Review on MXenes-Based Electrocatalysts for High-Energy-Density Lithium–Sulfur Batteries
Corresponding Author: Yu Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 209
Abstract
Lithium–sulfur batteries (LSBs) hold significant promise as advanced energy storage systems due to their high energy density, low cost, and environmental advantages. However, despite recent advancements, their practical energy density still falls short of the levels required for commercial viability. The energy density is critically dependent on both sulfur loading and the amount of electrolyte used. High-sulfur loading coupled with lean electrolyte conditions presents several challenges, including the insulating nature of sulfur and Li2S, insufficient electrolyte absorption, degradation of the cathode structure, severe lithium polysulfide shuttling, slow redox reaction kinetics, and instability of the Li metal anode. MXenes-based materials, with their metallic conductivity, large polar surfaces, and abundant active sites, have been identified as promising electrocatalysts to improve the redox reactions in LSBs. This review focuses on the significance and challenges associated with high-sulfur loading and lean electrolytes in LSBs, highlighting recent advancements in MXenes-based electrocatalysts aimed at optimizing sulfur cathodes and lithium anodes. It provides a comprehensive discussion on MXenes as both active materials and substrates in LSBs, with the goal of enhancing understanding of the regulatory mechanisms that govern sulfur conversion reactions and lithium plating/stripping behavior. Finally, the review explores future opportunities for MXenes-based electrocatalysts, paving the way for the practical application of LSBs.
Highlights:
1 The significance and challenges associated with high-sulfur loading and lean electrolytes in lithium–sulfur batteries are comprehensively reviewed.
2 Catalytic properties of MXenes-based electrocatalysts are optimized via d-band center tuning, internal electric field constructing, single-atom seeding, and cocktail effects introducing.
3 The structure–activity relationships between MXenes-based electrocatalysts and lithium–sulfur battery performances are comprehensively summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- L. Wang, Y. Li, Y. Ai, E. Fan, F. Zhang et al., Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS. Adv. Funct. Mater. 33(44), 2306466 (2023). https://doi.org/10.1002/adfm.202306466
- C. Xia, C.Y. Kwok, L.F. Nazar, A high-energy-density lithium–oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 361(6404), 777–781 (2018). https://doi.org/10.1126/science.aas9343
- Y. Li, L. Wang, F. Zhang, W. Zhang, G. Shao et al., Detecting and quantifying wavelength-dependent electrons transfer in heterostructure catalyst via in situ irradiation XPS. Adv. Sci. 10(4), e2205020 (2023). https://doi.org/10.1002/advs.202205020
- M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004). https://doi.org/10.1021/cr020730k
- L. Gao, T. Sheng, M. Wang, H. Ren, S.W. Joo et al., Titanium nitride nanocrystals anchored evenly on interconnected carbon nanosheets with effective chemisorption and catalytic effects towards polysulfides for long-life lithium−sulfur batteries. Electrochim. Acta 395, 139208 (2021). https://doi.org/10.1016/j.electacta.2021.139208
- X. Pang, H. Geng, S. Dong, B. An, S. Zheng et al., Medium-entropy-alloy FeCoNi enables lithium–sulfur batteries with superb low-temperature performance. Small 19(5), e2205525 (2023). https://doi.org/10.1002/smll.202205525
- W. Yan, J.-L. Yang, X. Xiong, L. Fu, Y. Chen et al., Versatile asymmetric separator with dendrite-free alloy anode enables high-performance Li–S batteries. Adv. Sci. 9(25), e2202204 (2022). https://doi.org/10.1002/advs.202202204
- W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma et al., Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries. ACS Nano 15(4), 7491–7499 (2021). https://doi.org/10.1021/acsnano.1c00896
- S. Fu, H. Wang, S. Schaefer, B. Shang, L. Ren et al., Simple framework for simultaneous analysis of both electrodes in stoichiometric lithium–sulfur batteries. J. Am. Chem. Soc. 146(31), 21721–21728 (2024). https://doi.org/10.1021/jacs.4c05827
- L. Chen, L. Yue, X. Wang, S. Wu, W. Wang et al., Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-In electric field of SnS2-MXene Mott-Schottky heterojunction in Li–S batteries. Small 19(15), 2206462 (2023). https://doi.org/10.1002/smll.202206462
- Y. Li, Y. Zhang, R. Hou, Y. Ai, M. Cai et al., Revealing electron numbers-binding energy relationships in heterojunctions via in situ irradiated XPS. Appl. Catal. B Environ. Energy 356, 124223 (2024). https://doi.org/10.1016/j.apcatb.2024.124223
- C.Q. Zhang, J.J. Biendicho, T. Zhang, R.F. Du, J.S. Li et al., Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 29(34), 1903842 (2019). https://doi.org/10.1002/adfm.201903842
- Z.X. Shi, Y.F. Ding, Q. Zhang, J.Y. Sun, Electrocatalyst modulation toward bidirectional sulfur redox in Li–S batteries: from strategic probing to mechanistic understanding. Adv. Energy Mater. 12(29), 2201056 (2022). https://doi.org/10.1002/aenm.202201056
- P. Zhang, Y. Zhao, Y. Li, N. Li, S. Ravi, P. Silva et al., Revealing the selective bifunctional electrocatalytic sites via in situ irradiated X-ray photoelectron spectroscopy for lithium–sulfur battery. Adv. Sci. 10(8), e2206786 (2023). https://doi.org/10.1002/advs.202206786
- Z. Shi, S. Thomas et al., Solvation sheath reorganization by alkyl chain tuning promises lean-electrolyte Li–S batteries. ACS Energy Lett. 9(11), 5391–5402 (2024). https://doi.org/10.1021/acsenergylett.4c02049
- Z. Shi, Z. Tian, D. Guo, Y. Wang, Z. Bayhan et al., Kinetically favorable Li–S battery electrolytes. ACS Energy Lett. 8(7), 3054–3080 (2023). https://doi.org/10.1021/acsenergylett.3c00826
- J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium–sulfur batteries. Nano-Micro Lett. 16(1), 12 (2023). https://doi.org/10.1007/s40820-023-01223-1
- Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium–sulfur batteries: from academic research to commercial viability. Adv. Mater. 33(29), e2003666 (2021). https://doi.org/10.1002/adma.202003666
- A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium–sulfur batteries: attaining the critical metrics. Joule 4(2), 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
- M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
- Y.-C. Ho, S.-H. Chung, A design of the cathode substrate for high-loading polysulfide cathodes in lean-electrolyte lithium–sulfur cells. Chem. Eng. J. 422, 130363 (2021). https://doi.org/10.1016/j.cej.2021.130363
- L.P. Chen, Y.H. Xu, G.Q. Cao, H.M.K. Sari, R.X. Duan et al., Bifunctional catalytic effect of CoSe2 for lithium–sulfur batteries: single doping versus dual doping. Adv. Funct. Mater. 32(8), 2107838 (2022). https://doi.org/10.1002/adfm.202107838
- Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
- M. Zhao, B.-Q. Li, X. Chen, J. Xie, H. Yuan et al., Redox comediation with organopolysulfides in working lithium–sulfur batteries. Chem 6(12), 3297–3311 (2020). https://doi.org/10.1016/j.chempr.2020.09.015
- E. Kim, S. Kim, H.M. Jin, G. Kim, H.H. Ha et al., Unlocking novel functionality: pseudocapacitive sensing in MXene-based flexible supercapacitors. Nano-Micro Lett. 17, 86 (2025). https://doi.org/10.1007/s40820-024-01567-2
- I. Hussain, A. Hanan, F. Bibi, O.J. Kewate, M.S. Javed et al., Non-Ti (M2X and M3X2) MXenes for energy storage/conversion. Adv. Energy Mater. 14(34), 2401650 (2024). https://doi.org/10.1002/aenm.202401650
- R. Zhao, C. Liu, Y. Zhu, G. Zou, H. Hou et al., Pathways for MXenes in solving the issues of zinc-ion batteries: achievements and perspectives. Adv. Funct. Mater. 34(28), 2316643 (2024). https://doi.org/10.1002/adfm.202316643
