sun, X. Wang, K. Shi, Z. Wang et al., Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. npj Flex. Electron. 6, 45 (2022). https://doi.org/10.1038/s41528-022-00181-9
L. Vargas, H. Shin, H.H. Huang, Y. Zhu, X. Hu, Object stiffness recognition using haptic feedback delivered through transcutaneous proximal nerve stimulation. J. Neural Eng. 17, 016002 (2019). https://doi.org/10.1088/1741-2552/ab4d99
Q.-S. Zhang, S.-C. Zhu, Visual interpretability for deep learning: a survey. Front. Inf. Technol. Electron. Eng. 19, 27–39 (2018). https://doi.org/10.1631/fitee.1700808
X. Li, H. Xiong, X. Li, X. Wu, X. Zhang et al., Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowl Inf. Syst. 64, 3197–3234 (2022). https://doi.org/10.1007/s10115-022-01756-8
Z. Cui, W. Wang, L. Guo, Z. Liu, P. Cai et al., Haptically quantifying young’s modulus of soft materials using a self-locked stretchable strain sensor. Adv. Mater. 34, 2104078 (2022). https://doi.org/10.1002/adma.202104078
Z. Cui, W. Wang, H. Xia, C. Wang, J. Tu et al., Freestanding and scalable force-softness bimodal sensor arrays for haptic body-feature identification. Adv. Mater. 34, 2207016 (2022). https://doi.org/10.1002/adma.202207016
L. Li, S. Zhao, W. Ran, Z. Li, Y. Yan et al., Dual sensing signal decoupling based on tellurium anisotropy for vr interaction and neuro-reflex system application. Nat. Commun. 13, 5975 (2022). https://doi.org/10.1038/s41467-022-33716-9
F.-R. Fan, Z.-Q. Tian, Z. Lin Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015). https://doi.org/10.1039/c5ee01532d
J. Zhang, Q. Xu, H. Li, S. Zhang, A. Hong et al., Self-powered electrodeposition system for sub-10-nm silver nanops with high-efficiency antibacterial activity. J. Phys. Chem. Lett. 13, 6721–6730 (2022). https://doi.org/10.1021/acs.jpclett.2c01737
J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully Fabric-Based Triboelectric Nanogenerators as Self-powered human–machine interactive keyboards. Nano-Micro Lett. 13, 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
H. Gao, M. Hu, J. Ding, B. Xia, G. Yuan et al., Investigation of contact electrification between 2D MXenes and MoS2 through density functional theory and triboelectric probes. Adv. Funct. Mater. 33, 2213410 (2023). https://doi.org/10.1002/adfm.202213410
A. Babu, I. Aazem, R. Walden, S. Bairagi, D.M. Mulvihill et al., Electrospun nanofiber based tengs for wearable electronics and self-powered sensing. Chem. Eng. J. 452, 139060 (2023). https://doi.org/10.1016/j.cej.2022.139060
W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang et al., Self-powered wireless optical transmission of mechanical agitation signals. Nano Energy 47, 566–572 (2018). https://doi.org/10.1016/j.nanoen.2018.03.044
Y.C. Lai, H.W. Lu, H.M. Wu, D. Zhang, J. Yang et al., Elastic multifunctional liquid–metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors. Adv. Energy Mater. 11, 2100411 (2021). https://doi.org/10.1002/aenm.202100411
C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26, 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu et al., Remarkable merits of electric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019). https://doi.org/10.1016/j.nanoen.2019.04.047
B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8, 1702649 (2018). https://doi.org/10.1002/aenm.201702649
H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang et al., High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28, 1805216 (2018). https://doi.org/10.1002/adfm.201805216
L. Zhao, Q. Zheng, H. Ouyang, H. Li, L. Yan et al., A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28, 172–178 (2016). https://doi.org/10.1016/j.nanoen.2016.08.024
L. Zhou, D. Liu, J. Wang, Z.L. Wang, Triboelectric nanogenerators: fundamental physics and potential applications. Friction 8, 481–506 (2020). https://doi.org/10.1007/s40544-020-0390-3
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33, 2004178 (2021). https://doi.org/10.1002/adma.202004178
Y. Liu, D. Li, Y. Hou, Z.L. Wang, Grating-structured freestanding triboelectric nanogenerator for self-powered acceleration sensing in real time. Adv. Mater. Technol. 8, 2200746 (2022). https://doi.org/10.1002/admt.202200746
B. Zhang, Z. Wu, Z. Lin, H. Guo, F. Chun et al., All-in-one 3d acceleration sensor based on coded liquid–metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 43, 37–44 (2021). https://doi.org/10.1016/j.mattod.2020.10.031
Q. Xu, Y. Lu, S. Zhao, N. Hu, Y. Jiang et al., A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy 89, 106382 (2021). https://doi.org/10.1016/j.nanoen.2021.106382
H.-X. Zou, L.-C. Zhao, Q. Wang, Q.-H. Gao, G. Yan et al., A self-regulation strategy for triboelectric nanogenerator and self-powered wind-speed sensor. Nano Energy 95, 106990 (2022). https://doi.org/10.1016/j.nanoen.2022.106990
X. Gao, M. Huang, G. Zou, X. Li, Y. Wang, Self-powered vibration sensor based on the coupling of dual-mode triboelectric nanogenerator and non-contact electromagnetic generator. Nano Energy 111, 108356 (2023). https://doi.org/10.1016/j.nanoen.2023.108356
H. Zhao, M. Shu, Z. Ai, Z. Lou, K.W. Sou et al., A highly sensitive triboelectric vibration sensor for machinery condition monitoring. Adv. Energy Mater. 12, 2201132 (2022). https://doi.org/10.1002/aenm.202201132
S. Kim, W. Cho, J. Hwang, J. Kim, Self-powered pressure sensor for detecting static and dynamic stimuli through electrochemical reactions. Nano Energy 107, 108109 (2023). https://doi.org/10.1016/j.nanoen.2022.108109
X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi et al., Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3, e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
P. Yang, Y. Shi, S. Li, X. Tao, Z. Liu et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16, 4654–4665 (2022). https://doi.org/10.1021/acsnano.1c11321
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
J. Liu, Z. Wen, H. Lei, Z. Gao, X. Sun, A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kP−1. Nano-Micro Lett. 14, 88 (2022). https://doi.org/10.1007/s40820-022-00831-7
C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019). https://doi.org/10.1002/aenm.201802906
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
H. Zhao, M. Xu, M. Shu, J. An, W. Ding et al., Underwater wireless communication via teng-generated maxwell’s displacement current. Nat. Commun. 13, 3325 (2022). https://doi.org/10.1038/s41467-022-31042-8