Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage
Corresponding Author: Qing Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 59
Abstract
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems. While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers, the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing. Herein, zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone) to form the all-organic polymer composites for high-temperature capacitive energy storage. Upon ultraviolet irradiation, the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures, which significantly reduces the high-field energy loss of the composites at 200 °C. Accordingly, the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm−3 at 200 °C. Along with outstanding cyclic stability of capacitive performance at 200 °C, this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.
Highlights:
1 All-organic polymer composites for high-temperature capacitive energy storage.
2 Zero-dimensional polymer dots with high electron affinity are used as fillers.
3 Deep charge traps from UV-irradiated films reduce the high-field conduction loss.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015). https://doi.org/10.1038/nature14647
- B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2016). https://doi.org/10.1126/science.1127798
- H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu et al., Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369 (2021). https://doi.org/10.1039/D0CS00765J
- Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433 (2015). https://doi.org/10.1146/annurev-matsci-070214-021017
- W.J. Sarjeant, I.W. Clelland, R.A. Price, Capacitive components for power electronics. Proc. IEEE 89, 846 (2001). https://doi.org/10.1109/5.931475
- Q. Li, F.Z. Yao, Y. Liu, G. Zhang, H. Wang et al., High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219 (2018). https://doi.org/10.1146/annurev-matsci-070317-124435
- X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu et al., Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27, 819 (2015). https://doi.org/10.1002/adma.201404101
- Z. Zhang, D.H. Wang, M.H. Litt, L.S. Tan, L. Zhu, High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Ed. 57, 1528–1531 (2018). https://doi.org/10.1002/anie.201710474
- H.R. Xu, G.H. He, S. Chen, S.N. Chen, R. Qiao et al., All-organic polymer dielectrics containing sulfonyl dipolar groups and π–π stacking interaction in side-chain architectures. Macromolecules 54, 8195–8206 (2021). https://doi.org/10.1021/acs.macromol.1c00778
- X.X. Tang, C.L. Din, S.Q. Yu, Y. Liu, H. Luo et al., Synthesis of dielectric polystyrene via one-step nitration reaction for large-scale energy storage. Chem. Eng. J. 446, 137281 (2022). https://doi.org/10.1016/j.cej.2022.137281
- G.H. He, Y. Liu, C. Wang, S. Chen, H. Luo et al., All-organic polymer dielectrics prepared via optimization of sequential structure of polystyrene-based copolymers. Chem. Eng. J. 446, 137106 (2022). https://doi.org/10.1016/j.cej.2022.137106
- A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J. Wang et al., High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29, 1701864 (2017). https://doi.org/10.1002/adma.201701864
- C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang et al., Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020). https://doi.org/10.1038/s41467-020-17760-x
- W. Xu, J. Liu, T. Chen, X. Jiang, X. Qian et al., Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 15, 1901582 (2019). https://doi.org/10.1002/smll.201901582
- T. Zhang, X. Chen, Y. Thakur, B. Lu, Q. Zhang et al., A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020). https://doi.org/10.1126/sciadv.aax6622
- S. Luo, J. Yu, T.Q. Ansari, S. Yu, P. Xu et al., Elaborately fabricated polytetrafluoroethylene film exhibiting superior high-temperature energy storage performance. Appl. Mater. Today 21, 100882 (2020). https://doi.org/10.1016/j.apmt.2020.100882
- Z. Zhang, J. Zheng, K. Premasiri, M.H. Kwok, Q. Li et al., High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Mater. Horiz. 7, 592 (2020). https://doi.org/10.1039/C9MH01261C
- Q. Li, F. Liu, T. Yang, M.R. Gadinski, G. Zhang et al., Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc. Natl. Acad. Sci. U.S.A. 113, 9995 (2016). https://doi.org/10.1073/pnas.1603792113
- Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai et al., Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658 (2015). https://doi.org/10.1002/adma.201503186
- F. Liu, Q. Li, J. Cui, Z. Li, G. Yang et al., High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27, 1606292 (2017). https://doi.org/10.1002/adfm.201606292