- H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
- X. Zhong, D. Wang, J. Sheng, Z. Han, C. Sun et al., Freestanding and sandwich MXene-based cathode with suppressed lithium polysulfides shuttle for flexible lithium–sulfur batteries. Nano Lett. 22(3), 1207–1216 (2022). https://doi.org/10.1021/acs.nanolett.1c04377
- X. Huang, J. Tang, T. Qiu, R. Knibbe, Y. Hu et al., Nanoconfined topochemical conversion from MXene to ultrathin non-layered TiN nanomesh toward superior electrocatalysts for lithium–sulfur batteries. Small 17(32), e2101360 (2021). https://doi.org/10.1002/smll.202101360
- D. Zhang, S. Wang, R.M. Hu, J.N. Gu, Y.L.S. Cui et al., Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium–sulfur batteries. Adv. Funct. Mater. 30(30), 2002471 (2020). https://doi.org/10.1002/adfm.202002471
- M.Q. Long, K.K. Tang, J. Xiao, J.Y. Li, J. Chen et al., Recent advances on MXene based materials for energy storage applications. Mater. Today Sustain. 19, 100163 (2022). https://doi.org/10.1016/j.mtsust.2022.100163
- P. Wang, T. Xu, B. Xi, J. Yuan, N. Song et al., A Zn8 double-cavity metallacalix[8]arene as molecular sieve to realize self-cleaning intramolecular tandem transformation of Li−S chemistry. Adv. Mater. 34, 2207689 (2022). https://doi.org/10.1002/adma.202207689
- X. Zhu, T. Bian, X. Song, M. Zheng, Z. Shen et al., Accelerating S↔Li2S reactions in Li-S batteries through activation of S/Li2S with a bifunctional semiquinone catalyst. Angew. Chem. Int. Ed. 63(5), e202315087 (2024). https://doi.org/10.1002/anie.202315087
- L. Zhou, X. Zhang, W. Hao, S. Sun, R. Wang et al., Mirror plane effect of magnetoplumbite-type oxide restraining long-chain polysulfides disproportionation for high loading lithium sulfur batteries. Small Meth. 8(12), 2400475 (2024). https://doi.org/10.1002/smtd.202400475
- Y. He, X. Jing, T. Lai, D. Jiang, C. Wan et al., Amphipathic emulsion binder for enhanced performance of lithium–sulfur batteries. J. Mater. Chem. A 12(21), 12681–12690 (2024). https://doi.org/10.1039/d4ta01037j
- R. Hou, S. Zhang, Y. Zhang, N. Li, S. Wang et al., A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium–sulfur batteries. Adv. Funct. Mater. 32(19), 2200302 (2022). https://doi.org/10.1002/adfm.202200302
- F. Zhou, Y. Mei, Q. Wu, H. Li, J. Xu et al., Sulfur electrode tolerance and polysulfide conversion promoted by the supramolecular binder with rare-earth catalysis in lithium–sulfur batteries. Energy Storage Mater. 67, 103315 (2024). https://doi.org/10.1016/j.ensm.2024.103315
- H. Xu, Q. Jiang, K.S. Hui, S. Wang, L. Liu et al., Interfacial “double-terminal binding sites” catalysts synergistically boosting the electrocatalytic Li2S redox for durable lithium–sulfur batteries. ACS Nano 18(12), 8839–8852 (2024). https://doi.org/10.1021/acsnano.3c11903
- Y. Li, Y. Zuo, X. Li, Y. Zhang, C. Ma et al., Electron delocalization-enhanced sulfur reduction kinetics on an MXene-derived heterostructured electrocatalyst. Nano Res. 17(8), 7153–7162 (2024). https://doi.org/10.1007/s12274-024-6682-6
- J. Feng, C. Shi, X. Zhao, Y. Zhang, S. Chen et al., Physical field effects to suppress polysulfide shuttling in lithium–sulfur battery. Adv. Mater. 36(48), 2414047 (2024). https://doi.org/10.1002/adma.202414047
- H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium–sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15(1), 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
- P. Wang, F. Sun, S. Xiong, Z. Zhang, B. Duan et al., WSe2 flakelets on N-doped graphene for accelerating polysulfide redox and regulating Li plating. Angew. Chem. Int. Ed. 61(7), e202116048 (2022). https://doi.org/10.1002/anie.202116048
- T. Ma, J. Deng, Y. Lin, Q. Liang, L. Hu et al., Li-rich organosulfur cathode with boosted kinetics for high-energy lithium–sulfur batteries. Energy Environ. Mater. 7(4), e12704 (2024). https://doi.org/10.1002/eem2.12704
- Q. Wu, K. Chen, Z. Shadike, C. Li, Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li–S batteries. ACS Nano 18(21), 13468–13483 (2024). https://doi.org/10.1021/acsnano.3c09919
- Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei et al., Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li–S batteries. Adv. Mater. 33(43), e2103050 (2021). https://doi.org/10.1002/adma.202103050
- J. Feng, C. Shi, X. Zhao, Y. Zhang, S. Chen et al., Physical field effects to suppress polysulfide shuttling in lithium–sulfur battery. Adv. Mater. 36(48), e2414047 (2024). https://doi.org/10.1002/adma.202414047
- Z.X. Shi, M. Li, J.Y. Sun, Z.W. Chen, Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives. Adv. Energy Mater. 11(23), 2100332 (2021). https://doi.org/10.1002/aenm.202100332
- Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe–ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9(1), e2103456 (2022). https://doi.org/10.1002/advs.202103456
- B. Li, T. Zhang, Z. Song, W. Jiang, J. Yang et al., 3D adsorption-mediator network polymer binders improve redox kinetics and flame retardant performance for high loading lithium–sulfur batteries. Adv. Funct. Mater. 33(52), 2306990 (2023). https://doi.org/10.1002/adfm.202306990
- Y. Zhang, Z. Wu, S. Wang, Complex permittivity-dependent plasma confinement-assisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li–S full cells. InfoMat 4(7), e12294 (2022). https://doi.org/10.1002/inf2.12294
- Z. Xu, Y. Ren, X. Shen, K. Yao, J. Li et al., PTFE nanofiber cross-linked acetylene black: a flexible self-supporting semi-confined architecture for ultra-high sulfur loading and areal capacity. Energy Storage Mater. 64, 103071 (2024). https://doi.org/10.1016/j.ensm.2023.103071
- L. Wang, X. Meng, X. Wang, M. Zhen, Dual-conductive CoSe2@TiSe2-C heterostructures promoting overall sulfur redox kinetics under high sulfur loading and lean electrolyte. Small 19(21), 2300089 (2023). https://doi.org/10.1002/smll.202300089
- H. Zhu, S. Chen, X. Yao, K. Yang, W. Zhao et al., Upcycling spent cathode materials to bifunctional catalysts for high-stability lithium–sulfur batteries. Adv. Funct. Mater. 34(29), 2401470 (2024). https://doi.org/10.1002/adfm.202401470
- D. Yang, J. Wang, C. Lou, M. Li, C. Zhang et al., Single-atom catalysts with unsaturated Co–N2 active sites based on a C2N 2D-organic framework for efficient sulfur redox reaction. ACS Energy Lett. 9(5), 2083–2091 (2024). https://doi.org/10.1021/acsenergylett.4c00771
- T.A. Oyehan, B.A. Salami, A.A. Abdulrasheed, H.U. Hambali, A. Gbadamosi et al., MXenes: Synthesis, properties, and applications for sustainable energy and environment. Appl. Mater. Today 35, 101993 (2023). https://doi.org/10.1016/j.apmt.2023.101993
- W.Y. Lieu, C.J. Lin, X.L. Li, S.Q. Jiang, Y.J. Li et al., Structural design of electrocatalyst-decorated MXenes on sulfur spheres for lithium–sulfur batteries. Nano Lett. 23, 5762–5769 (2023). https://doi.org/10.1021/acs.nanolett.3c01558
- D. Lu, X. Wang, Y. Hu, L. Yue, Z. Shao et al., Expediting stepwise sulfur conversion via spontaneous built-In electric field and binary sulfiphilic effect of conductive NbB2-MXene heterostructure in lithium–sulfur batteries. Adv. Funct. Mater. 33(15), 2212689 (2023). https://doi.org/10.1002/adfm.202212689
- C. Jiao, C.-R. Zhao, L. Zhang, S.-Q. Zhao, G.-Y. Pang et al., Electrochemical properties of high-loading sulfur–carbon materials prepared by in situ generation method. Rare Met. 42(11), 3877–3885 (2023). https://doi.org/10.1007/s12598-019-01262-x
- Z. Liu, M. Chen, D. Zhou, Z. Xiao, Scavenging of “dead sulfur” and “dead lithium” revealed by integrated–heterogeneous catalysis for advanced lithium–sulfur batteries. Adv. Funct. Mater. 33(46), 2306321 (2023). https://doi.org/10.1002/adfm.202306321
