Strain-Insensitive Hierarchically Structured Stretchable Microstrip Antennas for Robust Wireless Communication
Corresponding Author: Huanyu Cheng
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 108
Abstract
As the key component of wireless data transmission and powering, stretchable antennas play an indispensable role in flexible/stretchable electronics. However, they often suffer from frequency detuning upon mechanical deformations; thus, their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive. Here, a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability. The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting, whereas the rapid changing resonance frequency with deformations allows for wireless sensing. The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter (input power of − 3 dBm) efficiently (i.e., the receiving power higher than − 100 dBm over a distance of 100 m) on human bodies even upon 25% stretching. The flexibility in structural engineering combined with the coupled mechanical–electromagnetic simulations, provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.
Highlights:
1 The “ordered-unraveling” of hierarchical structures from mechanical assembly contributes to not only the improved overall stretchability, but also the small resonance shift of the stretchable microstrip antenna upon stretching.
2 The mechanical-electromagnetic properties of stretchable microstrip antennas can be controlled by changing the number of arches in the meshed patch.
3 A double-arched microstrip antenna was demonstrated to communicate wirelessly upon 25% stretching or when being placed on human bodies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Bauer, Sophisticated skin. Nat. Mater. 12(10), 871–872 (2013). https://doi.org/10.1038/nmat3759
- M. Ha, J. Park, Y. Lee, H. Ko, Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 9(4), 3421–3427 (2015). https://doi.org/10.1021/acsnano.5b01478
- L. Li, Z. Wu, S. Yuan, X.-B. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014). https://doi.org/10.1039/C4EE00318G
- J.-G. Sun, T.-N. Yang, C.-Y. Wang, L.-J. Chen, A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 48, 383–390 (2018). https://doi.org/10.1016/j.nanoen.2018.03.071
- H. Zhou, Y. Zhang, Y. Qiu, H. Wu, W. Qin et al., Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens. Bioelectron. 168, 112569 (2020). https://doi.org/10.1016/j.bios.2020.112569
- C. Zhang, Z. Peng, C. Huang, B. Zhang, C. Xing et al., High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy 81, 105609 (2020). https://doi.org/10.1016/j.nanoen.2020.105609
- Y. Xu, G. Zhao, L. Zhu, Q. Fei, Z. Zhang et al., Pencil–paper on-skin electronics. Proc. Natl. Acad. Sci. USA 117(31), 18292 (2020). https://doi.org/10.1073/pnas.2008422117
- Y. Qiu, Y. Tian, S. Sun, J. Hu, Y. Wang et al., Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 78, 105337 (2020). https://doi.org/10.1016/j.nanoen.2020.105337
- K. Lee, X. Ni, J.Y. Lee, H. Arafa, D.J. Pe et al., Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biol. Eng. 4(2), 148–158 (2020). https://doi.org/10.1038/s41551-019-0480-6
- Y. Lee, C. Howe, S. Mishra, D.S. Lee, M. Mahmood, M. Piper et al., Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc. Natl. Acad. Sci. USA 115(21), 5377 (2018). https://doi.org/10.1073/pnas.1719573115
- Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao et al., Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 7(6), 1902673 (2020). https://doi.org/10.1002/advs.201902673
- S. Wagner, S. Bauer, Materials for stretchable electronics. MRS Bull. 37(3), 207–213 (2012). https://doi.org/10.1557/mrs.2012.37
- J. Zhu, H. Cheng, Recent development of flexible and stretchable antennas for bio-integrated electronics. Sensors 18(12), 4364 (2018). https://doi.org/10.3390/s18124364
