Designing Symmetric Gradient Honeycomb Structures with Carbon-Coated Iron-Based Composites for High-Efficiency Microwave Absorption
Corresponding Author: Guang‑Sheng Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 234
Abstract
The impedance matching of absorbers is a vital factor affecting their microwave absorption (MA) properties. In this work, we controllably synthesized Material of Institute Lavoisier 88C (MIL-88C) with varying aspect ratios (AR) as a precursor by regulating oil bath conditions, followed by one-step thermal decomposition to obtain carbon-coated iron-based composites. Modifying the precursor MIL-88C (Fe) preparation conditions, such as the molar ratio between metal ions and organic ligands (M/O), oil bath temperature, and oil bath time, influenced the phases, graphitization degree, and AR of the derivatives, enabling low filler loading, achieving well-matched impedance, and ensuring outstanding MA properties. The MOF-derivatives 2 (MD2)/polyvinylidene Difluoride (PVDF), MD3/PVDF, and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt% and as low as 5 wt%. The MD2/PVDF (5 wt%) achieved a maximum effective absorption bandwidth (EAB) of 5.52 GHz (1.90 mm). The MD3/PVDF (10 wt%) possessed a minimum reflection loss (RLmin) value of − 67.4 at 12.56 GHz (2.13 mm). A symmetric gradient honeycomb structure (SGHS) was constructed utilizing the high-frequency structure simulator (HFSS) to further extend the EAB, achieving an EAB of 14.6 GHz and a RLmin of − 59.0 dB. This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
Highlights:
1 MIL-88C (Fe) with varying aspect ratios as a precursor was synthesized by regulating oil bath conditions, followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.
2 High-efficiency microwave absorption properties were achieved with RLmin value of -67.4 dB (2.13 mm) and wide effective absorption bandwidth (EAB) of 5.52 GHz (1.90 mm) under the low filler loading.
3 A symmetric gradient honeycomb structure was constructed utilizing the high-frequency structure simulator, achieving an EAB of 14.6 GHz and a RLmin of -59.0 dB.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhang, L. Zhang, L. Tang, R. Du, B. Zhang, S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano. 18, 8411–8422 (2024). https://doi.org/10.1021/acsnano.3c13057
- Z. Wu, X. Tan, J. Wang, Y. Xing, P. Huang et al., MXene hollow spheres supported by a C-Co exoskeleton grow MWCNTs for efficient microwave absorption. Nano-Micro Lett. 16, 107 (2024). https://doi.org/10.1007/s40820-024-01326-3
- X. Yan, X. Huang, B. Zhong, T. Wu, H. Wang et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 391, 123538 (2020). https://doi.org/10.1016/j.cej.2019.123538
- L. Liu, H. Deng, X. Tang, Y. Lu, J. Zhou et al., Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. U.S.A. 118, e2105838118 (2021). https://doi.org/10.1073/pnas.2105838118
- K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024). https://doi.org/10.1007/s40820-023-01280-6
- H. Ma, M. Fashandi, Z.B. Rejeb, P. Gong, C.B. Park et al., Efficient electromagnetic wave absorption and thermal infrared stealth in PVTMS@MWCNT nano-aerogel via abundant nano-sized cavities and attenuation interfaces. Nano-Micro Lett. 16, 20 (2024). https://doi.org/10.1007/s40820-023-01218-y
- Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- L.T. Nguyen, C.J. Goh, T. Bai, R.H. Ong, X.Y. Goh et al., Scalable fabrication of lightweight carbon nanotube aerogel composites for full X-band electromagnetic wave absorption. Carbon 219, 118811 (2024). https://doi.org/10.1016/j.carbon.2024.118811
- Y. Xu, X. Huang, Y. Chen, Y. Liu, X. Long et al., A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 174, 662–672 (2021). https://doi.org/10.1016/j.carbon.2020.11.044
- S.H. Kim, S.Y. Lee, Y. Zhang, S.J. Park, J. Gu, Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 10, 2303104 (2023). https://doi.org/10.1002/advs.202303104