- R. Li, L. Yang, L. Song, C. Zhou, J. Zhou et al., A thin LiGa alloy layer from in situ electroreduction to suppress anode dendrite formation in lithium–sulfur pouch cell. Chem. Eng. J. 455, 140707 (2023). https://doi.org/10.1016/j.cej.2022.140707
- N. Li, L. Yu, J. Xi, Integrated design of interlayer/current-collector: heteronanowires decorated carbon microtube fabric for high-loading and lean-electrolyte lithium–sulfur batteries. Small 17(37), 2103001 (2021). https://doi.org/10.1002/smll.202103001
- Q. Gao, Z. Shen, Z. Guo, M. Li, J. Wei et al., Metal coordinated polymer as three-dimensional network binder for high sulfur loading cathode of lithium–sulfur battery. Small 19(28), e2301344 (2023). https://doi.org/10.1002/smll.202301344
- R. Li, Y. Zeng, L. Song, J. Lv, C. Wang et al., Mechanism and solution of overcharge effect in lithium–sulfur batteries. Small 20(2), 2305283 (2024). https://doi.org/10.1002/smll.202305283
- L. Liang, L. Niu, T. Wu, D. Zhou, Z. Xiao, Fluorine-free fabrication of MXene via photo-Fenton approach for advanced lithium-sulfur batteries. ACS Nano 16(5), 7971–7981 (2022). https://doi.org/10.1021/acsnano.2c00779
- X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
- H. Tang, W. Li, L. Pan, K. Tu, F. Du et al., A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li–S batteries. Adv. Funct. Mater. 29(30), 1901907 (2019). https://doi.org/10.1002/adfm.201901907
- H. Tang, W.L. Li, L.M. Pan, C.P. Cullen, Y. Liu et al., In situ formed protective barrier enabled by Sulfur@Titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 5(9), 1800502 (2018). https://doi.org/10.1002/advs.201800502
- N. Li, Y. Xie, S. Peng, X. Xiong, K. Han, Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 42, 116–125 (2020). https://doi.org/10.1016/j.jechem.2019.06.014
- G. Valurouthu, M. Shekhirev, M. Anayee, R.J. Wang, K. Matthews et al., Screening conductive MXenes for lithium polysulfide adsorption. Adv. Funct. Mater. 34(45), 2404430 (2024). https://doi.org/10.1002/adfm.202404430
- C.L. Wei, Y. Tao, Y.L. An, Y. Tian, Y.C. Zhang et al., Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 30(45), 2004613 (2020). https://doi.org/10.1002/adfm.202004613
- D. Zhang, S. Wang, B. Li, Y. Gong, S. Yang, Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 31(33), e1901820 (2019). https://doi.org/10.1002/adma.201901820
- D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13(10), 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
- Y. Li, Y.-C. Zhu, S. Vallem, M. Li, S. Song et al., Flame-retardant ammonium polyphosphate/MXene decorated carbon foam materials as polysulfide traps for fire-safe and stable lithium–sulfur batteries. J. Energy Chem. 89, 313–323 (2024). https://doi.org/10.1016/j.jechem.2023.10.029
- B. Li, P. Wang, J. Yuan, N. Song, J. Feng et al., P-doped RuSe2 on porous N-doped carbon matrix as catalysts for accelerated sulfur redox reactions. Angew. Chem. Int. Ed. 63(48), e202408906 (2024). https://doi.org/10.1002/anie.202408906
- W. Yu, S. Ma, M. He, R. Li, H. Yang et al., Immobilization and kinetic acceleration of lithium polysulfides by iodine-doped MXene nanosheets in lithium–sulfur batteries. J. Phys. Chem. C 126(27), 10986–10994 (2022). https://doi.org/10.1021/acs.jpcc.2c02689
- J. Feng, W. Liu, C. Shi, C. Zhang, X. Zhao et al., Enabling fast diffusion/conversion kinetics by thiourea-induced wrinkled N, S Co-doped functional MXene for lithium–sulfur battery. Energy Storage Mater. 67, 103328 (2024). https://doi.org/10.1016/j.ensm.2024.103328
- W. Zhang, H. Jin, Y. Du, G. Chen, J. Zhang, Sulfur and nitrogen codoped Nb2C MXene for dendrite-free lithium metal battery. Electrochim. Acta 390, 138812 (2021). https://doi.org/10.1016/j.electacta.2021.138812
- P. Li, H. Lv, Z. Li, X. Meng, Z. Lin et al., The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium–sulfur batteries. Adv. Mater. 33(17), e2007803 (2021). https://doi.org/10.1002/adma.202007803
- Y. Cao, Y. Jia, X. Meng, X. Fan, J. Zhang et al., Covalently grafting conjugated porous polymers to MXene offers a two-dimensional sandwich-structured electrocatalytic sulfur host for lithium–sulfur batteries. Chem. Eng. J. 446, 137365 (2022). https://doi.org/10.1016/j.cej.2022.137365
- X. Wang, C. Yang, X. Xiong, G. Chen, M. Huang et al., A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li–S batteries. Energy Storage Mater. 16, 344–353 (2019). https://doi.org/10.1016/j.ensm.2018.06.015
- X. Li, Q. Guan, Z. Zhuang, Y. Zhang, Y. Lin et al., Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li–S battery. ACS Nano 17(2), 1653–1662 (2023). https://doi.org/10.1021/acsnano.2c11663
- C. Wei, Y. Wang, Y. Zhang, L. Tan, Y. Qian et al., Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium–sulfur batteries. Nano Res. 14(10), 3576–3584 (2021). https://doi.org/10.1007/s12274-021-3433-9
- C. Wen, X. Zheng, X. Li, M. Yuan, H. Li et al., Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium–sulfur batteries. Chem. Eng. J. 409, 128102 (2021). https://doi.org/10.1016/j.cej.2020.128102
- D. Xiong, S. Huang, D. Fang, D. Yan, G. Li et al., Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium–sulfur batteries. Small 17(34), e2007442 (2021). https://doi.org/10.1002/smll.202007442
- W. Zhao, Y. Lei, Y. Zhu, Q. Wang, F. Zhang et al., Hierarchically structured Ti3C2Tx MXene paper for Li-S batteries with high volumetric capacity. Nano Energy 86, 106120 (2021). https://doi.org/10.1016/j.nanoen.2021.106120
- Z. Xiao, Z. Li, P. Li, X. Meng, R. Wang, Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium–sulfur batteries. ACS Nano 13(3), 3608–3617 (2019). https://doi.org/10.1021/acsnano.9b00177
- C. Wei, M. Tian, Z. Fan, L. Yu, Y. Song et al., Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N–Ti3C2 MXene framework toward advanced Li–S full batteries. Energy Storage Mater. 41, 141–151 (2021). https://doi.org/10.1016/j.ensm.2021.05.030
- H.J. Peng, G. Zhang, X. Chen, Z.-W. Zhang, W.T. Xu et al., Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55, 12990 (2016). https://doi.org/10.1002/anie.201605676
- P.-Y. Zhai, J.-Q. Huang, L. Zhu, J.-L. Shi, W. Zhu et al., Calendering of free-standing electrode for lithium–sulfur batteries with high volumetric energy density. Carbon 111, 493–501 (2017). https://doi.org/10.1016/j.carbon.2016.10.035
- C. Lin, C. Niu, X. Xu, K. Li, Z. Cai et al., A facile synthesis of three dimensional graphene sponge composited with sulfur nanops for flexible Li–S cathodes. Phys. Chem. Chem. Phys. 18(32), 22146–22153 (2016). https://doi.org/10.1039/c6cp03624d
- Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang et al., Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24(39), 6105–6112 (2014). https://doi.org/10.1002/adfm.201401501
- X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 29(3), 1603040 (2017). https://doi.org/10.1002/adma.201603040
- W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
- L. Zhu, H.-J. Peng, J. Liang, J.-Q. Huang, C.-M. Chen et al., Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 11, 746–755 (2015). https://doi.org/10.1016/j.nanoen.2014.11.062
- J. Li, L. Liu, J. Wang, Y. Zhuang, B. Wang et al., Freestanding TiO2 nanop-embedded high directional carbon composite host for high-loading low-temperature lithium–sulfur batteries. ACS Sustain. Chem. Eng. 11(9), 3657–3663 (2023). https://doi.org/10.1021/acssuschemeng.2c06482
- H. Li, P. Shi, L. Wang, T. Yan, T. Guo et al., Cooperative catalysis of polysulfides in lithium–sulfur batteries through adsorption competition by tuning cationic geometric configuration of dual-active sites in spinel oxides. Angew. Chem. Int. Ed. 62(8), e202216286 (2023). https://doi.org/10.1002/anie.202216286
- Y. Bai, T.T. Nguyen, H. Song, R. Chu, D.T. Tran et al., Ru single atom dispersed on MoS2/MXene for enhanced sulfur reduction reaction in lithium–sulfur batteries. Small 20(38), e2402074 (2024). https://doi.org/10.1002/smll.202402074