- Y. Liu, X. Wang, Y. Xu, Z. Xue, Y. Zhang et al., Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling. Proc. Natl. Acad. Sci. USA 116(31), 15368 (2019). https://doi.org/10.1073/pnas.1907732116
- Z. Song, X. Wang, C. Lv, Y. An, M. Liang et al., Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 5(1), 10988 (2015). https://doi.org/10.1038/srep10988
- Z. Yan, F. Zhang, F. Liu, M. Han, D. Ou et al., Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2(9), e1601014 (2016). https://doi.org/10.1126/sciadv.1601014
- T. Chang, Y. Tanabe, C.C. Wojcik, A.C. Barksdale, S. Doshay et al., A general strategy for stretchable microwave antenna systems using serpentine mesh layouts. Adv. Funct. Mater. 27(46), 1703059 (2017). https://doi.org/10.1002/adfm.201703059
- J. Zhu, J.J. Fox, N. Yi, H. Cheng, Structural design for stretchable microstrip antennas. ACS Appl. Mater. Interfaces 11(9), 8867–8877 (2019). https://doi.org/10.1021/acsami.8b22021
- Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin et al., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3(3), e1602076 (2017). https://doi.org/10.1126/sciadv.1602076
- Y.R. Jeong, J. Kim, Z. Xie, Y. Xue, S.M. Won et al., A skin-attachable, stretchable integrated system based on liquid gainsn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Mater. 9(10), e443 (2017). https://doi.org/10.1038/am.2017.189
- Y. Hu, T. Zhao, P. Zhu, Y. Zhu, X. Shuai et al., Low cost and highly conductive elastic composites for flexible and printable electronics. J. Mater. Chem. C 4(24), 5839–5848 (2016). https://doi.org/10.1039/C6TC01340F
- Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang et al., Three-dimensional integrated stretchable electronics. Nat. Electron. 1(8), 473–480 (2018). https://doi.org/10.1038/s41928-018-0116-y
- K.-I. Jang, H.U. Chung, S. Xu, C.H. Lee, H. Luan et al., Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6(1), 6566 (2015). https://doi.org/10.1038/ncomms7566
- S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4(1), 1543 (2013). https://doi.org/10.1038/ncomms2553
- F. Liu, Y. Chen, H. Song, F. Zhang, Z. Fan et al., High performance, tunable electrically small antennas through mechanically guided 3D assembly. Small 15(1), 1804055 (2019). https://doi.org/10.1002/smll.201804055
- H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
- M. Zulqarnain, S. Stanzione, G. Rathinavel, S. Smout, M. Willegems et al., A flexible ECG patch compatible with NFC RF communication. NPJ Flex. Electron. 4(1), 13 (2020). https://doi.org/10.1038/s41528-020-0077-x
- J. Kim, A. Banks, Z. Xie, S.Y. Heo, P. Gutruf et al., Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv. Funct. Mater. 25(30), 4761–4767 (2015). https://doi.org/10.1002/adfm.201501590
- Y. Luo, L. Pu, G. Wang, Y. Zhao, RF energy harvesting wireless communications: Rf environment, device hardware and practical issues. Sensors 19(13), 3010 (2019). https://doi.org/10.3390/s19133010
- A.N. Parks, A.P. Sample, Y. Zhao, J.R. Smith, A wireless sensing platform utilizing ambient RF energy. 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems. 154–156 (2013)
- J. Zhu, Z. Hu, C. Song, N. Yi, Z. Yu, Z. Liu, S. Liu, M. Wang, M.G. Dexheimer, J. Yang, H. Cheng, Stretchable wideband dipole antennas and rectennas for RF energy harvesting. Materials Today Physics. 5, 100377 (2021)
- Y.-S. Kim, A. Basir, R. Herbert, J. Kim, H. Yoo et al., Soft materials, stretchable mechanics, and optimized designs for body-wearable compliant antennas. ACS Appl. Mater. Interfaces 12(2), 3059–3067 (2020). https://doi.org/10.1021/acsami.9b20233
- S. Cheng, Z. Wu, A microfluidic, reversibly stretchable, large-area wireless strain sensor. Adv. Funct. Mater. 21(12), 2282–2290 (2011). https://doi.org/10.1002/adfm.201002508