- Y. Du, Z. Yan, W. You, Q. Men, G. Chen et al., Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 33, 2301449 (2023). https://doi.org/10.1002/adfm.202301449
- Y. Yan, K. Zhang, G. Qin, T. Zhang, X. Huang, Phase engineering on MoS2 to realize dielectric gene engineering for enhancing microwave absorbing performance. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202316338
- D. Pan, G. Yang, H.M. Abo-Dief, V. Murugadoss, N. Naik et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
- R. Hu, L. Li, X. Xu, D. Pan, J. Dong et al., Dimensional design of Fe0.9Co0.1 nano-alloys with enhanced low-frequency microwave absorption. Chem. Eng. J. 482, 148864 (2024). https://doi.org/10.1016/j.cej.2024.148864
- M. Yu, S. Li, X. Ren, N. Liu, W. Guo et al., Magnetic bimetallic heterointerface nanomissiles with enhanced microwave absorption for microwave thermal/dynamics therapy of breast cancer. ACS Nano 18, 3636–3650 (2024). https://doi.org/10.1021/acsnano.3c11433
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- J.R. Choi, E. Cho, H. Lee, S.B. Lee, W.R. Yu et al., Synthesis of Fe/Co bimetallic metal-organic framework-derived composites and their enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater 7, 26 (2024). https://doi.org/10.1007/s42114-023-00824-z
- S. Surblé, C. Serre, C. Mellot-Draznieks, F. Millange, G. Férey, A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun. 3, 284–286 (2006). https://doi.org/10.1039/B512169H
- C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, G. Férey et al., Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007). https://doi.org/10.1126/science.1137975
- Y. Dong, X. Zhu, F. Pan, B. Deng, Z. Liu, Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 4, 1002–1014 (2021). https://doi.org/10.1007/s42114-021-00277-2
- J. Shi, Q. Zhuang, L. Wu, R. Guo, L. Huang et al., Molecular engineering guided dielectric resonance tuning in derived carbon materials. J. Mater. Chem. C 10, 12257–12265 (2022). https://doi.org/10.1039/D2TC02628G
- N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
- Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
- Z.X. Liu, H.B. Yang, Z.M. Han, W.B. Sun, X.X. Ge et al., A bioinspired gradient design strategy for cellulose-based electromagnetic wave absorbing structural materials. Nano Lett. 24, 881–889 (2024). https://doi.org/10.1021/acs.nanolett.3c03989
- Z. Zhang, H. Lei, S. Duan, Z. Zhao, M. Chen et al., Bioinspired double-broadband switchable microwave absorbing grid structures with inflatable kresling origami actuators. Adv. Sci. 11, 2306119 (2024). https://doi.org/10.1002/advs.202306119
- D.D. Lim, S. Lee, J.H. Lee, W. Choi, G.X. Gu, Mechanical metamaterials as broadband electromagnetic wave absorbers: investigating relationships between geometrical parameters and electromagnetic response. Mater. Horiz. (2024). https://doi.org/10.1039/D3MH01959D
- H. Yan, S. Xuan, X. Fan, Y. Shan, X. Xu et al., A repair efficiency evaluation framework for the honeycomb microwave absorbing structure. Compos. Sci. Technol. 248, 110471 (2024). https://doi.org/10.1016/j.compscitech.2024.110471
- C. Wang, S. Ma, D. Li, J. Zhao, H. Zhou et al., Direct ink writing of thermoresistant, lightweight composite polyimide honeycombs with tunable X-band electromagnetic wave absorption properties. Addit. Manuf. 70, 103554 (2023). https://doi.org/10.1016/j.addma.2023.103554
- G. Lee, S. Lee, S. Oh, D. Kim, M. Oh, Tip-to-middle anisotropic MOF-on-MOF growth with a structural adjustment. J. Am. Chem. Soc. 142, 3042–3049 (2020). https://doi.org/10.1021/jacs.9b12193
- C. Serre, F. Millange, S. Surblé, G. Férey, A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 116, 6445–6449 (2004). https://doi.org/10.1002/ange.200454250
- Y. Ding, Z.A. Qiao, Carbon surface chemistry: new insight into the old story. Adv. Mater. 34, 2206025 (2022). https://doi.org/10.1002/adma.202206025