- M. Fang, J. Han, S. He, J.-C. Ren, S. Li et al., Effective screening descriptor for MXenes to enhance sulfur reduction in lithium-sulfur batteries. J. Am. Chem. Soc. 145(23), 12601–12608 (2023). https://doi.org/10.1021/jacs.3c01834
- Q. Zeng, L. Xu, G. Li, Q. Zhang, S. Guo et al., Integrating sub-nano catalysts into metal-organic framework toward pore-confined polysulfides conversion in lithium–sulfur batteries. Adv. Funct. Mater. 33(43), 2304619 (2023). https://doi.org/10.1002/adfm.202304619
- Y. Zhang, C. Kang, W. Zhao, Y. Song, J. Zhu et al., D-p hybridization-induced “trapping-coupling-conversion” enables high-efficiency Nb single-atom catalysis for Li–S batteries. J. Am. Chem. Soc. 145(3), 1728–1739 (2023). https://doi.org/10.1021/jacs.2c10345
- Y. Guo, X. Yang, X. Liu, X. Tong, N. Yang, Coupling methanol oxidation with hydrogen evolution on bifunctional Co-doped Rh electrocatalyst for efficient hydrogen generation. Adv. Funct. Mater. 33(2), 2209134 (2023). https://doi.org/10.1002/adfm.202209134
- Z. Hou, C. Cui, Y. Li, Y. Gao, D. Zhu et al., Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction. Adv. Mater. 35(39), 2209876 (2023). https://doi.org/10.1002/adma.202209876
- Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5(6), 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
- X.-L. Zhang, S.-J. Hu, Y.-R. Zheng, R. Wu, F.-Y. Gao et al., Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 10(1), 5338 (2019). https://doi.org/10.1038/s41467-019-12992-y
- X.-L. Zhang, P.-C. Yu, X.-Z. Su, S.-J. Hu, L. Shi et al., Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst. Sci. Adv. 9(27), eadh2885 (2023). https://doi.org/10.1126/sciadv.adh2885
- X. Wang, D. Luo, J. Wang, Z. Sun, G. Cui et al., Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem. Int. Ed. 60(5), 2371–2378 (2021). https://doi.org/10.1002/anie.202011493
- C. Zhang, W. Chu, X. Hong, Q. He, R. Lu et al., Accelerating conversion of LiPSs on strain-induced MXene for high-performance Li–S battery. Chem. Eng. J. 439, 135679 (2022). https://doi.org/10.1016/j.cej.2022.135679
- J. Wang, Y. Xu, Y. Zhuang, Y. Li, H.H. Chang et al., Lattice strain and charge localization dual regulation of phosphorus-doped CoSe2/MXene catalysts enable kinetics-enhanced and dendrite-free lithium–sulfur batteries. Adv. Energy Mater. 14(38), 2401630 (2024). https://doi.org/10.1002/aenm.202401630
- W. Wang, L. Huai, S. Wu, J. Shan, J. Zhu et al., Ultrahigh-volumetric-energy-density lithium–sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx MXene bifunctional catalyst. ACS Nano 15(7), 11619–11633 (2021). https://doi.org/10.1021/acsnano.1c02047
- S. Hu, T. Wang, B. Lu, D. Wu, H. Wang et al., Ionic-liquid-assisted synthesis of FeSe–MnSe heterointerfaces with abundant Se vacancies embedded in N, B Co-doped hollow carbon microspheres for accelerating the sulfur reduction reaction. Adv. Mater. 34(41), e2204147 (2022). https://doi.org/10.1002/adma.202204147
- K. Xu, X. Liu, J. Liang, J. Cai, K. Zhang et al., Manipulating the redox kinetics of Li–S chemistry by tellurium doping for improved Li–S batteries. ACS Energy Lett. 3(2), 420–427 (2018). https://doi.org/10.1021/acsenergylett.7b01249
- Z. Wang, H. Jiang, Z. Ni, C. Wei, K. Tian et al., Spatial confinement design with metal-doped catalysts: modulating electronic-state of active sites for accelerating sulfur redox kinetics in lithium–sulfur batteries. Adv. Funct. Mater. 35, 2416997 (2025). https://doi.org/10.1002/adfm.202416997
- X. Zhou, Y. Cui, X. Huang, X. Wu, H. Sun et al., Dual-defect engineering of bidirectional catalyst for high-performing lithium–sulfur batteries. Small 19(40), e2301545 (2023). https://doi.org/10.1002/smll.202301545
- Y. Song, Y. Sun, L. Chen, L. Song, Q. Yang et al., Seeding Co atoms on size effect-enabled V2C MXene for kinetically boosted lithium–sulfur batteries. Adv. Funct. Mater. 34(51), 2409748 (2024). https://doi.org/10.1002/adfm.202409748
- H. Gu, W. Yue, J. Hu, X. Niu, H. Tang et al., Asymmetrically coordinated Cu–N1C2 single-atom catalyst immobilized on Ti3C2Tx MXene as separator coating for lithium–sulfur batteries. Adv. Energy Mater. 13(20), 2204014 (2023). https://doi.org/10.1002/aenm.202204014
- Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium-sulfur batteries. Nano Lett. 21(15), 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
- S. Deng, W. Sun, J. Tang, M. Jafarpour, F. Nüesch et al., Multifunctional SnO2 QDs/MXene heterostructures as laminar interlayers for improved polysulfide conversion and lithium plating behavior. Nano-Micro Lett. 16(1), 229 (2024). https://doi.org/10.1007/s40820-024-01446-w
- L. Jiao, C. Zhang, C.N. Geng, S.C. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219
- C. Song, Q. Yan, T. Zhang, H. Lin, H. Ye et al., Enhanced polysulfide conversion through metal oxide-support interaction in MnOx/MXene. Chem. Eng. J. 420, 130452 (2021). https://doi.org/10.1016/j.cej.2021.130452
- Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). https://doi.org/10.1002/adfm.201707578
- J.Z. Chen, Z.A. Li, J.T. Lei, P.P. Chen, D.L. Zhao, Accelerated ion-electron transport in bi-heterostructures constructed based on ohmic contacts for efficient bi-directional catalysis of lithium–sulfur batteries. Small 21(2), 2408284 (2025). https://doi.org/10.1002/smll.202408284
- X. Wang, L. Chen, Y. Yu, W. Wang, L. Yue et al., Tuning p-band centers and interfacial built-In electric field of heterostructure catalysts to expedite bidirectional sulfur redox for high-performance Li–S batteries. Adv. Funct. Mater. 34(41), 2406290 (2024). https://doi.org/10.1002/adfm.202406290
- M. Xu, Q. Zhu, Y. Li, Y. Gao, N. Sun et al., Atom-dominated relay catalysis of high-entropy MXene promotes cascade polysulfide conversion for lithium–sulfur batteries. Energy Environ. Sci. 17(20), 7735–7748 (2024). https://doi.org/10.1039/D4EE03402C
- Y. Xu, W. Yuan, C. Geng, Z. Hu, Q. Li et al., High-entropy catalysis accelerating stepwise sulfur redox reactions for lithium–sulfur batteries. Adv. Sci. 11(31), e2402497 (2024). https://doi.org/10.1002/advs.202402497
- R. Wang, J. Jiao, D. Liu, Y. He, Y. Yang et al., High-entropy metal nitride embedded in concave porous carbon enabling polysulfide conversion in lithium–sulfur batteries. Small 20(44), e2405148 (2024). https://doi.org/10.1002/smll.202405148
- J. Jiao, D. Liu, Y. He, Y. Shen, J. Zhou et al., Entropy engineering-modulated d-band center of transition metal nitrides for catalyzing polysulfide conversion in lithium–sulfur batteries. Small (2024). https://doi.org/10.1002/smll.202409740
- Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18(3), 2395–2408 (2024). https://doi.org/10.1021/acsnano.3c10731
- Q. Zou, Q. Liang, H. Zhou, Y. Guo, J. Xue et al., Promoting Li2S nucleation/dissolution kinetics via multiple active sites over TiVCrMoC3Tx interface. Small 20(40), e2402344 (2024). https://doi.org/10.1002/smll.202402344
- K. Wu, G. Lu, B. Huang, Z. Hu, Y. Lv et al., Entropy-driven highly chaotic MXene-based heterostructures as an efficient sulfur redox electrocatalysts for Li-S battery. Adv. Funct. Mater. 34(45), 2404976 (2024). https://doi.org/10.1002/adfm.202404976
- X. Zuo, L. Wang, M. Zhen, T. You, D. Liu et al., Multifunctional TiN-MXene-Co@CNTs networks as sulfur/lithium host for high-areal-capacity lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(35), e202408026 (2024). https://doi.org/10.1002/anie.202408026
- B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10(15), 2000091 (2020). https://doi.org/10.1002/aenm.202000091
- Y. Yan, H. Li, C. Cheng, T. Yan, W. Gao et al., Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co–Mo bimetallic nitride. J. Energy Chem. 61, 336–346 (2021). https://doi.org/10.1016/j.jechem.2021.03.041