- S. Cheng, Z. Wu, P. Hallbjorner, K. Hjort, A. Rydberg, Foldable and stretchable liquid metal planar inverted cone antenna. IEEE Trans. Antennas Propag. 57(12), 3765–3771 (2009). https://doi.org/10.1109/TAP.2009.2024560
- G.J. Hayes, J. So, A. Qusba, M.D. Dickey, G. Lazzi, Flexible liquid metal alloy (EGaln) microstrip patch antenna. IEEE Trans. Antennas Propag. 60(5), 2151–2156 (2012). https://doi.org/10.1109/TAP.2012.2189698
- M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014). https://doi.org/10.3390/s140711957
- K. Pan, Y. Fan, T. Leng, J. Li, Z. Xin et al., Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and loT applications. Nat. Commun. 9(1), 5197 (2018). https://doi.org/10.1038/s41467-018-07632-w
- M. Kubo, X. Li, C. Kim, M. Hashimoto, B.J. Wiley et al., Stretchable microfluidic radiofrequency antennas. Adv. Mater. 22(25), 2749–2752 (2010). https://doi.org/10.1002/adma.200904201
- T. Rai, P. Dantes, B. Bahreyni, W.S. Kim, A stretchable RF antenna with silver nanowires. IEEE Electron. Devices Lett. 34(4), 544–546 (2013). https://doi.org/10.1109/LED.2013.2245626
- A.M. Hussain, F.A. Ghaffar, S.I. Park, J.A. Rogers, A. Shamim et al., Metal/polymer based stretchable antenna for constant frequency far-field communication in wearable electronics. Adv. Funct. Mater. 25(42), 6565–6575 (2015). https://doi.org/10.1002/adfm.201503277
- F.A. Tahir, A. Javed, A compact dual-band frequency-reconfigurable textile antenna for wearable applications. Microw. Opt. Tech. Lett. 57(10), 2251–2257 (2015). https://doi.org/10.1002/mop.29311
- A. Michel, R. Colella, G.A. Casula, P. Nepa, L. Catarinucci et al., Design considerations on the placement of a wearable UHF-RFID PIFA on a compact ground plane. IEEE Trans. Antennas Propag. 66(6), 3142–3147 (2018). https://doi.org/10.1109/TAP.2018.2811863
- R. Quarfoth, Y. Zhou, D. Sievenpiper, Flexible patch antennas using patterned metal sheets on silicone. IEEE Antennas Wireless Propag. Lett. 14, 1354–1357 (2015). https://doi.org/10.1109/LAWP.2015.2406887
- Y. Lo, D. Solomon, W. Richards, Theory and experiment on microstrip antennas. IEEE Trans. Antennas Propag. 27(2), 137–145 (1979). https://doi.org/10.1109/TAP.1979.1142057
- J. Kurian, U. R. M.N, S.K. Sukumaran, Flexible microstrip patch antenna using rubber substrate for WBAN applications. IEEE 2014 International Conference on Contemporary Computing and Informatics (IC3I). 983–986 (2014)
- R. Lin, H.-J. Kim, S. Achavananthadith, S.A. Kurt, S.C.C. Tan et al., Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11(1), 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
- Q.H. Dao, R. Braun, B. Geck, Design and investigation of meshed patch antennas for applications at 24 GHz. 2015 European Radar Conference (EuRAD). 477–480 (2015).
References
S. Bauer, Sophisticated skin. Nat. Mater. 12(10), 871–872 (2013). https://doi.org/10.1038/nmat3759
M. Ha, J. Park, Y. Lee, H. Ko, Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 9(4), 3421–3427 (2015). https://doi.org/10.1021/acsnano.5b01478
L. Li, Z. Wu, S. Yuan, X.-B. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014). https://doi.org/10.1039/C4EE00318G
J.-G. Sun, T.-N. Yang, C.-Y. Wang, L.-J. Chen, A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 48, 383–390 (2018). https://doi.org/10.1016/j.nanoen.2018.03.071
H. Zhou, Y. Zhang, Y. Qiu, H. Wu, W. Qin et al., Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens. Bioelectron. 168, 112569 (2020). https://doi.org/10.1016/j.bios.2020.112569
C. Zhang, Z. Peng, C. Huang, B. Zhang, C. Xing et al., High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy 81, 105609 (2020). https://doi.org/10.1016/j.nanoen.2020.105609
Y. Xu, G. Zhao, L. Zhu, Q. Fei, Z. Zhang et al., Pencil–paper on-skin electronics. Proc. Natl. Acad. Sci. USA 117(31), 18292 (2020). https://doi.org/10.1073/pnas.2008422117