- Y. Zhang, C.M. Liang, M. Lu, H. Yu, G.S. Wang, Skillful introduction of urea during the synthesis of MOF-derived FeCoNi–CH/p-rGO with a spindle-shaped substrate for hybrid supercapacitors. ACS Omega 7, 33019–33030 (2022). https://doi.org/10.1021/acsomega.2c02712
- Y. Tang, J. Ding, W. Zhou, S. Cao, F. Yang et al., Design of uniform hollow carbon nanoarchitectures: different capacitive deionization between the hollow shell thickness and cavity size. Adv. Sci. 10, 2206960 (2023). https://doi.org/10.1002/advs.202206960
- P.Y. Zhao, H.Y. Wang, B. Cai, X.B. Sun, Z.L. Hou et al., Electrospinning fabrication and ultra-wideband electromagnetic wave absorption properties of CeO2/N-doped carbon nanofibers. Nano Res. 15, 7788–7796 (2022). https://doi.org/10.1007/s12274-022-4675-x
- B. Sayahpour, H. Hirsh, S. Bai, N. Schorr, T. Lambert et al., Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery. Adv. Energy Mater. 12, 2103196 (2022). https://doi.org/10.1002/aenm.202103196
- H. Xu, X. Yin, X. Fan, Z. Tang, Z. Hou et al., Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon 148, 421–429 (2019). https://doi.org/10.1016/j.carbon.2019.03.091
- Q. Chang, H. Liang, B. Shi, H. Wu, Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption. iScience 25, 103925 (2022). https://doi.org/10.1016/j.isci.2022.103925
- N. Tsumori, L. Chen, Q. Wang, M. Kitta, Q. Xu et al., Quasi-MOF: exposing inorganic nodes to guest metal nanops for drastically enhanced catalytic activity. Chem 4, 845–856 (2018). https://doi.org/10.1016/j.chempr.2018.03.009
- H.Y. Wang, X.B. Sun, Y. Xin, S.H. Yang, P.F. Hu et al., Ultrathin self-assembly MXene/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber. J. Mater. Sci. Technol. 134, 132–141 (2023). https://doi.org/10.1016/j.jmst.2022.05.061
- X.J. Zhang, G.S. Wang, Y.Z. Wei, L. Guo, M.S. Cao, Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1, 12115–12122 (2013). https://doi.org/10.1039/C3TA12451G
- H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
- S. Gao, G.S. Wang, L. Guo, S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, 1906668 (2020). https://doi.org/10.1002/smll.201906668
- Z.L. Hou, X. Gao, J. Zhang, G. Wang, A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing. Carbon 222, 118935 (2024). https://doi.org/10.1016/j.carbon.2024.118935
- M. Tang, J.Y. Zhang, S. Bi, Z.L. Hou, X.H. Shao et al., Ultrathin topological insulator absorber: unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states. ACS Appl. Mater. Interfaces 11, 33285–33291 (2019). https://doi.org/10.1021/acsami.9b13775
- X. Zhou, J. Wen, Z. Wang, X. Ma, H. Wu, Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 115, 148–155 (2022). https://doi.org/10.1016/j.jmst.2021.11.029
- X. Zhou, B. Wang, Z. Jia, X. Zhang, X. Liu et al., Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J. Colloid Interface Sci. 582, 515–525 (2021). https://doi.org/10.1016/j.jcis.2020.08.087
- L. Deng, M. Han, Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007). https://doi.org/10.1063/1.2755875
- H.Y. Wang, X.B. Sun, G.S. Wang et al., A MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties. J. Mater. Chem. A 9, 24571–24581 (2021). https://doi.org/10.1039/D1TA06505J
- G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174
- Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
- M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022). https://doi.org/10.1002/advs.202105553
- Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32, 2204499 (2022). https://doi.org/10.1002/adfm.202204499
- Y. Liu, X. Wei, X. He, J. Yao, R. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33, 2211352 (2022). https://doi.org/10.1002/adfm.202211352
- X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28, 1800761 (2018). https://doi.org/10.1002/adfm.201800761