- W. Zhou, D. Zhao, Q. Wu, J. Dan, X. Zhu et al., Rational design of the Lotus-like N-Co2VO4-Co heterostructures with well-defined interfaces in suppressing the shuttle effect and dendrite growth in lithium–sulfur batteries. Small 17(50), 2104109 (2021). https://doi.org/10.1002/smll.202104109
- R. Zhang, Y. Dong, M.A. Al-Tahan, Y. Zhang, R. Wei et al., Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries. J. Energy Chem. 60, 85–94 (2021). https://doi.org/10.1016/j.jechem.2021.01.004
- X. Huang, J. Tang, B. Luo, R. Knibbe, T.G. Lin et al., Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9, 1901872 (2019). https://doi.org/10.1002/aenm.201901872
- L. Shi, W. Yuan, J. Liu, W. Zhang, S. Hou et al., P-doped NiSe2 nanorods grown on activated carbon cloths for high-loading lithium-sulfur batteries. J. Alloys Compd. 875, 160045 (2021). https://doi.org/10.1016/j.jallcom.2021.160045
- S. Li, P. Xu, M.K. Aslam, C. Chen, A. Rashid et al., Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Mater. 27, 51–60 (2020). https://doi.org/10.1016/j.ensm.2020.01.017
- H. Gao, S. Ning, J. Zou, S. Men, Y. Zhou et al., The electrocatalytic activity of BaTiO3 nanops towards polysulfides enables high-performance lithium–sulfur batteries. J. Energy Chem. 48, 208–216 (2020). https://doi.org/10.1016/j.jechem.2020.01.028
References
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
L. Wang, Y. Li, Y. Ai, E. Fan, F. Zhang et al., Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS. Adv. Funct. Mater. 33(44), 2306466 (2023). https://doi.org/10.1002/adfm.202306466
C. Xia, C.Y. Kwok, L.F. Nazar, A high-energy-density lithium–oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 361(6404), 777–781 (2018). https://doi.org/10.1126/science.aas9343
Y. Li, L. Wang, F. Zhang, W. Zhang, G. Shao et al., Detecting and quantifying wavelength-dependent electrons transfer in heterostructure catalyst via in situ irradiation XPS. Adv. Sci. 10(4), e2205020 (2023). https://doi.org/10.1002/advs.202205020
M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004). https://doi.org/10.1021/cr020730k
L. Gao, T. Sheng, M. Wang, H. Ren, S.W. Joo et al., Titanium nitride nanocrystals anchored evenly on interconnected carbon nanosheets with effective chemisorption and catalytic effects towards polysulfides for long-life lithium−sulfur batteries. Electrochim. Acta 395, 139208 (2021). https://doi.org/10.1016/j.electacta.2021.139208
X. Pang, H. Geng, S. Dong, B. An, S. Zheng et al., Medium-entropy-alloy FeCoNi enables lithium–sulfur batteries with superb low-temperature performance. Small 19(5), e2205525 (2023). https://doi.org/10.1002/smll.202205525
W. Yan, J.-L. Yang, X. Xiong, L. Fu, Y. Chen et al., Versatile asymmetric separator with dendrite-free alloy anode enables high-performance Li–S batteries. Adv. Sci. 9(25), e2202204 (2022). https://doi.org/10.1002/advs.202202204
W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma et al., Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries. ACS Nano 15(4), 7491–7499 (2021). https://doi.org/10.1021/acsnano.1c00896
S. Fu, H. Wang, S. Schaefer, B. Shang, L. Ren et al., Simple framework for simultaneous analysis of both electrodes in stoichiometric lithium–sulfur batteries. J. Am. Chem. Soc. 146(31), 21721–21728 (2024). https://doi.org/10.1021/jacs.4c05827
L. Chen, L. Yue, X. Wang, S. Wu, W. Wang et al., Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-In electric field of SnS2-MXene Mott-Schottky heterojunction in Li–S batteries. Small 19(15), 2206462 (2023). https://doi.org/10.1002/smll.202206462
Y. Li, Y. Zhang, R. Hou, Y. Ai, M. Cai et al., Revealing electron numbers-binding energy relationships in heterojunctions via in situ irradiated XPS. Appl. Catal. B Environ. Energy 356, 124223 (2024). https://doi.org/10.1016/j.apcatb.2024.124223
C.Q. Zhang, J.J. Biendicho, T. Zhang, R.F. Du, J.S. Li et al., Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 29(34), 1903842 (2019). https://doi.org/10.1002/adfm.201903842
Z.X. Shi, Y.F. Ding, Q. Zhang, J.Y. Sun, Electrocatalyst modulation toward bidirectional sulfur redox in Li–S batteries: from strategic probing to mechanistic understanding. Adv. Energy Mater. 12(29), 2201056 (2022). https://doi.org/10.1002/aenm.202201056
P. Zhang, Y. Zhao, Y. Li, N. Li, S. Ravi, P. Silva et al., Revealing the selective bifunctional electrocatalytic sites via in situ irradiated X-ray photoelectron spectroscopy for lithium–sulfur battery. Adv. Sci. 10(8), e2206786 (2023). https://doi.org/10.1002/advs.202206786
Z. Shi, S. Thomas et al., Solvation sheath reorganization by alkyl chain tuning promises lean-electrolyte Li–S batteries. ACS Energy Lett. 9(11), 5391–5402 (2024). https://doi.org/10.1021/acsenergylett.4c02049
Z. Shi, Z. Tian, D. Guo, Y. Wang, Z. Bayhan et al., Kinetically favorable Li–S battery electrolytes. ACS Energy Lett. 8(7), 3054–3080 (2023). https://doi.org/10.1021/acsenergylett.3c00826
J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium–sulfur batteries. Nano-Micro Lett. 16(1), 12 (2023). https://doi.org/10.1007/s40820-023-01223-1
Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium–sulfur batteries: from academic research to commercial viability. Adv. Mater. 33(29), e2003666 (2021). https://doi.org/10.1002/adma.202003666
A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium–sulfur batteries: attaining the critical metrics. Joule 4(2), 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
Y.-C. Ho, S.-H. Chung, A design of the cathode substrate for high-loading polysulfide cathodes in lean-electrolyte lithium–sulfur cells. Chem. Eng. J. 422, 130363 (2021). https://doi.org/10.1016/j.cej.2021.130363
L.P. Chen, Y.H. Xu, G.Q. Cao, H.M.K. Sari, R.X. Duan et al., Bifunctional catalytic effect of CoSe2 for lithium–sulfur batteries: single doping versus dual doping. Adv. Funct. Mater. 32(8), 2107838 (2022). https://doi.org/10.1002/adfm.202107838
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
M. Zhao, B.-Q. Li, X. Chen, J. Xie, H. Yuan et al., Redox comediation with organopolysulfides in working lithium–sulfur batteries. Chem 6(12), 3297–3311 (2020). https://doi.org/10.1016/j.chempr.2020.09.015
E. Kim, S. Kim, H.M. Jin, G. Kim, H.H. Ha et al., Unlocking novel functionality: pseudocapacitive sensing in MXene-based flexible supercapacitors. Nano-Micro Lett. 17, 86 (2025). https://doi.org/10.1007/s40820-024-01567-2
I. Hussain, A. Hanan, F. Bibi, O.J. Kewate, M.S. Javed et al., Non-Ti (M2X and M3X2) MXenes for energy storage/conversion. Adv. Energy Mater. 14(34), 2401650 (2024). https://doi.org/10.1002/aenm.202401650
R. Zhao, C. Liu, Y. Zhu, G. Zou, H. Hou et al., Pathways for MXenes in solving the issues of zinc-ion batteries: achievements and perspectives. Adv. Funct. Mater. 34(28), 2316643 (2024). https://doi.org/10.1002/adfm.202316643
H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
X. Zhong, D. Wang, J. Sheng, Z. Han, C. Sun et al., Freestanding and sandwich MXene-based cathode with suppressed lithium polysulfides shuttle for flexible lithium–sulfur batteries. Nano Lett. 22(3), 1207–1216 (2022). https://doi.org/10.1021/acs.nanolett.1c04377
X. Huang, J. Tang, T. Qiu, R. Knibbe, Y. Hu et al., Nanoconfined topochemical conversion from MXene to ultrathin non-layered TiN nanomesh toward superior electrocatalysts for lithium–sulfur batteries. Small 17(32), e2101360 (2021). https://doi.org/10.1002/smll.202101360
D. Zhang, S. Wang, R.M. Hu, J.N. Gu, Y.L.S. Cui et al., Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium–sulfur batteries. Adv. Funct. Mater. 30(30), 2002471 (2020). https://doi.org/10.1002/adfm.202002471
M.Q. Long, K.K. Tang, J. Xiao, J.Y. Li, J. Chen et al., Recent advances on MXene based materials for energy storage applications. Mater. Today Sustain. 19, 100163 (2022). https://doi.org/10.1016/j.mtsust.2022.100163