Y. Qiu, Y. Tian, S. Sun, J. Hu, Y. Wang et al., Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 78, 105337 (2020). https://doi.org/10.1016/j.nanoen.2020.105337
K. Lee, X. Ni, J.Y. Lee, H. Arafa, D.J. Pe et al., Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biol. Eng. 4(2), 148–158 (2020). https://doi.org/10.1038/s41551-019-0480-6
Y. Lee, C. Howe, S. Mishra, D.S. Lee, M. Mahmood, M. Piper et al., Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc. Natl. Acad. Sci. USA 115(21), 5377 (2018). https://doi.org/10.1073/pnas.1719573115
Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao et al., Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 7(6), 1902673 (2020). https://doi.org/10.1002/advs.201902673
S. Wagner, S. Bauer, Materials for stretchable electronics. MRS Bull. 37(3), 207–213 (2012). https://doi.org/10.1557/mrs.2012.37
J. Zhu, H. Cheng, Recent development of flexible and stretchable antennas for bio-integrated electronics. Sensors 18(12), 4364 (2018). https://doi.org/10.3390/s18124364
Y. Liu, X. Wang, Y. Xu, Z. Xue, Y. Zhang et al., Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling. Proc. Natl. Acad. Sci. USA 116(31), 15368 (2019). https://doi.org/10.1073/pnas.1907732116
Z. Song, X. Wang, C. Lv, Y. An, M. Liang et al., Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 5(1), 10988 (2015). https://doi.org/10.1038/srep10988
Z. Yan, F. Zhang, F. Liu, M. Han, D. Ou et al., Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2(9), e1601014 (2016). https://doi.org/10.1126/sciadv.1601014
T. Chang, Y. Tanabe, C.C. Wojcik, A.C. Barksdale, S. Doshay et al., A general strategy for stretchable microwave antenna systems using serpentine mesh layouts. Adv. Funct. Mater. 27(46), 1703059 (2017). https://doi.org/10.1002/adfm.201703059
J. Zhu, J.J. Fox, N. Yi, H. Cheng, Structural design for stretchable microstrip antennas. ACS Appl. Mater. Interfaces 11(9), 8867–8877 (2019). https://doi.org/10.1021/acsami.8b22021
Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin et al., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3(3), e1602076 (2017). https://doi.org/10.1126/sciadv.1602076
Y.R. Jeong, J. Kim, Z. Xie, Y. Xue, S.M. Won et al., A skin-attachable, stretchable integrated system based on liquid gainsn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Mater. 9(10), e443 (2017). https://doi.org/10.1038/am.2017.189
Y. Hu, T. Zhao, P. Zhu, Y. Zhu, X. Shuai et al., Low cost and highly conductive elastic composites for flexible and printable electronics. J. Mater. Chem. C 4(24), 5839–5848 (2016). https://doi.org/10.1039/C6TC01340F
Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang et al., Three-dimensional integrated stretchable electronics. Nat. Electron. 1(8), 473–480 (2018). https://doi.org/10.1038/s41928-018-0116-y
K.-I. Jang, H.U. Chung, S. Xu, C.H. Lee, H. Luan et al., Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6(1), 6566 (2015). https://doi.org/10.1038/ncomms7566
S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4(1), 1543 (2013). https://doi.org/10.1038/ncomms2553
F. Liu, Y. Chen, H. Song, F. Zhang, Z. Fan et al., High performance, tunable electrically small antennas through mechanically guided 3D assembly. Small 15(1), 1804055 (2019). https://doi.org/10.1002/smll.201804055
H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
M. Zulqarnain, S. Stanzione, G. Rathinavel, S. Smout, M. Willegems et al., A flexible ECG patch compatible with NFC RF communication. NPJ Flex. Electron. 4(1), 13 (2020). https://doi.org/10.1038/s41528-020-0077-x
J. Kim, A. Banks, Z. Xie, S.Y. Heo, P. Gutruf et al., Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv. Funct. Mater. 25(30), 4761–4767 (2015). https://doi.org/10.1002/adfm.201501590