- M. Green, Z. Liu, P. Xiang, X. Tan, F. Huang et al., Ferric metal-organic framework for microwave absorption. Mater. Today Chem. 9, 140–148 (2018). https://doi.org/10.1016/j.mtchem.2018.06.003
- N. Yang, Z.X. Luo, G.R. Zhu, S.C. Chen, X.L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 11, 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
- H. Pang, Y. Duan, X. Dai, L. Huang, X. Yang et al., The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption. J. Mater. Sci. Technol. 88, 203–214 (2021). https://doi.org/10.1016/j.jmst.2021.01.072
- N. Zhang, M. Han, G. Wang, Y. Zhao, W. Gu et al., Achieving broad absorption bandwidth of the Co/carbon absorbers through the high-frequency structure simulator electromagnetic simulation. J. Alloy. Compd. 883, 160918 (2021). https://doi.org/10.1016/j.jallcom.2021.160918
- H. Yan, B. Fu, S. Xuan, T. Qin, X. Yao, Electromagnetic response of grading honeycomb composites for broadband microwave absorption. Compos. Struct. 321, 117280 (2023). https://doi.org/10.1016/j.compstruct.2023.117280
- F. Luo, D. Liu, T. Cao, H. Cheng, J. Kuang et al., Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 4, 591–601 (2021). https://doi.org/10.1007/s42114-021-00275-4
References
Y. Zhang, L. Zhang, L. Tang, R. Du, B. Zhang, S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano. 18, 8411–8422 (2024). https://doi.org/10.1021/acsnano.3c13057
Z. Wu, X. Tan, J. Wang, Y. Xing, P. Huang et al., MXene hollow spheres supported by a C-Co exoskeleton grow MWCNTs for efficient microwave absorption. Nano-Micro Lett. 16, 107 (2024). https://doi.org/10.1007/s40820-024-01326-3
X. Yan, X. Huang, B. Zhong, T. Wu, H. Wang et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 391, 123538 (2020). https://doi.org/10.1016/j.cej.2019.123538
L. Liu, H. Deng, X. Tang, Y. Lu, J. Zhou et al., Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. U.S.A. 118, e2105838118 (2021). https://doi.org/10.1073/pnas.2105838118
K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024). https://doi.org/10.1007/s40820-023-01280-6
H. Ma, M. Fashandi, Z.B. Rejeb, P. Gong, C.B. Park et al., Efficient electromagnetic wave absorption and thermal infrared stealth in PVTMS@MWCNT nano-aerogel via abundant nano-sized cavities and attenuation interfaces. Nano-Micro Lett. 16, 20 (2024). https://doi.org/10.1007/s40820-023-01218-y
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
L.T. Nguyen, C.J. Goh, T. Bai, R.H. Ong, X.Y. Goh et al., Scalable fabrication of lightweight carbon nanotube aerogel composites for full X-band electromagnetic wave absorption. Carbon 219, 118811 (2024). https://doi.org/10.1016/j.carbon.2024.118811
Y. Xu, X. Huang, Y. Chen, Y. Liu, X. Long et al., A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 174, 662–672 (2021). https://doi.org/10.1016/j.carbon.2020.11.044
S.H. Kim, S.Y. Lee, Y. Zhang, S.J. Park, J. Gu, Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 10, 2303104 (2023). https://doi.org/10.1002/advs.202303104
Y. Du, Z. Yan, W. You, Q. Men, G. Chen et al., Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 33, 2301449 (2023). https://doi.org/10.1002/adfm.202301449
Y. Yan, K. Zhang, G. Qin, T. Zhang, X. Huang, Phase engineering on MoS2 to realize dielectric gene engineering for enhancing microwave absorbing performance. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202316338
D. Pan, G. Yang, H.M. Abo-Dief, V. Murugadoss, N. Naik et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
R. Hu, L. Li, X. Xu, D. Pan, J. Dong et al., Dimensional design of Fe0.9Co0.1 nano-alloys with enhanced low-frequency microwave absorption. Chem. Eng. J. 482, 148864 (2024). https://doi.org/10.1016/j.cej.2024.148864
M. Yu, S. Li, X. Ren, N. Liu, W. Guo et al., Magnetic bimetallic heterointerface nanomissiles with enhanced microwave absorption for microwave thermal/dynamics therapy of breast cancer. ACS Nano 18, 3636–3650 (2024). https://doi.org/10.1021/acsnano.3c11433