P. Wang, T. Xu, B. Xi, J. Yuan, N. Song et al., A Zn8 double-cavity metallacalix[8]arene as molecular sieve to realize self-cleaning intramolecular tandem transformation of Li−S chemistry. Adv. Mater. 34, 2207689 (2022). https://doi.org/10.1002/adma.202207689
X. Zhu, T. Bian, X. Song, M. Zheng, Z. Shen et al., Accelerating S↔Li2S reactions in Li-S batteries through activation of S/Li2S with a bifunctional semiquinone catalyst. Angew. Chem. Int. Ed. 63(5), e202315087 (2024). https://doi.org/10.1002/anie.202315087
L. Zhou, X. Zhang, W. Hao, S. Sun, R. Wang et al., Mirror plane effect of magnetoplumbite-type oxide restraining long-chain polysulfides disproportionation for high loading lithium sulfur batteries. Small Meth. 8(12), 2400475 (2024). https://doi.org/10.1002/smtd.202400475
Y. He, X. Jing, T. Lai, D. Jiang, C. Wan et al., Amphipathic emulsion binder for enhanced performance of lithium–sulfur batteries. J. Mater. Chem. A 12(21), 12681–12690 (2024). https://doi.org/10.1039/d4ta01037j
R. Hou, S. Zhang, Y. Zhang, N. Li, S. Wang et al., A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium–sulfur batteries. Adv. Funct. Mater. 32(19), 2200302 (2022). https://doi.org/10.1002/adfm.202200302
F. Zhou, Y. Mei, Q. Wu, H. Li, J. Xu et al., Sulfur electrode tolerance and polysulfide conversion promoted by the supramolecular binder with rare-earth catalysis in lithium–sulfur batteries. Energy Storage Mater. 67, 103315 (2024). https://doi.org/10.1016/j.ensm.2024.103315
H. Xu, Q. Jiang, K.S. Hui, S. Wang, L. Liu et al., Interfacial “double-terminal binding sites” catalysts synergistically boosting the electrocatalytic Li2S redox for durable lithium–sulfur batteries. ACS Nano 18(12), 8839–8852 (2024). https://doi.org/10.1021/acsnano.3c11903
Y. Li, Y. Zuo, X. Li, Y. Zhang, C. Ma et al., Electron delocalization-enhanced sulfur reduction kinetics on an MXene-derived heterostructured electrocatalyst. Nano Res. 17(8), 7153–7162 (2024). https://doi.org/10.1007/s12274-024-6682-6
J. Feng, C. Shi, X. Zhao, Y. Zhang, S. Chen et al., Physical field effects to suppress polysulfide shuttling in lithium–sulfur battery. Adv. Mater. 36(48), 2414047 (2024). https://doi.org/10.1002/adma.202414047
H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium–sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15(1), 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
P. Wang, F. Sun, S. Xiong, Z. Zhang, B. Duan et al., WSe2 flakelets on N-doped graphene for accelerating polysulfide redox and regulating Li plating. Angew. Chem. Int. Ed. 61(7), e202116048 (2022). https://doi.org/10.1002/anie.202116048
T. Ma, J. Deng, Y. Lin, Q. Liang, L. Hu et al., Li-rich organosulfur cathode with boosted kinetics for high-energy lithium–sulfur batteries. Energy Environ. Mater. 7(4), e12704 (2024). https://doi.org/10.1002/eem2.12704
Q. Wu, K. Chen, Z. Shadike, C. Li, Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li–S batteries. ACS Nano 18(21), 13468–13483 (2024). https://doi.org/10.1021/acsnano.3c09919
Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei et al., Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li–S batteries. Adv. Mater. 33(43), e2103050 (2021). https://doi.org/10.1002/adma.202103050
J. Feng, C. Shi, X. Zhao, Y. Zhang, S. Chen et al., Physical field effects to suppress polysulfide shuttling in lithium–sulfur battery. Adv. Mater. 36(48), e2414047 (2024). https://doi.org/10.1002/adma.202414047
Z.X. Shi, M. Li, J.Y. Sun, Z.W. Chen, Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives. Adv. Energy Mater. 11(23), 2100332 (2021). https://doi.org/10.1002/aenm.202100332
Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe–ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9(1), e2103456 (2022). https://doi.org/10.1002/advs.202103456
B. Li, T. Zhang, Z. Song, W. Jiang, J. Yang et al., 3D adsorption-mediator network polymer binders improve redox kinetics and flame retardant performance for high loading lithium–sulfur batteries. Adv. Funct. Mater. 33(52), 2306990 (2023). https://doi.org/10.1002/adfm.202306990
Y. Zhang, Z. Wu, S. Wang, Complex permittivity-dependent plasma confinement-assisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li–S full cells. InfoMat 4(7), e12294 (2022). https://doi.org/10.1002/inf2.12294
Z. Xu, Y. Ren, X. Shen, K. Yao, J. Li et al., PTFE nanofiber cross-linked acetylene black: a flexible self-supporting semi-confined architecture for ultra-high sulfur loading and areal capacity. Energy Storage Mater. 64, 103071 (2024). https://doi.org/10.1016/j.ensm.2023.103071
L. Wang, X. Meng, X. Wang, M. Zhen, Dual-conductive CoSe2@TiSe2-C heterostructures promoting overall sulfur redox kinetics under high sulfur loading and lean electrolyte. Small 19(21), 2300089 (2023). https://doi.org/10.1002/smll.202300089
H. Zhu, S. Chen, X. Yao, K. Yang, W. Zhao et al., Upcycling spent cathode materials to bifunctional catalysts for high-stability lithium–sulfur batteries. Adv. Funct. Mater. 34(29), 2401470 (2024). https://doi.org/10.1002/adfm.202401470
D. Yang, J. Wang, C. Lou, M. Li, C. Zhang et al., Single-atom catalysts with unsaturated Co–N2 active sites based on a C2N 2D-organic framework for efficient sulfur redox reaction. ACS Energy Lett. 9(5), 2083–2091 (2024). https://doi.org/10.1021/acsenergylett.4c00771
T.A. Oyehan, B.A. Salami, A.A. Abdulrasheed, H.U. Hambali, A. Gbadamosi et al., MXenes: Synthesis, properties, and applications for sustainable energy and environment. Appl. Mater. Today 35, 101993 (2023). https://doi.org/10.1016/j.apmt.2023.101993
W.Y. Lieu, C.J. Lin, X.L. Li, S.Q. Jiang, Y.J. Li et al., Structural design of electrocatalyst-decorated MXenes on sulfur spheres for lithium–sulfur batteries. Nano Lett. 23, 5762–5769 (2023). https://doi.org/10.1021/acs.nanolett.3c01558
D. Lu, X. Wang, Y. Hu, L. Yue, Z. Shao et al., Expediting stepwise sulfur conversion via spontaneous built-In electric field and binary sulfiphilic effect of conductive NbB2-MXene heterostructure in lithium–sulfur batteries. Adv. Funct. Mater. 33(15), 2212689 (2023). https://doi.org/10.1002/adfm.202212689
C. Jiao, C.-R. Zhao, L. Zhang, S.-Q. Zhao, G.-Y. Pang et al., Electrochemical properties of high-loading sulfur–carbon materials prepared by in situ generation method. Rare Met. 42(11), 3877–3885 (2023). https://doi.org/10.1007/s12598-019-01262-x
Z. Liu, M. Chen, D. Zhou, Z. Xiao, Scavenging of “dead sulfur” and “dead lithium” revealed by integrated–heterogeneous catalysis for advanced lithium–sulfur batteries. Adv. Funct. Mater. 33(46), 2306321 (2023). https://doi.org/10.1002/adfm.202306321
R. Li, L. Yang, L. Song, C. Zhou, J. Zhou et al., A thin LiGa alloy layer from in situ electroreduction to suppress anode dendrite formation in lithium–sulfur pouch cell. Chem. Eng. J. 455, 140707 (2023). https://doi.org/10.1016/j.cej.2022.140707
N. Li, L. Yu, J. Xi, Integrated design of interlayer/current-collector: heteronanowires decorated carbon microtube fabric for high-loading and lean-electrolyte lithium–sulfur batteries. Small 17(37), 2103001 (2021). https://doi.org/10.1002/smll.202103001
Q. Gao, Z. Shen, Z. Guo, M. Li, J. Wei et al., Metal coordinated polymer as three-dimensional network binder for high sulfur loading cathode of lithium–sulfur battery. Small 19(28), e2301344 (2023). https://doi.org/10.1002/smll.202301344
R. Li, Y. Zeng, L. Song, J. Lv, C. Wang et al., Mechanism and solution of overcharge effect in lithium–sulfur batteries. Small 20(2), 2305283 (2024). https://doi.org/10.1002/smll.202305283
L. Liang, L. Niu, T. Wu, D. Zhou, Z. Xiao, Fluorine-free fabrication of MXene via photo-Fenton approach for advanced lithium-sulfur batteries. ACS Nano 16(5), 7971–7981 (2022). https://doi.org/10.1021/acsnano.2c00779
X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
