Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production
Corresponding Author: Yong Yang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 108
Abstract
Hydrogen production through hydrogen evolution reaction (HER) offers a promising solution to combat climate change by replacing fossil fuels with clean energy sources. However, the widespread adoption of efficient electrocatalysts, such as platinum (Pt), has been hindered by their high cost. In this study, we developed an easy-to-implement method to create ultrathin Pt nanomembranes, which catalyze HER at a cost significantly lower than commercial Pt/C and comparable to non-noble metal electrocatalysts. These Pt nanomembranes consist of highly distorted Pt nanocrystals and exhibit a heterogeneous elastic strain field, a characteristic rarely seen in conventional crystals. This unique feature results in significantly higher electrocatalytic efficiency than various forms of Pt electrocatalysts, including Pt/C, Pt foils, and numerous Pt single-atom or single-cluster catalysts. Our research offers a promising approach to develop highly efficient and cost-effective low-dimensional electrocatalysts for sustainable hydrogen production, potentially addressing the challenges posed by the climate crisis.
Highlights:
1 A percolating network of distorted 2D Pt nanomembranes was synthesized by polymer surface buckling-enabled exfoliation for hydrogen evolution reaction.
2 The 2D Pt nanomembrane enabled important technological applications for its high efficiency, low costs, and good stability, making it potential alternative to commercial Pt/C.
3 Our 2D Pt nanomembranes offer insights into a new mechanism for efficient catalyst design strategy: lattice distortion-induced heterogeneous strain.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004). https://doi.org/10.1126/science.1103197
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
- B. Huang, Z. Sun, G. Sun, Recent progress in cathodic reduction-enabled organic electrosynthesis: trends, challenges, and opportunities. eScience 2, 243–277 (2022). https://doi.org/10.1016/j.esci.2022.04.006
- M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
- L. An, C. Wei, M. Lu, H. Liu, Y. Chen et al., Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33, e2006328 (2021). https://doi.org/10.1002/adma.202006328
- J. Mahmood, F. Li, S.-M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- C. Li, N. Clament Sagaya Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15, 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
- L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15, 144 (2023). https://doi.org/10.1007/s40820-023-01117-2
- J.N. Tiwari, S. Sultan, C.W. Myung, T. Yoon, N. Li et al., Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 3, 773–782 (2018). https://doi.org/10.1038/s41560-018-0209-x
- H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4, eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
- H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 (2017). https://doi.org/10.1038/s41467-017-01521-4
- X. Li, J. Yu, J. Jia, A. Wang, L. Zhao et al., Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 62, 127–135 (2019). https://doi.org/10.1016/j.nanoen.2019.05.013
- N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
- D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
- J. Dendooven, R.K. Ramachandran, E. Solano, M. Kurttepeli, L. Geerts et al., Independent tuning of size and coverage of supported Pt nanops using atomic layer deposition. Nat. Commun. 8, 1074 (2017). https://doi.org/10.1038/s41467-017-01140-z
- I.J. Hsu, Y.C. Kimmel, X. Jiang, B.G. Willis, J.G. Chen, Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction. Chem. Commun. 48, 1063–1065 (2012). https://doi.org/10.1039/C1CC15812K
- Y. Da, Z. Tian, R. Jiang, G. Chen, Y. Liu et al., Single-atom Pt doping induced p-type to n-type transition in NiO nanosheets toward self-gating modulated electrocatalytic hydrogen evolution reaction. ACS Nano 17, 18539–18547 (2023). https://doi.org/10.1021/acsnano.3c06595
- Z. Chen, X. Li, J. Zhao, S. Zhang, J. Wang et al., Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 62, e202308686 (2023). https://doi.org/10.1002/anie.202308686
- Y. Da, Z. Tian, R. Jiang, Y. Liu, X. Lian et al., Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 66, 1389–1397 (2023). https://doi.org/10.1007/s40843-022-2249-9
- L. Chen, Y. Huang, Y. Ding, P. Yu, F. Huang et al., Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Res. 16, 12186–12195 (2023). https://doi.org/10.1007/s12274-023-5666-2
- Z. Zeng, S. Küspert, S.E. Balaghi, H.E.M. Hussein, N. Ortlieb et al., Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanops for improved hydrogen evolution reaction. Small 19, e2205885 (2023). https://doi.org/10.1002/smll.202205885
- Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang et al., Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141, 4505–4509 (2019). https://doi.org/10.1021/jacs.8b09834