Y. Luo, L. Pu, G. Wang, Y. Zhao, RF energy harvesting wireless communications: Rf environment, device hardware and practical issues. Sensors 19(13), 3010 (2019). https://doi.org/10.3390/s19133010
A.N. Parks, A.P. Sample, Y. Zhao, J.R. Smith, A wireless sensing platform utilizing ambient RF energy. 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems. 154–156 (2013)
J. Zhu, Z. Hu, C. Song, N. Yi, Z. Yu, Z. Liu, S. Liu, M. Wang, M.G. Dexheimer, J. Yang, H. Cheng, Stretchable wideband dipole antennas and rectennas for RF energy harvesting. Materials Today Physics. 5, 100377 (2021)
Y.-S. Kim, A. Basir, R. Herbert, J. Kim, H. Yoo et al., Soft materials, stretchable mechanics, and optimized designs for body-wearable compliant antennas. ACS Appl. Mater. Interfaces 12(2), 3059–3067 (2020). https://doi.org/10.1021/acsami.9b20233
S. Cheng, Z. Wu, A microfluidic, reversibly stretchable, large-area wireless strain sensor. Adv. Funct. Mater. 21(12), 2282–2290 (2011). https://doi.org/10.1002/adfm.201002508
S. Cheng, Z. Wu, P. Hallbjorner, K. Hjort, A. Rydberg, Foldable and stretchable liquid metal planar inverted cone antenna. IEEE Trans. Antennas Propag. 57(12), 3765–3771 (2009). https://doi.org/10.1109/TAP.2009.2024560
G.J. Hayes, J. So, A. Qusba, M.D. Dickey, G. Lazzi, Flexible liquid metal alloy (EGaln) microstrip patch antenna. IEEE Trans. Antennas Propag. 60(5), 2151–2156 (2012). https://doi.org/10.1109/TAP.2012.2189698
M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014). https://doi.org/10.3390/s140711957
K. Pan, Y. Fan, T. Leng, J. Li, Z. Xin et al., Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and loT applications. Nat. Commun. 9(1), 5197 (2018). https://doi.org/10.1038/s41467-018-07632-w
M. Kubo, X. Li, C. Kim, M. Hashimoto, B.J. Wiley et al., Stretchable microfluidic radiofrequency antennas. Adv. Mater. 22(25), 2749–2752 (2010). https://doi.org/10.1002/adma.200904201
T. Rai, P. Dantes, B. Bahreyni, W.S. Kim, A stretchable RF antenna with silver nanowires. IEEE Electron. Devices Lett. 34(4), 544–546 (2013). https://doi.org/10.1109/LED.2013.2245626
A.M. Hussain, F.A. Ghaffar, S.I. Park, J.A. Rogers, A. Shamim et al., Metal/polymer based stretchable antenna for constant frequency far-field communication in wearable electronics. Adv. Funct. Mater. 25(42), 6565–6575 (2015). https://doi.org/10.1002/adfm.201503277
F.A. Tahir, A. Javed, A compact dual-band frequency-reconfigurable textile antenna for wearable applications. Microw. Opt. Tech. Lett. 57(10), 2251–2257 (2015). https://doi.org/10.1002/mop.29311
A. Michel, R. Colella, G.A. Casula, P. Nepa, L. Catarinucci et al., Design considerations on the placement of a wearable UHF-RFID PIFA on a compact ground plane. IEEE Trans. Antennas Propag. 66(6), 3142–3147 (2018). https://doi.org/10.1109/TAP.2018.2811863
R. Quarfoth, Y. Zhou, D. Sievenpiper, Flexible patch antennas using patterned metal sheets on silicone. IEEE Antennas Wireless Propag. Lett. 14, 1354–1357 (2015). https://doi.org/10.1109/LAWP.2015.2406887
Y. Lo, D. Solomon, W. Richards, Theory and experiment on microstrip antennas. IEEE Trans. Antennas Propag. 27(2), 137–145 (1979). https://doi.org/10.1109/TAP.1979.1142057
J. Kurian, U. R. M.N, S.K. Sukumaran, Flexible microstrip patch antenna using rubber substrate for WBAN applications. IEEE 2014 International Conference on Contemporary Computing and Informatics (IC3I). 983–986 (2014)
R. Lin, H.-J. Kim, S. Achavananthadith, S.A. Kurt, S.C.C. Tan et al., Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11(1), 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
Q.H. Dao, R. Braun, B. Geck, Design and investigation of meshed patch antennas for applications at 24 GHz. 2015 European Radar Conference (EuRAD). 477–480 (2015).