H. Tang, W. Li, L. Pan, K. Tu, F. Du et al., A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li–S batteries. Adv. Funct. Mater. 29(30), 1901907 (2019). https://doi.org/10.1002/adfm.201901907
H. Tang, W.L. Li, L.M. Pan, C.P. Cullen, Y. Liu et al., In situ formed protective barrier enabled by Sulfur@Titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 5(9), 1800502 (2018). https://doi.org/10.1002/advs.201800502
N. Li, Y. Xie, S. Peng, X. Xiong, K. Han, Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 42, 116–125 (2020). https://doi.org/10.1016/j.jechem.2019.06.014
G. Valurouthu, M. Shekhirev, M. Anayee, R.J. Wang, K. Matthews et al., Screening conductive MXenes for lithium polysulfide adsorption. Adv. Funct. Mater. 34(45), 2404430 (2024). https://doi.org/10.1002/adfm.202404430
C.L. Wei, Y. Tao, Y.L. An, Y. Tian, Y.C. Zhang et al., Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 30(45), 2004613 (2020). https://doi.org/10.1002/adfm.202004613
D. Zhang, S. Wang, B. Li, Y. Gong, S. Yang, Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 31(33), e1901820 (2019). https://doi.org/10.1002/adma.201901820
D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13(10), 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
Y. Li, Y.-C. Zhu, S. Vallem, M. Li, S. Song et al., Flame-retardant ammonium polyphosphate/MXene decorated carbon foam materials as polysulfide traps for fire-safe and stable lithium–sulfur batteries. J. Energy Chem. 89, 313–323 (2024). https://doi.org/10.1016/j.jechem.2023.10.029
B. Li, P. Wang, J. Yuan, N. Song, J. Feng et al., P-doped RuSe2 on porous N-doped carbon matrix as catalysts for accelerated sulfur redox reactions. Angew. Chem. Int. Ed. 63(48), e202408906 (2024). https://doi.org/10.1002/anie.202408906
W. Yu, S. Ma, M. He, R. Li, H. Yang et al., Immobilization and kinetic acceleration of lithium polysulfides by iodine-doped MXene nanosheets in lithium–sulfur batteries. J. Phys. Chem. C 126(27), 10986–10994 (2022). https://doi.org/10.1021/acs.jpcc.2c02689
J. Feng, W. Liu, C. Shi, C. Zhang, X. Zhao et al., Enabling fast diffusion/conversion kinetics by thiourea-induced wrinkled N, S Co-doped functional MXene for lithium–sulfur battery. Energy Storage Mater. 67, 103328 (2024). https://doi.org/10.1016/j.ensm.2024.103328
W. Zhang, H. Jin, Y. Du, G. Chen, J. Zhang, Sulfur and nitrogen codoped Nb2C MXene for dendrite-free lithium metal battery. Electrochim. Acta 390, 138812 (2021). https://doi.org/10.1016/j.electacta.2021.138812
P. Li, H. Lv, Z. Li, X. Meng, Z. Lin et al., The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium–sulfur batteries. Adv. Mater. 33(17), e2007803 (2021). https://doi.org/10.1002/adma.202007803
Y. Cao, Y. Jia, X. Meng, X. Fan, J. Zhang et al., Covalently grafting conjugated porous polymers to MXene offers a two-dimensional sandwich-structured electrocatalytic sulfur host for lithium–sulfur batteries. Chem. Eng. J. 446, 137365 (2022). https://doi.org/10.1016/j.cej.2022.137365
X. Wang, C. Yang, X. Xiong, G. Chen, M. Huang et al., A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li–S batteries. Energy Storage Mater. 16, 344–353 (2019). https://doi.org/10.1016/j.ensm.2018.06.015
X. Li, Q. Guan, Z. Zhuang, Y. Zhang, Y. Lin et al., Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li–S battery. ACS Nano 17(2), 1653–1662 (2023). https://doi.org/10.1021/acsnano.2c11663
C. Wei, Y. Wang, Y. Zhang, L. Tan, Y. Qian et al., Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium–sulfur batteries. Nano Res. 14(10), 3576–3584 (2021). https://doi.org/10.1007/s12274-021-3433-9
C. Wen, X. Zheng, X. Li, M. Yuan, H. Li et al., Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium–sulfur batteries. Chem. Eng. J. 409, 128102 (2021). https://doi.org/10.1016/j.cej.2020.128102
D. Xiong, S. Huang, D. Fang, D. Yan, G. Li et al., Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium–sulfur batteries. Small 17(34), e2007442 (2021). https://doi.org/10.1002/smll.202007442
W. Zhao, Y. Lei, Y. Zhu, Q. Wang, F. Zhang et al., Hierarchically structured Ti3C2Tx MXene paper for Li-S batteries with high volumetric capacity. Nano Energy 86, 106120 (2021). https://doi.org/10.1016/j.nanoen.2021.106120
Z. Xiao, Z. Li, P. Li, X. Meng, R. Wang, Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium–sulfur batteries. ACS Nano 13(3), 3608–3617 (2019). https://doi.org/10.1021/acsnano.9b00177
C. Wei, M. Tian, Z. Fan, L. Yu, Y. Song et al., Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N–Ti3C2 MXene framework toward advanced Li–S full batteries. Energy Storage Mater. 41, 141–151 (2021). https://doi.org/10.1016/j.ensm.2021.05.030
H.J. Peng, G. Zhang, X. Chen, Z.-W. Zhang, W.T. Xu et al., Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55, 12990 (2016). https://doi.org/10.1002/anie.201605676
P.-Y. Zhai, J.-Q. Huang, L. Zhu, J.-L. Shi, W. Zhu et al., Calendering of free-standing electrode for lithium–sulfur batteries with high volumetric energy density. Carbon 111, 493–501 (2017). https://doi.org/10.1016/j.carbon.2016.10.035
C. Lin, C. Niu, X. Xu, K. Li, Z. Cai et al., A facile synthesis of three dimensional graphene sponge composited with sulfur nanops for flexible Li–S cathodes. Phys. Chem. Chem. Phys. 18(32), 22146–22153 (2016). https://doi.org/10.1039/c6cp03624d
Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang et al., Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24(39), 6105–6112 (2014). https://doi.org/10.1002/adfm.201401501
X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 29(3), 1603040 (2017). https://doi.org/10.1002/adma.201603040
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
L. Zhu, H.-J. Peng, J. Liang, J.-Q. Huang, C.-M. Chen et al., Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 11, 746–755 (2015). https://doi.org/10.1016/j.nanoen.2014.11.062
J. Li, L. Liu, J. Wang, Y. Zhuang, B. Wang et al., Freestanding TiO2 nanop-embedded high directional carbon composite host for high-loading low-temperature lithium–sulfur batteries. ACS Sustain. Chem. Eng. 11(9), 3657–3663 (2023). https://doi.org/10.1021/acssuschemeng.2c06482
H. Li, P. Shi, L. Wang, T. Yan, T. Guo et al., Cooperative catalysis of polysulfides in lithium–sulfur batteries through adsorption competition by tuning cationic geometric configuration of dual-active sites in spinel oxides. Angew. Chem. Int. Ed. 62(8), e202216286 (2023). https://doi.org/10.1002/anie.202216286
Y. Bai, T.T. Nguyen, H. Song, R. Chu, D.T. Tran et al., Ru single atom dispersed on MoS2/MXene for enhanced sulfur reduction reaction in lithium–sulfur batteries. Small 20(38), e2402074 (2024). https://doi.org/10.1002/smll.202402074
M. Fang, J. Han, S. He, J.-C. Ren, S. Li et al., Effective screening descriptor for MXenes to enhance sulfur reduction in lithium-sulfur batteries. J. Am. Chem. Soc. 145(23), 12601–12608 (2023). https://doi.org/10.1021/jacs.3c01834
Q. Zeng, L. Xu, G. Li, Q. Zhang, S. Guo et al., Integrating sub-nano catalysts into metal-organic framework toward pore-confined polysulfides conversion in lithium–sulfur batteries. Adv. Funct. Mater. 33(43), 2304619 (2023). https://doi.org/10.1002/adfm.202304619
Y. Zhang, C. Kang, W. Zhao, Y. Song, J. Zhu et al., D-p hybridization-induced “trapping-coupling-conversion” enables high-efficiency Nb single-atom catalysis for Li–S batteries. J. Am. Chem. Soc. 145(3), 1728–1739 (2023). https://doi.org/10.1021/jacs.2c10345
Y. Guo, X. Yang, X. Liu, X. Tong, N. Yang, Coupling methanol oxidation with hydrogen evolution on bifunctional Co-doped Rh electrocatalyst for efficient hydrogen generation. Adv. Funct. Mater. 33(2), 2209134 (2023). https://doi.org/10.1002/adfm.202209134
Z. Hou, C. Cui, Y. Li, Y. Gao, D. Zhu et al., Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction. Adv. Mater. 35(39), 2209876 (2023). https://doi.org/10.1002/adma.202209876
Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5(6), 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
X.-L. Zhang, S.-J. Hu, Y.-R. Zheng, R. Wu, F.-Y. Gao et al., Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 10(1), 5338 (2019). https://doi.org/10.1038/s41467-019-12992-y
X.-L. Zhang, P.-C. Yu, X.-Z. Su, S.-J. Hu, L. Shi et al., Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst. Sci. Adv. 9(27), eadh2885 (2023). https://doi.org/10.1126/sciadv.adh2885
X. Wang, D. Luo, J. Wang, Z. Sun, G. Cui et al., Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem. Int. Ed. 60(5), 2371–2378 (2021). https://doi.org/10.1002/anie.202011493
C. Zhang, W. Chu, X. Hong, Q. He, R. Lu et al., Accelerating conversion of LiPSs on strain-induced MXene for high-performance Li–S battery. Chem. Eng. J. 439, 135679 (2022). https://doi.org/10.1016/j.cej.2022.135679
J. Wang, Y. Xu, Y. Zhuang, Y. Li, H.H. Chang et al., Lattice strain and charge localization dual regulation of phosphorus-doped CoSe2/MXene catalysts enable kinetics-enhanced and dendrite-free lithium–sulfur batteries. Adv. Energy Mater. 14(38), 2401630 (2024). https://doi.org/10.1002/aenm.202401630
W. Wang, L. Huai, S. Wu, J. Shan, J. Zhu et al., Ultrahigh-volumetric-energy-density lithium–sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx MXene bifunctional catalyst. ACS Nano 15(7), 11619–11633 (2021). https://doi.org/10.1021/acsnano.1c02047
S. Hu, T. Wang, B. Lu, D. Wu, H. Wang et al., Ionic-liquid-assisted synthesis of FeSe–MnSe heterointerfaces with abundant Se vacancies embedded in N, B Co-doped hollow carbon microspheres for accelerating the sulfur reduction reaction. Adv. Mater. 34(41), e2204147 (2022). https://doi.org/10.1002/adma.202204147
K. Xu, X. Liu, J. Liang, J. Cai, K. Zhang et al., Manipulating the redox kinetics of Li–S chemistry by tellurium doping for improved Li–S batteries. ACS Energy Lett. 3(2), 420–427 (2018). https://doi.org/10.1021/acsenergylett.7b01249
Z. Wang, H. Jiang, Z. Ni, C. Wei, K. Tian et al., Spatial confinement design with metal-doped catalysts: modulating electronic-state of active sites for accelerating sulfur redox kinetics in lithium–sulfur batteries. Adv. Funct. Mater. 35, 2416997 (2025). https://doi.org/10.1002/adfm.202416997
X. Zhou, Y. Cui, X. Huang, X. Wu, H. Sun et al., Dual-defect engineering of bidirectional catalyst for high-performing lithium–sulfur batteries. Small 19(40), e2301545 (2023). https://doi.org/10.1002/smll.202301545
Y. Song, Y. Sun, L. Chen, L. Song, Q. Yang et al., Seeding Co atoms on size effect-enabled V2C MXene for kinetically boosted lithium–sulfur batteries. Adv. Funct. Mater. 34(51), 2409748 (2024). https://doi.org/10.1002/adfm.202409748
H. Gu, W. Yue, J. Hu, X. Niu, H. Tang et al., Asymmetrically coordinated Cu–N1C2 single-atom catalyst immobilized on Ti3C2Tx MXene as separator coating for lithium–sulfur batteries. Adv. Energy Mater. 13(20), 2204014 (2023). https://doi.org/10.1002/aenm.202204014
Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium-sulfur batteries. Nano Lett. 21(15), 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
S. Deng, W. Sun, J. Tang, M. Jafarpour, F. Nüesch et al., Multifunctional SnO2 QDs/MXene heterostructures as laminar interlayers for improved polysulfide conversion and lithium plating behavior. Nano-Micro Lett. 16(1), 229 (2024). https://doi.org/10.1007/s40820-024-01446-w
L. Jiao, C. Zhang, C.N. Geng, S.C. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219
C. Song, Q. Yan, T. Zhang, H. Lin, H. Ye et al., Enhanced polysulfide conversion through metal oxide-support interaction in MnOx/MXene. Chem. Eng. J. 420, 130452 (2021). https://doi.org/10.1016/j.cej.2021.130452
Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). https://doi.org/10.1002/adfm.201707578
J.Z. Chen, Z.A. Li, J.T. Lei, P.P. Chen, D.L. Zhao, Accelerated ion-electron transport in bi-heterostructures constructed based on ohmic contacts for efficient bi-directional catalysis of lithium–sulfur batteries. Small 21(2), 2408284 (2025). https://doi.org/10.1002/smll.202408284
X. Wang, L. Chen, Y. Yu, W. Wang, L. Yue et al., Tuning p-band centers and interfacial built-In electric field of heterostructure catalysts to expedite bidirectional sulfur redox for high-performance Li–S batteries. Adv. Funct. Mater. 34(41), 2406290 (2024). https://doi.org/10.1002/adfm.202406290
M. Xu, Q. Zhu, Y. Li, Y. Gao, N. Sun et al., Atom-dominated relay catalysis of high-entropy MXene promotes cascade polysulfide conversion for lithium–sulfur batteries. Energy Environ. Sci. 17(20), 7735–7748 (2024). https://doi.org/10.1039/D4EE03402C
Y. Xu, W. Yuan, C. Geng, Z. Hu, Q. Li et al., High-entropy catalysis accelerating stepwise sulfur redox reactions for lithium–sulfur batteries. Adv. Sci. 11(31), e2402497 (2024). https://doi.org/10.1002/advs.202402497
R. Wang, J. Jiao, D. Liu, Y. He, Y. Yang et al., High-entropy metal nitride embedded in concave porous carbon enabling polysulfide conversion in lithium–sulfur batteries. Small 20(44), e2405148 (2024). https://doi.org/10.1002/smll.202405148
J. Jiao, D. Liu, Y. He, Y. Shen, J. Zhou et al., Entropy engineering-modulated d-band center of transition metal nitrides for catalyzing polysulfide conversion in lithium–sulfur batteries. Small (2024). https://doi.org/10.1002/smll.202409740
Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18(3), 2395–2408 (2024). https://doi.org/10.1021/acsnano.3c10731
Q. Zou, Q. Liang, H. Zhou, Y. Guo, J. Xue et al., Promoting Li2S nucleation/dissolution kinetics via multiple active sites over TiVCrMoC3Tx interface. Small 20(40), e2402344 (2024). https://doi.org/10.1002/smll.202402344
K. Wu, G. Lu, B. Huang, Z. Hu, Y. Lv et al., Entropy-driven highly chaotic MXene-based heterostructures as an efficient sulfur redox electrocatalysts for Li-S battery. Adv. Funct. Mater. 34(45), 2404976 (2024). https://doi.org/10.1002/adfm.202404976
X. Zuo, L. Wang, M. Zhen, T. You, D. Liu et al., Multifunctional TiN-MXene-Co@CNTs networks as sulfur/lithium host for high-areal-capacity lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(35), e202408026 (2024). https://doi.org/10.1002/anie.202408026
B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10(15), 2000091 (2020). https://doi.org/10.1002/aenm.202000091
Y. Yan, H. Li, C. Cheng, T. Yan, W. Gao et al., Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co–Mo bimetallic nitride. J. Energy Chem. 61, 336–346 (2021). https://doi.org/10.1016/j.jechem.2021.03.041
W. Zhou, D. Zhao, Q. Wu, J. Dan, X. Zhu et al., Rational design of the Lotus-like N-Co2VO4-Co heterostructures with well-defined interfaces in suppressing the shuttle effect and dendrite growth in lithium–sulfur batteries. Small 17(50), 2104109 (2021). https://doi.org/10.1002/smll.202104109
R. Zhang, Y. Dong, M.A. Al-Tahan, Y. Zhang, R. Wei et al., Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries. J. Energy Chem. 60, 85–94 (2021). https://doi.org/10.1016/j.jechem.2021.01.004
X. Huang, J. Tang, B. Luo, R. Knibbe, T.G. Lin et al., Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9, 1901872 (2019). https://doi.org/10.1002/aenm.201901872
L. Shi, W. Yuan, J. Liu, W. Zhang, S. Hou et al., P-doped NiSe2 nanorods grown on activated carbon cloths for high-loading lithium-sulfur batteries. J. Alloys Compd. 875, 160045 (2021). https://doi.org/10.1016/j.jallcom.2021.160045
S. Li, P. Xu, M.K. Aslam, C. Chen, A. Rashid et al., Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Mater. 27, 51–60 (2020). https://doi.org/10.1016/j.ensm.2020.01.017
H. Gao, S. Ning, J. Zou, S. Men, Y. Zhou et al., The electrocatalytic activity of BaTiO3 nanops towards polysulfides enables high-performance lithium–sulfur batteries. J. Energy Chem. 48, 208–216 (2020). https://doi.org/10.1016/j.jechem.2020.01.028