- T. Wang, M. Park, Q. He, Z. Ding, Q. Yu et al., Low-cost scalable production of freestanding two-dimensional metallic nanosheets by polymer surface buckling enabled exfoliation. Cell. Rep. Phys. Sci. 1(11), 100235 (2020). https://doi.org/10.1016/j.xcrp.2020.100235
- T. Wang, Z. Zhang, M. Park, Q. Yu, Y. Yang, Etching-free ultrafast fabrication of self-rolled metallic nanosheets with controllable twisting. Nano Lett. 21, 7159–7165 (2021). https://doi.org/10.1021/acs.nanolett.1c01789
- T. Wang, Q. He, J. Zhang, Z. Ding, F. Li et al., The controlled large-area synthesis of two dimensional metals. Mater. Today 36, 30–39 (2020). https://doi.org/10.1016/j.mattod.2020.02.003
- H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4, 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z
- J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard et al., Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44–67 (2014). https://doi.org/10.3762/bjnano.5.5
- Q. Yu, J. Zhang, J. Li, T. Wang, M. Park et al., Strong, ductile, and tough nanocrystal-assembled freestanding gold nanosheets. Nano Lett. 22, 822–829 (2022). https://doi.org/10.1021/acs.nanolett.1c04553
- M. Park, D. Li, T. Wang, B. Zhou, Y.Y. Li et al., Elasto-capillary manipulation of freestanding inorganic nanosheets: an implication for nano-manufacturing of low-dimensional structures. Adv. Mater. Interfaces 9, 2200355 (2022). https://doi.org/10.1002/admi.202200355
- J. Zhang, Q. Yu, Q. Wang, J. Li, Z. Zhang et al., Strong yet ductile high entropy alloy derived nanostructured cermet. Nano Lett. 22, 7370–7377 (2022). https://doi.org/10.1021/acs.nanolett.2c02097
- B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/s0909049505012719
- S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995). https://doi.org/10.1103/physrevb.52.2995
- J. Kibsgaard, T.F. Jaramillo, F. Besenbacher, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate[Mo3S13]2- clusters. Nat. Chem. 6, 248–253 (2014). https://doi.org/10.1038/nchem.1853
- Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, e2000385 (2020). https://doi.org/10.1002/adma.202000385
- X. Zhang, Y. Yang, Y. Liu, Z. Jia, Q. Wang et al., Defect engineering of a high-entropy metallic glass surface for high-performance overall water splitting at ampere-level current densities. Adv. Mater. 35, e2303439 (2023). https://doi.org/10.1002/adma.202303439
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- C. Cao, S. Mukherjee, J. Liu, B. Wang, M. Amirmaleki et al., Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures. Nanoscale 9, 11678–11684 (2017). https://doi.org/10.1039/C7NR03049E
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- R. Michalsky, Y.-J. Zhang, A.A. Peterson, Trends in the hydrogen evolution activity of metal carbide catalysts. ACS Catal. 4, 1274–1278 (2014). https://doi.org/10.1021/cs500056u
- B. You, M.T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng et al., Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, e1807001 (2019). https://doi.org/10.1002/adma.201807001
- J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005). https://doi.org/10.1149/1.1856988
- H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. (2023). https://doi.org/10.1002/adma.202305453
- Y. Pu, Y. Niu, Y. Wang, S. Liu, B. Zhang, Statistical morphological identification of low-dimensional nanomaterials by using TEM. Particuology 61, 11–17 (2022). https://doi.org/10.1016/j.partic.2021.03.013
- J. Li, Y. Chen, Q. He, X. Xu, H. Wang et al., Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proc. Natl. Acad. Sci. 119, 1–7 (2022). https://doi.org/10.1073/pnas.2200607119
- G. Greczynski, L. Hultman, X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci. 107, 100591 (2020). https://doi.org/10.1016/j.pmatsci.2019.100591
- C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014). https://doi.org/10.1039/c3cs60468c
- J. Kibsgaard, I. Chorkendorff, Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019). https://doi.org/10.1038/s41560-019-0407-1
- C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22, 1022–1029 (2023). https://doi.org/10.1038/s41563-023-01584-3
- M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59
- T. He, W. Wang, F. Shi, X. Yang, X. Li et al., Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021). https://doi.org/10.1038/s41586-021-03870-z
- K. Yan, T.A. Maark, A. Khorshidi, V.A. Sethuraman, A.A. Peterson et al., The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem. Intern. Ed. 55, 6175–6181 (2016). https://doi.org/10.1002/anie.201508613
- H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 364–364 (2016). https://doi.org/10.1038/nmat4564
- M. Erbi, H. Amara, R. Gatti, Tuning elastic properties of metallic nanops by shape controlling: from atomistic to continuous models. ArXiv Preprint ArXiv: 2303.06995 (2023).