- H. Li, M.R. Gadinski, Y. Huang, L. Ren, Y. Zhou et al., Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy Environ. Sci. 13, 1279 (2020). https://doi.org/10.1039/C9EE03603B
- Y. Tang, W. Xu, S. Niu, Z. Zhang, Y. Zhang et al., Crosslinked dielectric materials for high-temperature capacitive energy storage. J. Mater. Chem. A 9, 10000 (2021). https://doi.org/10.1039/D1TA00288K
- M. Jarvid, A. Johansson, R. Kroon, J.M. Bjuggren, H. Wutzel et al., A new application area for fullerenes: voltage stabilizers for power cable insulation. Adv. Mater. 27, 897 (2015). https://doi.org/10.1002/adma.201404306
- Y. Zhu, Y. Zhu, X. Huang, J. Chen, Q. Li et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9, 1901826 (2019). https://doi.org/10.1002/aenm.201901826
- H. Li, D. Ai, L. Ren, B. Yao, Z. Han et al., Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31, 1900875 (2019). https://doi.org/10.1002/adma.201900875
- Y. Thakur, T. Zhang, C. Iacob, T. Yang, J. Bernholc et al., Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 9, 10992 (2017). https://doi.org/10.1039/C7NR01932G
- Y. Zhou, Q. Li, B. Dang, Y. Yang, T. Shao et al., A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 30, 1805672 (2018). https://doi.org/10.1002/adma.201805672
- L. Ren, H. Li, Z. Xie, D. Ai, Y. Zhou et al., High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv. Energy Mater. 11, 2101297 (2021). https://doi.org/10.1002/aenm.202101297
- Q. Zeng, T. Feng, S. Tao, S. Zhu, B. Yang, Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci. Appl. 10, 142 (2021). https://doi.org/10.1038/s41377-021-00579-6
- S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chem. Int. Ed. 54, 14626 (2015). https://doi.org/10.1002/anie.201504951
- Q. Burlingame, S. Wu, M. Lin, Q.M. Zhang, Conduction mechanisms and structure–property relationships in high energy density aromatic polythiourea dielectric films. Adv. Energy Mater. 3, 1051 (2013). https://doi.org/10.1002/aenm.201201110
- K.C. Kao, Dielectric Phenomena in Solids: with Emphasis on Physical Concepts of Electronic Processes (Academic Press, Amsterdam, Boston, 2004)
- Q.K. Feng, D.F. Liu, Y.X. Zhang, J.Y. Pei, S.L. Zhong et al., Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 99, 107410 (2022). https://doi.org/10.1016/j.nanoen.2022.107410
- J. Dong, R. Hu, X. Xu, J. Chen, Y. Niu et al., A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 31, 2102644 (2021). https://doi.org/10.1002/adfm.202102644
- S. Cheng, Y. Zhou, Y. Li, C. Yuan, M. Yang et al., Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 42, 445 (2021). https://doi.org/10.1016/j.ensm.2021.07.018
- A. Deshmukh, C. Wu, O. Yassin, A. Mishra, L. Chen et al., Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307 (2022). https://doi.org/10.1039/D1EE02630E
- J. Chen, Y. Zhou, X. Huang, C. Yu, D. Han et al., Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62 (2023). https://doi.org/10.1038/s41586-022-05671-4
References
Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015). https://doi.org/10.1038/nature14647
B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2016). https://doi.org/10.1126/science.1127798
H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu et al., Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369 (2021). https://doi.org/10.1039/D0CS00765J
Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433 (2015). https://doi.org/10.1146/annurev-matsci-070214-021017
W.J. Sarjeant, I.W. Clelland, R.A. Price, Capacitive components for power electronics. Proc. IEEE 89, 846 (2001). https://doi.org/10.1109/5.931475
Q. Li, F.Z. Yao, Y. Liu, G. Zhang, H. Wang et al., High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219 (2018). https://doi.org/10.1146/annurev-matsci-070317-124435
X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu et al., Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27, 819 (2015). https://doi.org/10.1002/adma.201404101
Z. Zhang, D.H. Wang, M.H. Litt, L.S. Tan, L. Zhu, High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Ed. 57, 1528–1531 (2018). https://doi.org/10.1002/anie.201710474
H.R. Xu, G.H. He, S. Chen, S.N. Chen, R. Qiao et al., All-organic polymer dielectrics containing sulfonyl dipolar groups and π–π stacking interaction in side-chain architectures. Macromolecules 54, 8195–8206 (2021). https://doi.org/10.1021/acs.macromol.1c00778
X.X. Tang, C.L. Din, S.Q. Yu, Y. Liu, H. Luo et al., Synthesis of dielectric polystyrene via one-step nitration reaction for large-scale energy storage. Chem. Eng. J. 446, 137281 (2022). https://doi.org/10.1016/j.cej.2022.137281