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
J.R. Choi, E. Cho, H. Lee, S.B. Lee, W.R. Yu et al., Synthesis of Fe/Co bimetallic metal-organic framework-derived composites and their enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater 7, 26 (2024). https://doi.org/10.1007/s42114-023-00824-z
S. Surblé, C. Serre, C. Mellot-Draznieks, F. Millange, G. Férey, A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun. 3, 284–286 (2006). https://doi.org/10.1039/B512169H
C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, G. Férey et al., Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007). https://doi.org/10.1126/science.1137975
Y. Dong, X. Zhu, F. Pan, B. Deng, Z. Liu, Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 4, 1002–1014 (2021). https://doi.org/10.1007/s42114-021-00277-2
J. Shi, Q. Zhuang, L. Wu, R. Guo, L. Huang et al., Molecular engineering guided dielectric resonance tuning in derived carbon materials. J. Mater. Chem. C 10, 12257–12265 (2022). https://doi.org/10.1039/D2TC02628G
N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
Z.X. Liu, H.B. Yang, Z.M. Han, W.B. Sun, X.X. Ge et al., A bioinspired gradient design strategy for cellulose-based electromagnetic wave absorbing structural materials. Nano Lett. 24, 881–889 (2024). https://doi.org/10.1021/acs.nanolett.3c03989
Z. Zhang, H. Lei, S. Duan, Z. Zhao, M. Chen et al., Bioinspired double-broadband switchable microwave absorbing grid structures with inflatable kresling origami actuators. Adv. Sci. 11, 2306119 (2024). https://doi.org/10.1002/advs.202306119
D.D. Lim, S. Lee, J.H. Lee, W. Choi, G.X. Gu, Mechanical metamaterials as broadband electromagnetic wave absorbers: investigating relationships between geometrical parameters and electromagnetic response. Mater. Horiz. (2024). https://doi.org/10.1039/D3MH01959D
H. Yan, S. Xuan, X. Fan, Y. Shan, X. Xu et al., A repair efficiency evaluation framework for the honeycomb microwave absorbing structure. Compos. Sci. Technol. 248, 110471 (2024). https://doi.org/10.1016/j.compscitech.2024.110471
C. Wang, S. Ma, D. Li, J. Zhao, H. Zhou et al., Direct ink writing of thermoresistant, lightweight composite polyimide honeycombs with tunable X-band electromagnetic wave absorption properties. Addit. Manuf. 70, 103554 (2023). https://doi.org/10.1016/j.addma.2023.103554
G. Lee, S. Lee, S. Oh, D. Kim, M. Oh, Tip-to-middle anisotropic MOF-on-MOF growth with a structural adjustment. J. Am. Chem. Soc. 142, 3042–3049 (2020). https://doi.org/10.1021/jacs.9b12193
C. Serre, F. Millange, S. Surblé, G. Férey, A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 116, 6445–6449 (2004). https://doi.org/10.1002/ange.200454250
Y. Ding, Z.A. Qiao, Carbon surface chemistry: new insight into the old story. Adv. Mater. 34, 2206025 (2022). https://doi.org/10.1002/adma.202206025
Y. Zhang, C.M. Liang, M. Lu, H. Yu, G.S. Wang, Skillful introduction of urea during the synthesis of MOF-derived FeCoNi–CH/p-rGO with a spindle-shaped substrate for hybrid supercapacitors. ACS Omega 7, 33019–33030 (2022). https://doi.org/10.1021/acsomega.2c02712
Y. Tang, J. Ding, W. Zhou, S. Cao, F. Yang et al., Design of uniform hollow carbon nanoarchitectures: different capacitive deionization between the hollow shell thickness and cavity size. Adv. Sci. 10, 2206960 (2023). https://doi.org/10.1002/advs.202206960
P.Y. Zhao, H.Y. Wang, B. Cai, X.B. Sun, Z.L. Hou et al., Electrospinning fabrication and ultra-wideband electromagnetic wave absorption properties of CeO2/N-doped carbon nanofibers. Nano Res. 15, 7788–7796 (2022). https://doi.org/10.1007/s12274-022-4675-x
B. Sayahpour, H. Hirsh, S. Bai, N. Schorr, T. Lambert et al., Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery. Adv. Energy Mater. 12, 2103196 (2022). https://doi.org/10.1002/aenm.202103196