- Q.F. He, J.G. Wang, H.A. Chen, Z.Y. Ding, Z.Q. Zhou et al., A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022). https://doi.org/10.1038/s41586-021-04309-1
- Y.F. Ye, C.T. Liu, Y. Yang, A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152–161 (2015). https://doi.org/10.1016/j.actamat.2015.04.051
- D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechn. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
- J.-J. Wang, X.-P. Li, B.-F. Cui, Z. Zhang, X.-F. Hu et al., A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 40, 3019–3037 (2021). https://doi.org/10.1007/s12598-021-01736-x
- H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- M. Luo, Y. Yang, Y. Sun, Y. Qin, C. Li et al., Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Mater. Today 23, 45–56 (2019). https://doi.org/10.1016/j.mattod.2018.06.005
- S. Hu, S. Ge, H. Liu, X. Kang, Q. Yu et al., Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and long-term stability. Adv. Funct. Mater. 32, 2201726 (2022). https://doi.org/10.1002/adfm.202201726
- P. Chu, J. Finch, G. Bournival, S. Ata, C. Hamlett et al., A review of bubble break-up. Adv. Colloid Interface Sci. 270, 108–122 (2019). https://doi.org/10.1016/j.cis.2019.05.010
References
J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004). https://doi.org/10.1126/science.1103197
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
B. Huang, Z. Sun, G. Sun, Recent progress in cathodic reduction-enabled organic electrosynthesis: trends, challenges, and opportunities. eScience 2, 243–277 (2022). https://doi.org/10.1016/j.esci.2022.04.006
M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
L. An, C. Wei, M. Lu, H. Liu, Y. Chen et al., Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33, e2006328 (2021). https://doi.org/10.1002/adma.202006328
J. Mahmood, F. Li, S.-M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
C. Li, N. Clament Sagaya Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15, 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15, 144 (2023). https://doi.org/10.1007/s40820-023-01117-2
J.N. Tiwari, S. Sultan, C.W. Myung, T. Yoon, N. Li et al., Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 3, 773–782 (2018). https://doi.org/10.1038/s41560-018-0209-x
H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4, eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 (2017). https://doi.org/10.1038/s41467-017-01521-4
X. Li, J. Yu, J. Jia, A. Wang, L. Zhao et al., Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 62, 127–135 (2019). https://doi.org/10.1016/j.nanoen.2019.05.013
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
J. Dendooven, R.K. Ramachandran, E. Solano, M. Kurttepeli, L. Geerts et al., Independent tuning of size and coverage of supported Pt nanops using atomic layer deposition. Nat. Commun. 8, 1074 (2017). https://doi.org/10.1038/s41467-017-01140-z
I.J. Hsu, Y.C. Kimmel, X. Jiang, B.G. Willis, J.G. Chen, Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction. Chem. Commun. 48, 1063–1065 (2012). https://doi.org/10.1039/C1CC15812K
Y. Da, Z. Tian, R. Jiang, G. Chen, Y. Liu et al., Single-atom Pt doping induced p-type to n-type transition in NiO nanosheets toward self-gating modulated electrocatalytic hydrogen evolution reaction. ACS Nano 17, 18539–18547 (2023). https://doi.org/10.1021/acsnano.3c06595
Z. Chen, X. Li, J. Zhao, S. Zhang, J. Wang et al., Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 62, e202308686 (2023). https://doi.org/10.1002/anie.202308686
Y. Da, Z. Tian, R. Jiang, Y. Liu, X. Lian et al., Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 66, 1389–1397 (2023). https://doi.org/10.1007/s40843-022-2249-9
L. Chen, Y. Huang, Y. Ding, P. Yu, F. Huang et al., Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Res. 16, 12186–12195 (2023). https://doi.org/10.1007/s12274-023-5666-2
Z. Zeng, S. Küspert, S.E. Balaghi, H.E.M. Hussein, N. Ortlieb et al., Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanops for improved hydrogen evolution reaction. Small 19, e2205885 (2023). https://doi.org/10.1002/smll.202205885
Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang et al., Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141, 4505–4509 (2019). https://doi.org/10.1021/jacs.8b09834
T. Wang, M. Park, Q. He, Z. Ding, Q. Yu et al., Low-cost scalable production of freestanding two-dimensional metallic nanosheets by polymer surface buckling enabled exfoliation. Cell. Rep. Phys. Sci. 1(11), 100235 (2020). https://doi.org/10.1016/j.xcrp.2020.100235
T. Wang, Z. Zhang, M. Park, Q. Yu, Y. Yang, Etching-free ultrafast fabrication of self-rolled metallic nanosheets with controllable twisting. Nano Lett. 21, 7159–7165 (2021). https://doi.org/10.1021/acs.nanolett.1c01789
T. Wang, Q. He, J. Zhang, Z. Ding, F. Li et al., The controlled large-area synthesis of two dimensional metals. Mater. Today 36, 30–39 (2020). https://doi.org/10.1016/j.mattod.2020.02.003
H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4, 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z