G.H. He, Y. Liu, C. Wang, S. Chen, H. Luo et al., All-organic polymer dielectrics prepared via optimization of sequential structure of polystyrene-based copolymers. Chem. Eng. J. 446, 137106 (2022). https://doi.org/10.1016/j.cej.2022.137106
A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J. Wang et al., High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29, 1701864 (2017). https://doi.org/10.1002/adma.201701864
C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang et al., Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020). https://doi.org/10.1038/s41467-020-17760-x
W. Xu, J. Liu, T. Chen, X. Jiang, X. Qian et al., Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 15, 1901582 (2019). https://doi.org/10.1002/smll.201901582
T. Zhang, X. Chen, Y. Thakur, B. Lu, Q. Zhang et al., A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020). https://doi.org/10.1126/sciadv.aax6622
S. Luo, J. Yu, T.Q. Ansari, S. Yu, P. Xu et al., Elaborately fabricated polytetrafluoroethylene film exhibiting superior high-temperature energy storage performance. Appl. Mater. Today 21, 100882 (2020). https://doi.org/10.1016/j.apmt.2020.100882
Z. Zhang, J. Zheng, K. Premasiri, M.H. Kwok, Q. Li et al., High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Mater. Horiz. 7, 592 (2020). https://doi.org/10.1039/C9MH01261C
Q. Li, F. Liu, T. Yang, M.R. Gadinski, G. Zhang et al., Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc. Natl. Acad. Sci. U.S.A. 113, 9995 (2016). https://doi.org/10.1073/pnas.1603792113
Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai et al., Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658 (2015). https://doi.org/10.1002/adma.201503186
F. Liu, Q. Li, J. Cui, Z. Li, G. Yang et al., High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27, 1606292 (2017). https://doi.org/10.1002/adfm.201606292
H. Li, M.R. Gadinski, Y. Huang, L. Ren, Y. Zhou et al., Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy Environ. Sci. 13, 1279 (2020). https://doi.org/10.1039/C9EE03603B
Y. Tang, W. Xu, S. Niu, Z. Zhang, Y. Zhang et al., Crosslinked dielectric materials for high-temperature capacitive energy storage. J. Mater. Chem. A 9, 10000 (2021). https://doi.org/10.1039/D1TA00288K
M. Jarvid, A. Johansson, R. Kroon, J.M. Bjuggren, H. Wutzel et al., A new application area for fullerenes: voltage stabilizers for power cable insulation. Adv. Mater. 27, 897 (2015). https://doi.org/10.1002/adma.201404306
Y. Zhu, Y. Zhu, X. Huang, J. Chen, Q. Li et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9, 1901826 (2019). https://doi.org/10.1002/aenm.201901826
H. Li, D. Ai, L. Ren, B. Yao, Z. Han et al., Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31, 1900875 (2019). https://doi.org/10.1002/adma.201900875
Y. Thakur, T. Zhang, C. Iacob, T. Yang, J. Bernholc et al., Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 9, 10992 (2017). https://doi.org/10.1039/C7NR01932G
Y. Zhou, Q. Li, B. Dang, Y. Yang, T. Shao et al., A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 30, 1805672 (2018). https://doi.org/10.1002/adma.201805672
L. Ren, H. Li, Z. Xie, D. Ai, Y. Zhou et al., High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv. Energy Mater. 11, 2101297 (2021). https://doi.org/10.1002/aenm.202101297
Q. Zeng, T. Feng, S. Tao, S. Zhu, B. Yang, Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci. Appl. 10, 142 (2021). https://doi.org/10.1038/s41377-021-00579-6
S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chem. Int. Ed. 54, 14626 (2015). https://doi.org/10.1002/anie.201504951
Q. Burlingame, S. Wu, M. Lin, Q.M. Zhang, Conduction mechanisms and structure–property relationships in high energy density aromatic polythiourea dielectric films. Adv. Energy Mater. 3, 1051 (2013). https://doi.org/10.1002/aenm.201201110
K.C. Kao, Dielectric Phenomena in Solids: with Emphasis on Physical Concepts of Electronic Processes (Academic Press, Amsterdam, Boston, 2004)
Q.K. Feng, D.F. Liu, Y.X. Zhang, J.Y. Pei, S.L. Zhong et al., Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 99, 107410 (2022). https://doi.org/10.1016/j.nanoen.2022.107410
J. Dong, R. Hu, X. Xu, J. Chen, Y. Niu et al., A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 31, 2102644 (2021). https://doi.org/10.1002/adfm.202102644
S. Cheng, Y. Zhou, Y. Li, C. Yuan, M. Yang et al., Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 42, 445 (2021). https://doi.org/10.1016/j.ensm.2021.07.018
A. Deshmukh, C. Wu, O. Yassin, A. Mishra, L. Chen et al., Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307 (2022). https://doi.org/10.1039/D1EE02630E
J. Chen, Y. Zhou, X. Huang, C. Yu, D. Han et al., Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62 (2023). https://doi.org/10.1038/s41586-022-05671-4