H. Xu, X. Yin, X. Fan, Z. Tang, Z. Hou et al., Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon 148, 421–429 (2019). https://doi.org/10.1016/j.carbon.2019.03.091
Q. Chang, H. Liang, B. Shi, H. Wu, Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption. iScience 25, 103925 (2022). https://doi.org/10.1016/j.isci.2022.103925
N. Tsumori, L. Chen, Q. Wang, M. Kitta, Q. Xu et al., Quasi-MOF: exposing inorganic nodes to guest metal nanops for drastically enhanced catalytic activity. Chem 4, 845–856 (2018). https://doi.org/10.1016/j.chempr.2018.03.009
H.Y. Wang, X.B. Sun, Y. Xin, S.H. Yang, P.F. Hu et al., Ultrathin self-assembly MXene/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber. J. Mater. Sci. Technol. 134, 132–141 (2023). https://doi.org/10.1016/j.jmst.2022.05.061
X.J. Zhang, G.S. Wang, Y.Z. Wei, L. Guo, M.S. Cao, Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1, 12115–12122 (2013). https://doi.org/10.1039/C3TA12451G
H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
S. Gao, G.S. Wang, L. Guo, S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, 1906668 (2020). https://doi.org/10.1002/smll.201906668
Z.L. Hou, X. Gao, J. Zhang, G. Wang, A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing. Carbon 222, 118935 (2024). https://doi.org/10.1016/j.carbon.2024.118935
M. Tang, J.Y. Zhang, S. Bi, Z.L. Hou, X.H. Shao et al., Ultrathin topological insulator absorber: unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states. ACS Appl. Mater. Interfaces 11, 33285–33291 (2019). https://doi.org/10.1021/acsami.9b13775
X. Zhou, J. Wen, Z. Wang, X. Ma, H. Wu, Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 115, 148–155 (2022). https://doi.org/10.1016/j.jmst.2021.11.029
X. Zhou, B. Wang, Z. Jia, X. Zhang, X. Liu et al., Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J. Colloid Interface Sci. 582, 515–525 (2021). https://doi.org/10.1016/j.jcis.2020.08.087
L. Deng, M. Han, Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007). https://doi.org/10.1063/1.2755875
H.Y. Wang, X.B. Sun, G.S. Wang et al., A MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties. J. Mater. Chem. A 9, 24571–24581 (2021). https://doi.org/10.1039/D1TA06505J
G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174
Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022). https://doi.org/10.1002/advs.202105553
Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32, 2204499 (2022). https://doi.org/10.1002/adfm.202204499
Y. Liu, X. Wei, X. He, J. Yao, R. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33, 2211352 (2022). https://doi.org/10.1002/adfm.202211352
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28, 1800761 (2018). https://doi.org/10.1002/adfm.201800761
M. Green, Z. Liu, P. Xiang, X. Tan, F. Huang et al., Ferric metal-organic framework for microwave absorption. Mater. Today Chem. 9, 140–148 (2018). https://doi.org/10.1016/j.mtchem.2018.06.003
N. Yang, Z.X. Luo, G.R. Zhu, S.C. Chen, X.L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 11, 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
H. Pang, Y. Duan, X. Dai, L. Huang, X. Yang et al., The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption. J. Mater. Sci. Technol. 88, 203–214 (2021). https://doi.org/10.1016/j.jmst.2021.01.072
N. Zhang, M. Han, G. Wang, Y. Zhao, W. Gu et al., Achieving broad absorption bandwidth of the Co/carbon absorbers through the high-frequency structure simulator electromagnetic simulation. J. Alloy. Compd. 883, 160918 (2021). https://doi.org/10.1016/j.jallcom.2021.160918
H. Yan, B. Fu, S. Xuan, T. Qin, X. Yao, Electromagnetic response of grading honeycomb composites for broadband microwave absorption. Compos. Struct. 321, 117280 (2023). https://doi.org/10.1016/j.compstruct.2023.117280
F. Luo, D. Liu, T. Cao, H. Cheng, J. Kuang et al., Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 4, 591–601 (2021). https://doi.org/10.1007/s42114-021-00275-4