J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard et al., Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44–67 (2014). https://doi.org/10.3762/bjnano.5.5
Q. Yu, J. Zhang, J. Li, T. Wang, M. Park et al., Strong, ductile, and tough nanocrystal-assembled freestanding gold nanosheets. Nano Lett. 22, 822–829 (2022). https://doi.org/10.1021/acs.nanolett.1c04553
M. Park, D. Li, T. Wang, B. Zhou, Y.Y. Li et al., Elasto-capillary manipulation of freestanding inorganic nanosheets: an implication for nano-manufacturing of low-dimensional structures. Adv. Mater. Interfaces 9, 2200355 (2022). https://doi.org/10.1002/admi.202200355
J. Zhang, Q. Yu, Q. Wang, J. Li, Z. Zhang et al., Strong yet ductile high entropy alloy derived nanostructured cermet. Nano Lett. 22, 7370–7377 (2022). https://doi.org/10.1021/acs.nanolett.2c02097
B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/s0909049505012719
S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995). https://doi.org/10.1103/physrevb.52.2995
J. Kibsgaard, T.F. Jaramillo, F. Besenbacher, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate[Mo3S13]2- clusters. Nat. Chem. 6, 248–253 (2014). https://doi.org/10.1038/nchem.1853
Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, e2000385 (2020). https://doi.org/10.1002/adma.202000385
X. Zhang, Y. Yang, Y. Liu, Z. Jia, Q. Wang et al., Defect engineering of a high-entropy metallic glass surface for high-performance overall water splitting at ampere-level current densities. Adv. Mater. 35, e2303439 (2023). https://doi.org/10.1002/adma.202303439
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
C. Cao, S. Mukherjee, J. Liu, B. Wang, M. Amirmaleki et al., Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures. Nanoscale 9, 11678–11684 (2017). https://doi.org/10.1039/C7NR03049E
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
R. Michalsky, Y.-J. Zhang, A.A. Peterson, Trends in the hydrogen evolution activity of metal carbide catalysts. ACS Catal. 4, 1274–1278 (2014). https://doi.org/10.1021/cs500056u
B. You, M.T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng et al., Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, e1807001 (2019). https://doi.org/10.1002/adma.201807001
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005). https://doi.org/10.1149/1.1856988
H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. (2023). https://doi.org/10.1002/adma.202305453
Y. Pu, Y. Niu, Y. Wang, S. Liu, B. Zhang, Statistical morphological identification of low-dimensional nanomaterials by using TEM. Particuology 61, 11–17 (2022). https://doi.org/10.1016/j.partic.2021.03.013
J. Li, Y. Chen, Q. He, X. Xu, H. Wang et al., Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proc. Natl. Acad. Sci. 119, 1–7 (2022). https://doi.org/10.1073/pnas.2200607119
G. Greczynski, L. Hultman, X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci. 107, 100591 (2020). https://doi.org/10.1016/j.pmatsci.2019.100591
C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014). https://doi.org/10.1039/c3cs60468c
J. Kibsgaard, I. Chorkendorff, Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019). https://doi.org/10.1038/s41560-019-0407-1
C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22, 1022–1029 (2023). https://doi.org/10.1038/s41563-023-01584-3
M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59
T. He, W. Wang, F. Shi, X. Yang, X. Li et al., Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021). https://doi.org/10.1038/s41586-021-03870-z
K. Yan, T.A. Maark, A. Khorshidi, V.A. Sethuraman, A.A. Peterson et al., The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem. Intern. Ed. 55, 6175–6181 (2016). https://doi.org/10.1002/anie.201508613
H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 364–364 (2016). https://doi.org/10.1038/nmat4564
M. Erbi, H. Amara, R. Gatti, Tuning elastic properties of metallic nanops by shape controlling: from atomistic to continuous models. ArXiv Preprint ArXiv: 2303.06995 (2023).
Q.F. He, J.G. Wang, H.A. Chen, Z.Y. Ding, Z.Q. Zhou et al., A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022). https://doi.org/10.1038/s41586-021-04309-1
Y.F. Ye, C.T. Liu, Y. Yang, A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152–161 (2015). https://doi.org/10.1016/j.actamat.2015.04.051
D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechn. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
J.-J. Wang, X.-P. Li, B.-F. Cui, Z. Zhang, X.-F. Hu et al., A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 40, 3019–3037 (2021). https://doi.org/10.1007/s12598-021-01736-x
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
M. Luo, Y. Yang, Y. Sun, Y. Qin, C. Li et al., Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Mater. Today 23, 45–56 (2019). https://doi.org/10.1016/j.mattod.2018.06.005
S. Hu, S. Ge, H. Liu, X. Kang, Q. Yu et al., Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and long-term stability. Adv. Funct. Mater. 32, 2201726 (2022). https://doi.org/10.1002/adfm.202201726
P. Chu, J. Finch, G. Bournival, S. Ata, C. Hamlett et al., A review of bubble break-up. Adv. Colloid Interface Sci. 270, 108–122 (2019). https://doi.org/10.1016/j.cis.2019.05.010